// Auto-generated file. Do not edit! // Template: src/qu8-gemm/c4-neondot.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_qu8_gemm_minmax_rndnu_ukernel_3x8c4__neondot( size_t mr, size_t nc, size_t kc, const uint8_t* restrict a, size_t a_stride, const void* restrict w, uint8_t* restrict c, size_t cm_stride, size_t cn_stride, const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(mr != 0); assert(mr <= 3); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(uint8_t) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); kc = round_up_po2(kc, 4 * sizeof(uint8_t)); const uint8_t* a0 = a; uint8_t* c0 = c; const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride); uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride); if XNN_UNPREDICTABLE(mr < 2) { a1 = a0; c1 = c0; } const uint8_t* a2 = (const uint8_t*) ((uintptr_t) a1 + a_stride); uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride); if XNN_UNPREDICTABLE(mr <= 2) { a2 = a1; c2 = c1; } const uint8x8_t va_zero_point = vld1_dup_u8(¶ms->rndnu_neon.kernel_zero_point[0]); // Loop over groups of 8 columns. do { // Initialize accumulators with bias. 8 bias values are loaded from the // weight matrix, at the start of the group of 8 columns. uint32x4_t vpacc0x0123 = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x4_t vpacc0x4567 = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x4_t vpacc1x0123 = vpacc0x0123; uint32x4_t vpacc1x4567 = vpacc0x4567; uint32x4_t vpacc2x0123 = vpacc0x0123; uint32x4_t vpacc2x4567 = vpacc0x4567; uint32x2_t vnacc0 = vmov_n_u32(0); uint32x2_t vnacc1 = vmov_n_u32(0); uint32x2_t vnacc2 = vmov_n_u32(0); // Inner accumulation loop along the 8 columns. size_t k = kc; // 2x partial unrolled loop to load 8 bytes at a time. while (k >= 8 * sizeof(uint8_t)) { // Load a 3x8 block of activations. const uint8x8_t va0x01234567 = vld1_u8(a0); a0 += 8; const uint8x8_t va1x01234567 = vld1_u8(a1); a1 += 8; const uint8x8_t va2x01234567 = vld1_u8(a2); a2 += 8; // Load a 8x8 block of weights. const uint8x16_t vb0123x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: 3x8 * 8x8 --> 3x8. vnacc0 = vdot_u32(vnacc0, va_zero_point, va0x01234567); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb0123x0123, va0x01234567, 0); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb0123x4567, va0x01234567, 0); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb4567x0123, va0x01234567, 1); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb4567x4567, va0x01234567, 1); vnacc1 = vdot_u32(vnacc1, va_zero_point, va1x01234567); vpacc1x0123 = vdotq_lane_u32(vpacc1x0123, vb0123x0123, va1x01234567, 0); vpacc1x4567 = vdotq_lane_u32(vpacc1x4567, vb0123x4567, va1x01234567, 0); vpacc1x0123 = vdotq_lane_u32(vpacc1x0123, vb4567x0123, va1x01234567, 1); vpacc1x4567 = vdotq_lane_u32(vpacc1x4567, vb4567x4567, va1x01234567, 1); vnacc2 = vdot_u32(vnacc2, va_zero_point, va2x01234567); vpacc2x0123 = vdotq_lane_u32(vpacc2x0123, vb0123x0123, va2x01234567, 0); vpacc2x4567 = vdotq_lane_u32(vpacc2x4567, vb0123x4567, va2x01234567, 0); vpacc2x0123 = vdotq_lane_u32(vpacc2x0123, vb4567x0123, va2x01234567, 1); vpacc2x4567 = vdotq_lane_u32(vpacc2x4567, vb4567x4567, va2x01234567, 1); k -= 8 * sizeof(uint8_t); } // Handle up to 4 final positions of `k` if XNN_UNLIKELY(k != 0) { // Load a 3x4 block of activations. const uint8x8_t va0x01234567 = vreinterpret_u8_u32(vld1_lane_u32((const void*) a0, vmov_n_u32(0), 0)); a0 += 4; const uint8x8_t va1x01234567 = vreinterpret_u8_u32(vld1_lane_u32((const void*) a1, vmov_n_u32(0), 0)); a1 += 4; const uint8x8_t va2x01234567 = vreinterpret_u8_u32(vld1_lane_u32((const void*) a2, vmov_n_u32(0), 0)); a2 += 4; // Load a 4x8 block of weights. const uint8x16_t vb0123x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: 3x4 * 4x8 --> 3x8. vnacc0 = vdot_u32(vnacc0, va_zero_point, va0x01234567); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb0123x0123, va0x01234567, 0); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb0123x4567, va0x01234567, 0); vnacc1 = vdot_u32(vnacc1, va_zero_point, va1x01234567); vpacc1x0123 = vdotq_lane_u32(vpacc1x0123, vb0123x0123, va1x01234567, 0); vpacc1x4567 = vdotq_lane_u32(vpacc1x4567, vb0123x4567, va1x01234567, 0); vnacc2 = vdot_u32(vnacc2, va_zero_point, va2x01234567); vpacc2x0123 = vdotq_lane_u32(vpacc2x0123, vb0123x0123, va2x01234567, 0); vpacc2x4567 = vdotq_lane_u32(vpacc2x4567, vb0123x4567, va2x01234567, 0); } // Subtract zero point from accumulators. vnacc0 = vpadd_u32(vnacc0, vnacc0); const uint32x4_t vnacc0x0123 = vcombine_u32(vnacc0, vnacc0); int32x4_t vacc0x0123 = vreinterpretq_s32_u32(vsubq_u32(vpacc0x0123, vnacc0x0123)); int32x4_t vacc0x4567 = vreinterpretq_s32_u32(vsubq_u32(vpacc0x4567, vnacc0x0123)); vnacc1 = vpadd_u32(vnacc1, vnacc1); const uint32x4_t vnacc1x0123 = vcombine_u32(vnacc1, vnacc1); int32x4_t vacc1x0123 = vreinterpretq_s32_u32(vsubq_u32(vpacc1x0123, vnacc1x0123)); int32x4_t vacc1x4567 = vreinterpretq_s32_u32(vsubq_u32(vpacc1x4567, vnacc1x0123)); vnacc2 = vpadd_u32(vnacc2, vnacc2); const uint32x4_t vnacc2x0123 = vcombine_u32(vnacc2, vnacc2); int32x4_t vacc2x0123 = vreinterpretq_s32_u32(vsubq_u32(vpacc2x0123, vnacc2x0123)); int32x4_t vacc2x4567 = vreinterpretq_s32_u32(vsubq_u32(vpacc2x4567, vnacc2x0123)); const int32x4_t vright_pre_shift = vld1q_dup_s32(¶ms->rndnu_neon.right_pre_shift); const int32x4_t vmultiplier = vld1q_dup_s32(¶ms->rndnu_neon.multiplier); const int32x4_t vright_post_shift = vld1q_dup_s32(¶ms->rndnu_neon.right_post_shift); vacc0x0123 = vshlq_s32(vacc0x0123, vright_pre_shift); vacc0x4567 = vshlq_s32(vacc0x4567, vright_pre_shift); vacc1x0123 = vshlq_s32(vacc1x0123, vright_pre_shift); vacc1x4567 = vshlq_s32(vacc1x4567, vright_pre_shift); vacc2x0123 = vshlq_s32(vacc2x0123, vright_pre_shift); vacc2x4567 = vshlq_s32(vacc2x4567, vright_pre_shift); vacc0x0123 = vqdmulhq_s32(vacc0x0123, vmultiplier); vacc0x4567 = vqdmulhq_s32(vacc0x4567, vmultiplier); vacc1x0123 = vqdmulhq_s32(vacc1x0123, vmultiplier); vacc1x4567 = vqdmulhq_s32(vacc1x4567, vmultiplier); vacc2x0123 = vqdmulhq_s32(vacc2x0123, vmultiplier); vacc2x4567 = vqdmulhq_s32(vacc2x4567, vmultiplier); vacc0x0123 = vrshlq_s32(vacc0x0123, vright_post_shift); vacc0x4567 = vrshlq_s32(vacc0x4567, vright_post_shift); vacc1x0123 = vrshlq_s32(vacc1x0123, vright_post_shift); vacc1x4567 = vrshlq_s32(vacc1x4567, vright_post_shift); vacc2x0123 = vrshlq_s32(vacc2x0123, vright_post_shift); vacc2x4567 = vrshlq_s32(vacc2x4567, vright_post_shift); const int16x8_t voutput_zero_point = vld1q_dup_s16(¶ms->rndnu_neon.output_zero_point); #if XNN_ARCH_ARM64 const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point); const int16x8_t vacc1x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc1x0123), vacc1x4567), voutput_zero_point); const int16x8_t vacc2x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc2x0123), vacc2x4567), voutput_zero_point); uint8x16_t vout0x01234567_1x01234567 = vqmovun_high_s16(vqmovun_s16(vacc0x01234567), vacc1x01234567); uint8x8_t vout2x01234567 = vqmovun_s16(vacc2x01234567); #else const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point); const int16x8_t vacc1x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc1x0123), vqmovn_s32(vacc1x4567)), voutput_zero_point); const int16x8_t vacc2x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc2x0123), vqmovn_s32(vacc2x4567)), voutput_zero_point); uint8x16_t vout0x01234567_1x01234567 = vcombine_u8(vqmovun_s16(vacc0x01234567), vqmovun_s16(vacc1x01234567)); uint8x8_t vout2x01234567 = vqmovun_s16(vacc2x01234567); #endif const uint8x16_t voutput_min = vld1q_dup_u8(¶ms->rndnu_neon.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(¶ms->rndnu_neon.output_max); vout0x01234567_1x01234567 = vmaxq_u8(vout0x01234567_1x01234567, voutput_min); vout2x01234567 = vmax_u8(vout2x01234567, vget_low_u8(voutput_min)); vout0x01234567_1x01234567 = vminq_u8(vout0x01234567_1x01234567, voutput_max); vout2x01234567 = vmin_u8(vout2x01234567, vget_low_u8(voutput_max)); if (nc >= 8) { vst1_u8(c0 + 0, vget_low_u8(vout0x01234567_1x01234567)); vst1_u8(c1 + 0, vget_high_u8(vout0x01234567_1x01234567)); vst1_u8(c2 + 0, vout2x01234567); c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride); c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride); c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride); a0 = (const uint8_t*) ((uintptr_t) a0 - kc); a1 = (const uint8_t*) ((uintptr_t) a1 - kc); a2 = (const uint8_t*) ((uintptr_t) a2 - kc); nc -= 8; } else { if (nc & 4) { vst1q_lane_u32((void*) c0, vreinterpretq_u32_u8(vout0x01234567_1x01234567), 0); c0 += 4; vst1q_lane_u32((void*) c1, vreinterpretq_u32_u8(vout0x01234567_1x01234567), 2); c1 += 4; vst1_lane_u32((void*) c2, vreinterpret_u32_u8(vout2x01234567), 0); c2 += 4; vout0x01234567_1x01234567 = vextq_u8(vout0x01234567_1x01234567, vout0x01234567_1x01234567, 4); vout2x01234567 = vext_u8(vout2x01234567, vout2x01234567, 4); } if (nc & 2) { vst1q_lane_u16((void*) c0, vreinterpretq_u16_u8(vout0x01234567_1x01234567), 0); c0 += 2; vst1q_lane_u16((void*) c1, vreinterpretq_u16_u8(vout0x01234567_1x01234567), 4); c1 += 2; vst1_lane_u16((void*) c2, vreinterpret_u16_u8(vout2x01234567), 0); c2 += 2; vout0x01234567_1x01234567 = vextq_u8(vout0x01234567_1x01234567, vout0x01234567_1x01234567, 2); vout2x01234567 = vext_u8(vout2x01234567, vout2x01234567, 2); } if (nc & 1) { vst1q_lane_u8(c0, vout0x01234567_1x01234567, 0); vst1q_lane_u8(c1, vout0x01234567_1x01234567, 8); vst1_lane_u8(c2, vout2x01234567, 0); } nc = 0; } } while (nc != 0); }