// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/files/file_util.h" #include "base/task/sequenced_task_runner.h" #include "build/build_config.h" #if BUILDFLAG(IS_WIN) #include #endif #include #include #include #include #include #include #include "base/bit_cast.h" #include "base/check_op.h" #include "base/containers/span.h" #include "base/files/file_enumerator.h" #include "base/files/file_path.h" #include "base/functional/function_ref.h" #include "base/notreached.h" #include "base/posix/eintr_wrapper.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/strings/utf_string_conversions.h" #include "base/task/bind_post_task.h" #include "base/threading/scoped_blocking_call.h" #if BUILDFLAG(IS_WIN) #include #endif namespace base { namespace { #if !BUILDFLAG(IS_WIN) void RunAndReply(OnceCallback action_callback, OnceCallback reply_callback) { bool result = std::move(action_callback).Run(); if (!reply_callback.is_null()) std::move(reply_callback).Run(result); } #endif // !BUILDFLAG(IS_WIN) bool ReadStreamToSpanWithMaxSize( FILE* stream, size_t max_size, FunctionRef(size_t)> resize_span) { if (!stream) { return false; } // Seeking to the beginning is best-effort -- it is expected to fail for // certain non-file stream (e.g., pipes). HANDLE_EINTR(fseek(stream, 0, SEEK_SET)); // Many files have incorrect size (proc files etc). Hence, the file is read // sequentially as opposed to a one-shot read, using file size as a hint for // chunk size if available. constexpr size_t kDefaultChunkSize = 1 << 16; size_t chunk_size = kDefaultChunkSize - 1; ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK); #if BUILDFLAG(IS_WIN) BY_HANDLE_FILE_INFORMATION file_info = {}; if (::GetFileInformationByHandle( reinterpret_cast(_get_osfhandle(_fileno(stream))), &file_info)) { LARGE_INTEGER size; size.HighPart = static_cast(file_info.nFileSizeHigh); size.LowPart = file_info.nFileSizeLow; if (size.QuadPart > 0) chunk_size = static_cast(size.QuadPart); } #else // BUILDFLAG(IS_WIN) // In cases where the reported file size is 0, use a smaller chunk size to // minimize memory allocated and cost of string::resize() in case the read // size is small (i.e. proc files). If the file is larger than this, the read // loop will reset |chunk_size| to kDefaultChunkSize. constexpr size_t kSmallChunkSize = 4096; chunk_size = kSmallChunkSize - 1; stat_wrapper_t file_info = {}; if (!File::Fstat(fileno(stream), &file_info) && file_info.st_size > 0) chunk_size = static_cast(file_info.st_size); #endif // BUILDFLAG(IS_WIN) // We need to attempt to read at EOF for feof flag to be set so here we use // |chunk_size| + 1. chunk_size = std::min(chunk_size, max_size) + 1; size_t bytes_read_this_pass; size_t bytes_read_so_far = 0; bool read_status = true; span bytes_span = resize_span(chunk_size); DCHECK_EQ(bytes_span.size(), chunk_size); while ((bytes_read_this_pass = fread(bytes_span.data() + bytes_read_so_far, 1, chunk_size, stream)) > 0) { if ((max_size - bytes_read_so_far) < bytes_read_this_pass) { // Read more than max_size bytes, bail out. bytes_read_so_far = max_size; read_status = false; break; } // In case EOF was not reached, iterate again but revert to the default // chunk size. if (bytes_read_so_far == 0) chunk_size = kDefaultChunkSize; bytes_read_so_far += bytes_read_this_pass; // Last fread syscall (after EOF) can be avoided via feof, which is just a // flag check. if (feof(stream)) break; bytes_span = resize_span(bytes_read_so_far + chunk_size); DCHECK_EQ(bytes_span.size(), bytes_read_so_far + chunk_size); } read_status = read_status && !ferror(stream); // Trim the container down to the number of bytes that were actually read. bytes_span = resize_span(bytes_read_so_far); DCHECK_EQ(bytes_span.size(), bytes_read_so_far); return read_status; } } // namespace #if !BUILDFLAG(IS_WIN) OnceClosure GetDeleteFileCallback(const FilePath& path, OnceCallback reply_callback) { return BindOnce(&RunAndReply, BindOnce(&DeleteFile, path), reply_callback.is_null() ? std::move(reply_callback) : BindPostTask(SequencedTaskRunner::GetCurrentDefault(), std::move(reply_callback))); } OnceClosure GetDeletePathRecursivelyCallback( const FilePath& path, OnceCallback reply_callback) { return BindOnce(&RunAndReply, BindOnce(&DeletePathRecursively, path), reply_callback.is_null() ? std::move(reply_callback) : BindPostTask(SequencedTaskRunner::GetCurrentDefault(), std::move(reply_callback))); } #endif // !BUILDFLAG(IS_WIN) int64_t ComputeDirectorySize(const FilePath& root_path) { int64_t running_size = 0; FileEnumerator file_iter(root_path, true, FileEnumerator::FILES); while (!file_iter.Next().empty()) running_size += file_iter.GetInfo().GetSize(); return running_size; } bool Move(const FilePath& from_path, const FilePath& to_path) { if (from_path.ReferencesParent() || to_path.ReferencesParent()) return false; return internal::MoveUnsafe(from_path, to_path); } bool CopyFileContents(File& infile, File& outfile) { #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID) bool retry_slow = false; bool res = internal::CopyFileContentsWithSendfile(infile, outfile, retry_slow); if (res || !retry_slow) { return res; } // Any failures which allow retrying using read/write will not have modified // either file offset or size. #endif static constexpr size_t kBufferSize = 32768; std::vector buffer(kBufferSize); for (;;) { int bytes_read = infile.ReadAtCurrentPos(buffer.data(), static_cast(buffer.size())); if (bytes_read < 0) { return false; } if (bytes_read == 0) { return true; } // Allow for partial writes int bytes_written_per_read = 0; do { int bytes_written_partial = outfile.WriteAtCurrentPos( &buffer[static_cast(bytes_written_per_read)], bytes_read - bytes_written_per_read); if (bytes_written_partial < 0) { return false; } bytes_written_per_read += bytes_written_partial; } while (bytes_written_per_read < bytes_read); } NOTREACHED(); return false; } bool ContentsEqual(const FilePath& filename1, const FilePath& filename2) { // We open the file in binary format even if they are text files because // we are just comparing that bytes are exactly same in both files and not // doing anything smart with text formatting. #if BUILDFLAG(IS_WIN) std::ifstream file1(filename1.value().c_str(), std::ios::in | std::ios::binary); std::ifstream file2(filename2.value().c_str(), std::ios::in | std::ios::binary); #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA) std::ifstream file1(filename1.value(), std::ios::in | std::ios::binary); std::ifstream file2(filename2.value(), std::ios::in | std::ios::binary); #endif // BUILDFLAG(IS_WIN) // Even if both files aren't openable (and thus, in some sense, "equal"), // any unusable file yields a result of "false". if (!file1.is_open() || !file2.is_open()) return false; const int BUFFER_SIZE = 2056; char buffer1[BUFFER_SIZE], buffer2[BUFFER_SIZE]; do { file1.read(buffer1, BUFFER_SIZE); file2.read(buffer2, BUFFER_SIZE); if ((file1.eof() != file2.eof()) || (file1.gcount() != file2.gcount()) || (memcmp(buffer1, buffer2, static_cast(file1.gcount())))) { file1.close(); file2.close(); return false; } } while (!file1.eof() || !file2.eof()); file1.close(); file2.close(); return true; } bool TextContentsEqual(const FilePath& filename1, const FilePath& filename2) { #if BUILDFLAG(IS_WIN) std::ifstream file1(filename1.value().c_str(), std::ios::in); std::ifstream file2(filename2.value().c_str(), std::ios::in); #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA) std::ifstream file1(filename1.value(), std::ios::in); std::ifstream file2(filename2.value(), std::ios::in); #endif // BUILDFLAG(IS_WIN) // Even if both files aren't openable (and thus, in some sense, "equal"), // any unusable file yields a result of "false". if (!file1.is_open() || !file2.is_open()) return false; do { std::string line1, line2; getline(file1, line1); getline(file2, line2); // Check for mismatched EOF states, or any error state. if ((file1.eof() != file2.eof()) || file1.bad() || file2.bad()) { return false; } // Trim all '\r' and '\n' characters from the end of the line. std::string::size_type end1 = line1.find_last_not_of("\r\n"); if (end1 == std::string::npos) line1.clear(); else if (end1 + 1 < line1.length()) line1.erase(end1 + 1); std::string::size_type end2 = line2.find_last_not_of("\r\n"); if (end2 == std::string::npos) line2.clear(); else if (end2 + 1 < line2.length()) line2.erase(end2 + 1); if (line1 != line2) return false; } while (!file1.eof() || !file2.eof()); return true; } bool ReadStreamToString(FILE* stream, std::string* contents) { return ReadStreamToStringWithMaxSize( stream, std::numeric_limits::max(), contents); } bool ReadStreamToStringWithMaxSize(FILE* stream, size_t max_size, std::string* contents) { if (contents) { contents->clear(); } std::string content_string; bool read_successs = ReadStreamToSpanWithMaxSize( stream, max_size, [&content_string](size_t size) { content_string.resize(size); return as_writable_bytes(make_span(content_string)); }); if (contents) { contents->swap(content_string); } return read_successs; } absl::optional> ReadFileToBytes(const FilePath& path) { if (path.ReferencesParent()) { return absl::nullopt; } ScopedFILE file_stream(OpenFile(path, "rb")); if (!file_stream) { return absl::nullopt; } std::vector bytes; if (!ReadStreamToSpanWithMaxSize(file_stream.get(), std::numeric_limits::max(), [&bytes](size_t size) { bytes.resize(size); return make_span(bytes); })) { return absl::nullopt; } return bytes; } bool ReadFileToString(const FilePath& path, std::string* contents) { return ReadFileToStringWithMaxSize(path, contents, std::numeric_limits::max()); } bool ReadFileToStringWithMaxSize(const FilePath& path, std::string* contents, size_t max_size) { if (contents) contents->clear(); if (path.ReferencesParent()) return false; ScopedFILE file_stream(OpenFile(path, "rb")); if (!file_stream) return false; return ReadStreamToStringWithMaxSize(file_stream.get(), max_size, contents); } bool IsDirectoryEmpty(const FilePath& dir_path) { FileEnumerator files(dir_path, false, FileEnumerator::FILES | FileEnumerator::DIRECTORIES); if (files.Next().empty()) return true; return false; } bool CreateTemporaryFile(FilePath* path) { FilePath temp_dir; return GetTempDir(&temp_dir) && CreateTemporaryFileInDir(temp_dir, path); } ScopedFILE CreateAndOpenTemporaryStream(FilePath* path) { FilePath directory; if (!GetTempDir(&directory)) return nullptr; return CreateAndOpenTemporaryStreamInDir(directory, path); } bool CreateDirectory(const FilePath& full_path) { return CreateDirectoryAndGetError(full_path, nullptr); } bool GetFileSize(const FilePath& file_path, int64_t* file_size) { File::Info info; if (!GetFileInfo(file_path, &info)) return false; *file_size = info.size; return true; } bool TouchFile(const FilePath& path, const Time& last_accessed, const Time& last_modified) { uint32_t flags = File::FLAG_OPEN | File::FLAG_WRITE_ATTRIBUTES; #if BUILDFLAG(IS_WIN) // On Windows, FILE_FLAG_BACKUP_SEMANTICS is needed to open a directory. if (DirectoryExists(path)) flags |= File::FLAG_WIN_BACKUP_SEMANTICS; #elif BUILDFLAG(IS_FUCHSIA) // On Fuchsia, we need O_RDONLY for directories, or O_WRONLY for files. // TODO(https://crbug.com/947802): Find a cleaner workaround for this. flags |= (DirectoryExists(path) ? File::FLAG_READ : File::FLAG_WRITE); #endif File file(path, flags); if (!file.IsValid()) return false; return file.SetTimes(last_accessed, last_modified); } bool CloseFile(FILE* file) { if (file == nullptr) return true; return fclose(file) == 0; } bool TruncateFile(FILE* file) { if (file == nullptr) return false; long current_offset = ftell(file); if (current_offset == -1) return false; #if BUILDFLAG(IS_WIN) int fd = _fileno(file); if (_chsize(fd, current_offset) != 0) return false; #else int fd = fileno(file); if (ftruncate(fd, current_offset) != 0) return false; #endif return true; } bool WriteFile(const FilePath& filename, span data) { int size = checked_cast(data.size()); return WriteFile(filename, reinterpret_cast(data.data()), size) == size; } bool WriteFile(const FilePath& filename, StringPiece data) { int size = checked_cast(data.size()); return WriteFile(filename, data.data(), size) == size; } int GetUniquePathNumber(const FilePath& path) { DCHECK(!path.empty()); if (!PathExists(path)) return 0; std::string number; for (int count = 1; count <= kMaxUniqueFiles; ++count) { StringAppendF(&number, " (%d)", count); if (!PathExists(path.InsertBeforeExtensionASCII(number))) return count; number.clear(); } return -1; } FilePath GetUniquePath(const FilePath& path) { DCHECK(!path.empty()); const int uniquifier = GetUniquePathNumber(path); if (uniquifier > 0) return path.InsertBeforeExtensionASCII(StringPrintf(" (%d)", uniquifier)); return uniquifier == 0 ? path : FilePath(); } namespace internal { bool PreReadFileSlow(const FilePath& file_path, int64_t max_bytes) { DCHECK_GE(max_bytes, 0); File file(file_path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WIN_SEQUENTIAL_SCAN | File::FLAG_WIN_SHARE_DELETE); if (!file.IsValid()) return false; constexpr int kBufferSize = 1024 * 1024; // Ensures the buffer is deallocated at function exit. std::unique_ptr buffer_deleter(new char[kBufferSize]); char* const buffer = buffer_deleter.get(); while (max_bytes > 0) { // The static_cast is safe because kBufferSize is int, and both values // are non-negative. So, the minimum is guaranteed to fit in int. const int read_size = static_cast(std::min(max_bytes, kBufferSize)); DCHECK_GE(read_size, 0); DCHECK_LE(read_size, kBufferSize); const int read_bytes = file.ReadAtCurrentPos(buffer, read_size); if (read_bytes < 0) return false; if (read_bytes == 0) break; max_bytes -= read_bytes; } return true; } } // namespace internal } // namespace base