// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include static enum xnn_status create_average_pooling_operator( const struct xnn_node* node, const struct xnn_value* values, size_t num_values, struct xnn_operator_data* opdata, const struct xnn_caches* caches) { assert(node->num_inputs == 1); const uint32_t input_id = node->inputs[0]; assert(input_id != XNN_INVALID_VALUE_ID); assert(input_id < num_values); assert(node->num_outputs == 1); const uint32_t output_id = node->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_values); const size_t channel_dim = values[input_id].shape.dim[3]; assert(channel_dim == values[output_id].shape.dim[3]); enum xnn_status status; switch (node->compute_type) { #ifndef XNN_NO_F16_OPERATORS case xnn_compute_type_fp16: status = xnn_create_average_pooling2d_nhwc_f16( node->params.pooling_2d.padding_top, node->params.pooling_2d.padding_right, node->params.pooling_2d.padding_bottom, node->params.pooling_2d.padding_left, node->params.pooling_2d.pooling_height, node->params.pooling_2d.pooling_width, node->params.pooling_2d.stride_height, node->params.pooling_2d.stride_width, channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, node->activation.output_min, node->activation.output_max, node->flags, &opdata->operator_objects[0]); break; #endif // !defined(XNN_NO_F16_OPERATORS) case xnn_compute_type_fp32: status = xnn_create_average_pooling2d_nhwc_f32( node->params.pooling_2d.padding_top, node->params.pooling_2d.padding_right, node->params.pooling_2d.padding_bottom, node->params.pooling_2d.padding_left, node->params.pooling_2d.pooling_height, node->params.pooling_2d.pooling_width, node->params.pooling_2d.stride_height, node->params.pooling_2d.stride_width, channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, node->activation.output_min, node->activation.output_max, node->flags, &opdata->operator_objects[0]); break; default: XNN_UNREACHABLE; } if (status == xnn_status_success) { opdata->batch_size = values[input_id].shape.dim[0]; opdata->input_height = values[input_id].shape.dim[1]; opdata->input_width = values[input_id].shape.dim[2]; opdata->inputs[0] = input_id; opdata->outputs[0] = output_id; } return status; } static enum xnn_status setup_average_pooling_operator( const struct xnn_operator_data* opdata, const struct xnn_blob* blobs, size_t num_blobs, pthreadpool_t threadpool) { const uint32_t input_id = opdata->inputs[0]; assert(input_id != XNN_INVALID_VALUE_ID); assert(input_id < num_blobs); const uint32_t output_id = opdata->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_blobs); const struct xnn_blob* input_blob = blobs + input_id; const void* input_data = input_blob->data; assert(input_data != NULL); const struct xnn_blob* output_blob = blobs + output_id; void* output_data = output_blob->data; assert(output_data != NULL); switch (opdata->operator_objects[0]->type) { #ifndef XNN_NO_F16_OPERATORS case xnn_operator_type_average_pooling_nhwc_f16: return xnn_setup_average_pooling2d_nhwc_f16( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, input_data, output_data, threadpool); #endif // !defined(XNN_NO_F16_OPERATORS) case xnn_operator_type_average_pooling_nhwc_f32: return xnn_setup_average_pooling2d_nhwc_f32( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, input_data, output_data, threadpool); default: XNN_UNREACHABLE; } } enum xnn_status xnn_define_average_pooling_2d( xnn_subgraph_t subgraph, uint32_t input_padding_top, uint32_t input_padding_right, uint32_t input_padding_bottom, uint32_t input_padding_left, uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height, uint32_t stride_width, float output_min, float output_max, uint32_t input_id, uint32_t output_id, uint32_t flags) { enum xnn_status status; if ((status = xnn_subgraph_check_xnnpack_initialized(xnn_node_type_average_pooling_2d)) != xnn_status_success) { return status; } const uint32_t pooling_size = pooling_height * pooling_width; if (pooling_size == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 "x%" PRIu32 " pooling size: " "pooling size dimensions must be non-zero", xnn_node_type_to_string(xnn_node_type_average_pooling_2d), pooling_width, pooling_height); return xnn_status_invalid_parameter; } if (pooling_size == 1) { xnn_log_error( "failed to define %s operator with 1 pooling element: 1x1 pooling is meaningless", xnn_node_type_to_string(xnn_node_type_average_pooling_2d)); return xnn_status_invalid_parameter; } if (stride_height == 0 || stride_width == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 "x%" PRIu32 " stride: " "stride dimensions must be non-zero", xnn_node_type_to_string(xnn_node_type_average_pooling_2d), stride_width, stride_height); return xnn_status_invalid_parameter; } if (stride_height > pooling_height) { xnn_log_error( "failed to define %s operator with %" PRIu32 " stride height: must be less than pooling height %" PRIu32, xnn_node_type_to_string(xnn_node_type_max_pooling_2d), stride_height, pooling_height); return xnn_status_invalid_parameter; } if (stride_width > pooling_width) { xnn_log_error( "failed to define %s operator with %" PRIu32 " stride width: must be less than pooling width %" PRIu32, xnn_node_type_to_string(xnn_node_type_max_pooling_2d), stride_width, pooling_width); return xnn_status_invalid_parameter; } status = xnn_subgraph_check_output_min_max(xnn_node_type_average_pooling_2d, output_min, output_max); if (status != xnn_status_success) { return status; } const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0; if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) { if (any_padding) { xnn_log_error( "failed to define %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: " "TensorFlow SAME padding can't be combined with explicit padding specification", xnn_node_type_to_string(xnn_node_type_average_pooling_2d), input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); return xnn_status_invalid_parameter; } } if ((status = xnn_subgraph_check_input_node_id(xnn_node_type_average_pooling_2d, input_id, subgraph->num_values)) != xnn_status_success) { return status; } const struct xnn_value* input_value = &subgraph->values[input_id]; status = xnn_subgraph_check_input_type_dense(xnn_node_type_average_pooling_2d, input_id, input_value); if (status != xnn_status_success) { return status; } switch (input_value->datatype) { case xnn_datatype_fp32: break; default: xnn_log_error( "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_average_pooling_2d), input_id, xnn_datatype_to_string(input_value->datatype), input_value->datatype); return xnn_status_invalid_parameter; } status = xnn_subgraph_check_output_node_id(xnn_node_type_average_pooling_2d, output_id, subgraph->num_values); if (status != xnn_status_success) { return status; } const struct xnn_value* output_value = &subgraph->values[output_id]; status = xnn_subgraph_check_output_type_dense(xnn_node_type_average_pooling_2d, output_id, output_value); if (status != xnn_status_success) { return status; } switch (output_value->datatype) { case xnn_datatype_fp32: break; default: xnn_log_error( "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_id, xnn_datatype_to_string(output_value->datatype), output_value->datatype); return xnn_status_invalid_parameter; } struct xnn_node* node = xnn_subgraph_new_node(subgraph); if (node == NULL) { return xnn_status_out_of_memory; } node->type = xnn_node_type_average_pooling_2d; node->compute_type = xnn_compute_type_fp32; node->params.pooling_2d.padding_top = input_padding_top; node->params.pooling_2d.padding_right = input_padding_right; node->params.pooling_2d.padding_bottom = input_padding_bottom; node->params.pooling_2d.padding_left = input_padding_left; node->params.pooling_2d.pooling_height = pooling_height; node->params.pooling_2d.pooling_width = pooling_width; node->params.pooling_2d.stride_height = stride_height; node->params.pooling_2d.stride_width = stride_width; node->activation.output_min = output_min; node->activation.output_max = output_max; node->num_inputs = 1; node->inputs[0] = input_id; node->num_outputs = 1; node->outputs[0] = output_id; node->flags = flags; node->create = create_average_pooling_operator; node->setup = setup_average_pooling_operator; return xnn_status_success; }