// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 4 == 0 $assert BATCH_TILE >= 4 $assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"] $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" $VMULSUBQ_F32 = "vfmsq_f32" if FMA else "vmlsq_f32" #include #include #include #include extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; $PARAMS_STRUCT = "neonfma_rr1_lut64_p2" if FMA else "neon_rr2_lut64_p2" void xnn_f32_vsigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_lut64_p2_${DIV_ALGO}_x${BATCH_TILE}( size_t n, const float* x, float* y, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(n % sizeof(float) == 0); const float32x4_t vmagic_bias = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); $if FMA: const float32x4_t vln2 = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.ln2); $else: const float32x4_t vln2_hi = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.ln2_hi); const float32x4_t vln2_lo = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.ln2_lo); const float32x4_t vc2 = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.denorm_cutoff); $if BATCH_TILE > 4: for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { $for N in range(0, BATCH_TILE, 4): const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4; $for N in range(0, BATCH_TILE, 4): const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e); $for N in range(0, BATCH_TILE, 4): const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). $for N in range(0, BATCH_TILE, 4): const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask)); $for N in range(0, BATCH_TILE, 4): const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0); const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1); float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx${ABC[N:N+2]}]); float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx${ABC[N+2:N+4]}]); $for N in range(0, BATCH_TILE, 4): vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1); vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1); const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]}); $for N in range(0, BATCH_TILE, 4): const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]})); $for N in range(0, BATCH_TILE, 4): vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias); $if FMA: $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2); $else: $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_hi); $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_lo); $for N in range(0, BATCH_TILE, 4): float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc2); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = ${VMULSUBQ_F32}(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): const float32x4_t vy${ABC[N:N+4]} = ${VMULSUBQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): const float32x4_t vd${ABC[N:N+4]} = vaddq_f32(vy${ABC[N:N+4]}, vone); $if DIV_ALGO == "div": $for N in range(0, BATCH_TILE, 4): float32x4_t vf${ABC[N:N+4]} = vdivq_f32(vy${ABC[N:N+4]}, vd${ABC[N:N+4]}); $else: $for N in range(0, BATCH_TILE, 4): float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]}); $if DIV_ALGO == "nr2fma": $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $else: $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $if DIV_ALGO == "nr2recps": $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $else: $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $for N in range(0, BATCH_TILE, 4): float32x4_t vf${ABC[N:N+4]} = vmulq_f32(vy${ABC[N:N+4]}, vr${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff))); $for N in range(0, BATCH_TILE, 4): const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f)); $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]})); $for N in range(0, BATCH_TILE, 4): vst1q_f32(y, vf${ABC[N:N+4]}); y += 4; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(x); x += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vln2_lo); float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULSUBQ_F32}(vt, vp, vt); const float32x4_t vy = ${VMULSUBQ_F32}(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); $if DIV_ALGO == "div": float32x4_t vf = vdivq_f32(vy, vd); $else: float32x4_t vr = vrecpeq_f32(vd); $if DIV_ALGO == "nr2fma": vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); $else: vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $if DIV_ALGO == "nr2recps": vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $else: vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); float32x4_t vf = vmulq_f32(vy, vr); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(y, vf); y += 4; } if XNN_UNLIKELY(n != 0) { const float32x4_t vx = vld1q_f32(x); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vln2_lo); float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULSUBQ_F32}(vt, vp, vt); const float32x4_t vy = ${VMULSUBQ_F32}(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); $if DIV_ALGO == "div": float32x4_t vf = vdivq_f32(vy, vd); $else: float32x4_t vr = vrecpeq_f32(vd); $if DIV_ALGO == "nr2fma": vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); $else: vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $if DIV_ALGO == "nr2recps": vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $else: vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); float32x4_t vf = vmulq_f32(vy, vr); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (n & (2 * sizeof(float))) { vst1_f32(y, vf_lo); y += 2; vf_lo = vget_high_f32(vf); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vf_lo, 0); } } }