// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "common.h" #include "function_list.h" #include "test_functions.h" #include "utility.h" #include namespace { int BuildKernel(const char *name, int vectorSize, cl_kernel *k, cl_program *p, bool relaxedMode) { auto kernel_name = GetKernelName(vectorSize); auto source = GetTernaryKernel(kernel_name, name, ParameterType::Double, ParameterType::Double, ParameterType::Double, ParameterType::Double, vectorSize); std::array sources{ source.c_str() }; return MakeKernel(sources.data(), sources.size(), kernel_name.c_str(), k, p, relaxedMode); } struct BuildKernelInfo2 { cl_kernel *kernels; Programs &programs; const char *nameInCode; bool relaxedMode; // Whether to build with -cl-fast-relaxed-math. }; cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p) { BuildKernelInfo2 *info = (BuildKernelInfo2 *)p; cl_uint vectorSize = gMinVectorSizeIndex + job_id; return BuildKernel(info->nameInCode, vectorSize, info->kernels + vectorSize, &(info->programs[vectorSize]), info->relaxedMode); } } // anonymous namespace int TestFunc_mad_Double(const Func *f, MTdata d, bool relaxedMode) { int error; Programs programs; cl_kernel kernels[VECTOR_SIZE_COUNT]; float maxError = 0.0f; double maxErrorVal = 0.0f; double maxErrorVal2 = 0.0f; double maxErrorVal3 = 0.0f; uint64_t step = getTestStep(sizeof(double), BUFFER_SIZE); logFunctionInfo(f->name, sizeof(cl_double), relaxedMode); // Init the kernels { BuildKernelInfo2 build_info{ kernels, programs, f->nameInCode, relaxedMode }; if ((error = ThreadPool_Do(BuildKernelFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info))) return error; } for (uint64_t i = 0; i < (1ULL << 32); i += step) { // Init input array double *p = (double *)gIn; double *p2 = (double *)gIn2; double *p3 = (double *)gIn3; for (size_t j = 0; j < BUFFER_SIZE / sizeof(double); j++) { p[j] = DoubleFromUInt32(genrand_int32(d)); p2[j] = DoubleFromUInt32(genrand_int32(d)); p3[j] = DoubleFromUInt32(genrand_int32(d)); } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, BUFFER_SIZE, gIn, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error); return error; } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, BUFFER_SIZE, gIn2, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error); return error; } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, BUFFER_SIZE, gIn3, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error); return error; } // write garbage into output arrays for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { uint32_t pattern = 0xffffdead; memset_pattern4(gOut[j], &pattern, BUFFER_SIZE); if ((error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, BUFFER_SIZE, gOut[j], 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j); goto exit; } } // Run the kernels for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { size_t vectorSize = sizeof(cl_double) * sizeValues[j]; size_t localCount = (BUFFER_SIZE + vectorSize - 1) / vectorSize; // BUFFER_SIZE / vectorSize rounded up if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]), &gOutBuffer[j]))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer), &gInBuffer))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2), &gInBuffer2))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3), &gInBuffer3))) { LogBuildError(programs[j]); goto exit; } if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL))) { vlog_error("FAILED -- could not execute kernel\n"); goto exit; } } // Get that moving if ((error = clFlush(gQueue))) vlog("clFlush failed\n"); // Calculate the correctly rounded reference result double *r = (double *)gOut_Ref; double *s = (double *)gIn; double *s2 = (double *)gIn2; double *s3 = (double *)gIn3; for (size_t j = 0; j < BUFFER_SIZE / sizeof(double); j++) r[j] = (double)f->dfunc.f_fff(s[j], s2[j], s3[j]); // Read the data back for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { if ((error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, BUFFER_SIZE, gOut[j], 0, NULL, NULL))) { vlog_error("ReadArray failed %d\n", error); goto exit; } } if (gSkipCorrectnessTesting) break; // Verify data -- No verification possible. // MAD is a random number generator. if (0 == (i & 0x0fffffff)) { vlog("."); fflush(stdout); } } if (!gSkipCorrectnessTesting) { if (gWimpyMode) vlog("Wimp pass"); else vlog("passed"); vlog("\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3); } vlog("\n"); exit: // Release for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++) { clReleaseKernel(kernels[k]); } return error; }