#include "common/math/kasa.h" #include #include #include "common/math/mat.h" void kasaReset(struct KasaFit *kasa) { kasa->acc_mean_x = kasa->acc_mean_y = kasa->acc_mean_z = 0.0f; kasa->acc_x = kasa->acc_y = kasa->acc_z = kasa->acc_w = 0.0f; kasa->acc_xx = kasa->acc_xy = kasa->acc_xz = kasa->acc_xw = 0.0f; kasa->acc_yy = kasa->acc_yz = kasa->acc_yw = 0.0f; kasa->acc_zz = kasa->acc_zw = 0.0f; kasa->nsamples = 0; } void kasaInit(struct KasaFit *kasa) { kasaReset(kasa); } void kasaAccumulate(struct KasaFit *kasa, float x, float y, float z) { // KASA fit runs into numerical accuracy issues for large offset and small // radii. Assuming that all points are on an sphere we can substract the // first x,y,z value from all incoming data, making sure that the sphere will // always go through 0,0,0 ensuring the highest possible numerical accuracy. if (kasa->nsamples == 0) { kasa->acc_mean_x = x; kasa->acc_mean_y = y; kasa->acc_mean_z = z; } x = x - kasa->acc_mean_x; y = y - kasa->acc_mean_y; z = z - kasa->acc_mean_z; // Accumulation. float w = x * x + y * y + z * z; kasa->acc_x += x; kasa->acc_y += y; kasa->acc_z += z; kasa->acc_w += w; kasa->acc_xx += x * x; kasa->acc_xy += x * y; kasa->acc_xz += x * z; kasa->acc_xw += x * w; kasa->acc_yy += y * y; kasa->acc_yz += y * z; kasa->acc_yw += y * w; kasa->acc_zz += z * z; kasa->acc_zw += z * w; kasa->nsamples += 1; } bool kasaNormalize(struct KasaFit *kasa) { if (kasa->nsamples == 0) { return false; } float inv = 1.0f / kasa->nsamples; kasa->acc_x *= inv; kasa->acc_y *= inv; kasa->acc_z *= inv; kasa->acc_w *= inv; kasa->acc_xx *= inv; kasa->acc_xy *= inv; kasa->acc_xz *= inv; kasa->acc_xw *= inv; kasa->acc_yy *= inv; kasa->acc_yz *= inv; kasa->acc_yw *= inv; kasa->acc_zz *= inv; kasa->acc_zw *= inv; return true; } int kasaFit(struct KasaFit *kasa, struct Vec3 *bias, float *radius, float max_fit, float min_fit) { // A * out = b // (4 x 4) (4 x 1) (4 x 1) struct Mat44 A; A.elem[0][0] = kasa->acc_xx; A.elem[0][1] = kasa->acc_xy; A.elem[0][2] = kasa->acc_xz; A.elem[0][3] = kasa->acc_x; A.elem[1][0] = kasa->acc_xy; A.elem[1][1] = kasa->acc_yy; A.elem[1][2] = kasa->acc_yz; A.elem[1][3] = kasa->acc_y; A.elem[2][0] = kasa->acc_xz; A.elem[2][1] = kasa->acc_yz; A.elem[2][2] = kasa->acc_zz; A.elem[2][3] = kasa->acc_z; A.elem[3][0] = kasa->acc_x; A.elem[3][1] = kasa->acc_y; A.elem[3][2] = kasa->acc_z; A.elem[3][3] = 1.0f; struct Vec4 b; initVec4(&b, -kasa->acc_xw, -kasa->acc_yw, -kasa->acc_zw, -kasa->acc_w); struct Size4 pivot; mat44DecomposeLup(&A, &pivot); struct Vec4 out; mat44Solve(&A, &out, &b, &pivot); // sphere: (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 // // xc = -out[0] / 2, yc = -out[1] / 2, zc = -out[2] / 2 // r = sqrt(xc^2 + yc^2 + zc^2 - out[3]) struct Vec3 v; initVec3(&v, out.x, out.y, out.z); vec3ScalarMul(&v, -0.5f); float r_square = vec3Dot(&v, &v) - out.w; float r = (r_square > 0) ? sqrtf(r_square) : 0; // Need to correct the bias with the first sample, which was used to shift // the sphere in order to have best accuracy. initVec3(bias, v.x + kasa->acc_mean_x, v.y + kasa->acc_mean_y, v.z + kasa->acc_mean_z); *radius = r; int success = 0; if (r > min_fit && r < max_fit) { success = 1; } return success; }