// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x192( size_t elements, const float* x, float* y, float scale_value, float scale_exp) { assert(elements % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; elements >= 192 * sizeof(float); elements -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(x); const __m512 vx1 = _mm512_loadu_ps(x + 16); const __m512 vx2 = _mm512_loadu_ps(x + 32); const __m512 vx3 = _mm512_loadu_ps(x + 48); const __m512 vx4 = _mm512_loadu_ps(x + 64); const __m512 vx5 = _mm512_loadu_ps(x + 80); const __m512 vx6 = _mm512_loadu_ps(x + 96); const __m512 vx7 = _mm512_loadu_ps(x + 112); const __m512 vx8 = _mm512_loadu_ps(x + 128); const __m512 vx9 = _mm512_loadu_ps(x + 144); const __m512 vx10 = _mm512_loadu_ps(x + 160); const __m512 vx11 = _mm512_loadu_ps(x + 176); x += 192; // Compute reduced argument elements := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); __m512 vf8 = _mm512_mul_ps(vp8, vscalev); __m512 vf9 = _mm512_mul_ps(vp9, vscalev); __m512 vf10 = _mm512_mul_ps(vp10, vscalev); __m512 vf11 = _mm512_mul_ps(vp11, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); const __m512 ve8 = _mm512_add_ps(vn8, vscalee); const __m512 ve9 = _mm512_add_ps(vn9, vscalee); const __m512 ve10 = _mm512_add_ps(vn10, vscalee); const __m512 ve11 = _mm512_add_ps(vn11, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); vf8 = _mm512_scalef_ps(vf8, ve8); vf9 = _mm512_scalef_ps(vf9, ve9); vf10 = _mm512_scalef_ps(vf10, ve10); vf11 = _mm512_scalef_ps(vf11, ve11); // Store 128 (8x16) results at a time. _mm512_storeu_ps(y, vf0); _mm512_storeu_ps(y + 0, vf0); _mm512_storeu_ps(y + 16, vf1); _mm512_storeu_ps(y + 32, vf2); _mm512_storeu_ps(y + 48, vf3); _mm512_storeu_ps(y + 64, vf4); _mm512_storeu_ps(y + 80, vf5); _mm512_storeu_ps(y + 96, vf6); _mm512_storeu_ps(y + 112, vf7); _mm512_storeu_ps(y + 128, vf8); _mm512_storeu_ps(y + 144, vf9); _mm512_storeu_ps(y + 160, vf10); _mm512_storeu_ps(y + 176, vf11); y += 192; } for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(x); x += 16; // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(y, vf); y += 16; } if XNN_UNLIKELY(elements != 0) { // Prepare mask for valid 32-bit elements (depends on elements). elements >>= 2 /* log2(sizeof(float)) */; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, x); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(y, vmask, vf); } _mm256_zeroupper(); }