// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_glib.h" #include #include #include #include "base/logging.h" #include "base/memory/raw_ptr.h" #include "base/notreached.h" #include "base/numerics/safe_conversions.h" #include "base/posix/eintr_wrapper.h" #include "base/synchronization/lock.h" #include "base/threading/platform_thread.h" namespace base { namespace { // Priorities of event sources are important to let everything be processed. // In particular, GTK event source should have the highest priority (because // UI events come from it), then Wayland events (the ones coming from the FD // watcher), and the lowest priority is GLib events (our base message pump). // // The g_source API uses ints to denote priorities, and the lower is its value, // the higher is the priority (i.e., they are ordered backwards). constexpr int kPriorityWork = G_PRIORITY_DEFAULT_IDLE; constexpr int kPriorityFdWatch = G_PRIORITY_DEFAULT_IDLE - 10; // See the explanation above. static_assert(G_PRIORITY_DEFAULT < kPriorityFdWatch && kPriorityFdWatch < kPriorityWork, "Wrong priorities are set for event sources!"); // Return a timeout suitable for the glib loop according to |next_task_time|, -1 // to block forever, 0 to return right away, or a timeout in milliseconds from // now. int GetTimeIntervalMilliseconds(TimeTicks next_task_time) { if (next_task_time.is_null()) return 0; else if (next_task_time.is_max()) return -1; auto timeout_ms = (next_task_time - TimeTicks::Now()).InMillisecondsRoundedUp(); return timeout_ms < 0 ? 0 : saturated_cast(timeout_ms); } bool RunningOnMainThread() { auto pid = getpid(); auto tid = PlatformThread::CurrentId(); return pid > 0 && tid > 0 && pid == tid; } // A brief refresher on GLib: // GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize. // On each iteration of the GLib pump, it calls each source's Prepare function. // This function should return TRUE if it wants GLib to call its Dispatch, and // FALSE otherwise. It can also set a timeout in this case for the next time // Prepare should be called again (it may be called sooner). // After the Prepare calls, GLib does a poll to check for events from the // system. File descriptors can be attached to the sources. The poll may block // if none of the Prepare calls returned TRUE. It will block indefinitely, or // by the minimum time returned by a source in Prepare. // After the poll, GLib calls Check for each source that returned FALSE // from Prepare. The return value of Check has the same meaning as for Prepare, // making Check a second chance to tell GLib we are ready for Dispatch. // Finally, GLib calls Dispatch for each source that is ready. If Dispatch // returns FALSE, GLib will destroy the source. Dispatch calls may be recursive // (i.e., you can call Run from them), but Prepare and Check cannot. // Finalize is called when the source is destroyed. // NOTE: It is common for subsystems to want to process pending events while // doing intensive work, for example the flash plugin. They usually use the // following pattern (recommended by the GTK docs): // while (gtk_events_pending()) { // gtk_main_iteration(); // } // // gtk_events_pending just calls g_main_context_pending, which does the // following: // - Call prepare on all the sources. // - Do the poll with a timeout of 0 (not blocking). // - Call check on all the sources. // - *Does not* call dispatch on the sources. // - Return true if any of prepare() or check() returned true. // // gtk_main_iteration just calls g_main_context_iteration, which does the whole // thing, respecting the timeout for the poll (and block, although it is to if // gtk_events_pending returned true), and call dispatch. // // Thus it is important to only return true from prepare or check if we // actually have events or work to do. We also need to make sure we keep // internal state consistent so that if prepare/check return true when called // from gtk_events_pending, they will still return true when called right // after, from gtk_main_iteration. // // For the GLib pump we try to follow the Windows UI pump model: // - Whenever we receive a wakeup event or the timer for delayed work expires, // we run DoWork. That part will also run in the other event pumps. // - We also run DoWork, and possibly DoIdleWork, in the main loop, // around event handling. // // --------------------------------------------------------------------------- // // An overview on the way that we track work items: // // ScopedDoWorkItems are used by this pump to track native work. They are // stored by value in |state_| and are set/cleared as the pump runs. Their // setting and clearing is done in the functions // {Set,Clear,EnsureSet,EnsureCleared}ScopedWorkItem. Control flow in GLib is // quite non-obvious because chrome is not notified when a nested loop is // entered/exited. To detect nested loops, MessagePumpGlib uses // |state_->do_work_depth| which is incremented when DoWork is entered, and a // GLib library function, g_main_depth(), which indicates the current number of // Dispatch() calls on the stack. To react to them, two separate // ScopedDoWorkItems are used (a standard one used for all native work, and a // second one used exclusively for forcing nesting when there is a native loop // spinning). Note that `ThreadController` flags all nesting as // `Phase::kNested` so separating native and application work while nested isn't // supported nor a goal. // // It should also be noted that a second GSource has been added to GLib, // referred to as the "observer" source. It is used because in the case where // native work occurs on wakeup that is higher priority than Chrome (all of // GTK), chrome won't even get notified that the pump is awake. // // There are several cases to consider wrt. nesting level and order. In // order, we have: // A. [root] -> MessagePump::Run() -> native event -> g_main_context_iteration // B. [root] -> MessagePump::Run() -> DoWork -> g_main_context_iteration // C. [root] -> native -> DoWork -> MessagePump -> [...] // The second two cases are identical for our purposes, and the last one turns // out to be handled without any extra headache. // // Consider nesting case A, where native work is called from // |g_main_context_iteration()| from the pump, and that native work spins up a // loop. For our purposes, this is a nested loop, because control is not // returned to the pump once one iteration of the pump is complete. In this // case, the pump needs to enter nesting without DoWork being involved at // all. This is accomplished using |MessagePumpGlib::NestIfRequired()|, which is // called during the Prepare() phase of GLib. As the pump records state on entry // and exit from GLib using |OnEntryToGlib| and |OnExitFromGlib|, we can compare // |g_main_depth| at |HandlePrepare| with the one before we entered // |g_main_context_iteration|. If it is higher, there is a native loop being // spun, and |RegisterNesting| is called, forcing nesting by initializing two // work items at once. These are destroyed after the exit from // |g_main_context_iteration| using |OnExitFromGlib|. // // Then, considering nesting case B, |state_->do_work_depth| is incremented // during any Chrome work, to allow the pump to detect re-entrancy during a // chrome work item. This is required because `g_main_depth` is not incremented // in any `DoWork` call not occuring during `Dispatch()` (i.e. during // `MessagePumpGlib::Run()`). In this case, a nested loop is recorded, and the // pump sets-and-clears scoped work items during Prepare, Check, and Dispatch. A // work item can never be active when control flow returns to GLib (i.e. on // return) during a nested loop, because the nested loop could exit at any // point. This is fine because TimeKeeper is only concerned with the fact that a // nested loop is in progress, as opposed to the various phases of the nested // loop. // // Finally, consider nesting case C, where a native loop is spinning // entirely outside of Chrome, such as inside a signal handler, the pump might // create and destroy DoWorkItems during Prepare() and Check(), but these work // items will always get cleared during Dispatch(), before the pump enters a // DoWork(), leading to the pump showing non-nested native work without the // thread controller being active, the correct situation (which won't occur // outside of startup or shutdown). Once Dispatch() is called, the pump's // nesting tracking works correctly, as state_->do_work_depth is increased, and // upon re-entrancy we detect the nested loop, which is correct, as this is the // only point at which the loop actually becomes "nested". // // ----------------------------------------------------------------------------- // // As an overview of the steps taken by MessagePumpGLib to ensure that nested // loops are detected adequately during each phase of the GLib loop: // // 0: Before entering GLib: // 0.1: Record state about current state of GLib (g_main_depth()) for // case 1.1.2. // // 1: Prepare. // 1.1: Detection of nested loops // 1.1.1: If |state_->do_work_depth| > 0, we are in nesting case B detailed // above. A work item must be newly created during this function to // trigger nesting, and is destroyed to ensure proper destruction order // in the case where GLib quits after Prepare(). // // 1.1.2: Otherwise, check if we are in nesting case A above. If yes, trigger // nesting using ScopedDoWorkItems. The nesting will be cleared at exit // from GLib. // // This check occurs only in |HandleObserverPrepare|, not in // |HandlePrepare|. // // A third party is running a glib message loop. Since Chrome work is // registered with GLib at |G_PRIORITY_DEFAULT_IDLE|, a relatively low // priority, sources of default-or-higher priority will be Dispatch()ed // first. Since only one source is Dispatched per loop iteration, // |HandlePrepare| can get called several times in a row in the case that // there are any other events in the queue. A ScopedDoWorkItem is created // and destroyed to record this. That work item triggers nesting. // // 1.2: Other considerations // 1.2.1: Sleep occurs between Prepare() and Check(). If Chrome will pass a // nonzero poll time to GLib, the inner ScopedDoWorkItem is cleared and // BeforeWait() is called. In nesting case A, the nesting work item will // not be cleared. A nested loop will typically not block. // // Since Prepare() is called before Check() in all cases, the bulk of // nesting detection is done in Prepare(). // // 2: Check. // 2.1: Detection of nested loops: // 2.1.1: In nesting case B, |ClearScopedWorkItem()| on exit. A third party is // running a glib message loop. It is possible that at any point the // nested message loop will quit. In this case, we don't want to leave a // nested DoWorkItem on the stack. // // 2.2: Other considerations // 2.2.1: A ScopedDoWorkItem may be created (if it was not already present) at // the entry to Check() to record a wakeup in the case that the pump // slept. It is important to note that this occurs both in // |HandleObserverCheck| and |HandleCheck| to ensure that at every point // as the pump enters the Dispatch phase it is awake. In the case it is // already awake, this is a very cheap operation. // // 3: Dispatch // 3.1 Detection of nested loops // 3.1.1: |state_->do_work_depth| is incremented on entry and decremented on // exit. This is used to detect nesting case B. // // 3.1.2: Nested loops can be quit at any point, and so ScopedDoWorkItems can't // be left on the stack for the same reasons as in 1.1.1/2.1.1. // // 3.2 Other considerations // 3.2.1: Since DoWork creates its own work items, ScopedDoWorkItems are not // used as this would trigger nesting in all cases. // // 4: Post GLib // 4.1: Detection of nested loops // 4.1.1: |state_->do_work_depth| is also increased during the DoWork in Run() // as nesting in that case [calling glib from third party code] needs to // clear all work items after return to avoid improper destruction order. // // 4.2: Other considerations: // 4.2.1: DoWork uses its own work item, so no ScopedDoWorkItems are active in // this case. struct WorkSource : public GSource { raw_ptr pump; }; gboolean WorkSourcePrepare(GSource* source, gint* timeout_ms) { *timeout_ms = static_cast(source)->pump->HandlePrepare(); // We always return FALSE, so that our timeout is honored. If we were // to return TRUE, the timeout would be considered to be 0 and the poll // would never block. Once the poll is finished, Check will be called. return FALSE; } gboolean WorkSourceCheck(GSource* source) { // Only return TRUE if Dispatch should be called. return static_cast(source)->pump->HandleCheck(); } gboolean WorkSourceDispatch(GSource* source, GSourceFunc unused_func, gpointer unused_data) { static_cast(source)->pump->HandleDispatch(); // Always return TRUE so our source stays registered. return TRUE; } // I wish these could be const, but g_source_new wants non-const. GSourceFuncs g_work_source_funcs = {WorkSourcePrepare, WorkSourceCheck, WorkSourceDispatch, nullptr}; struct ObserverSource : public GSource { raw_ptr pump; }; gboolean ObserverPrepare(GSource* gsource, gint* timeout_ms) { auto* source = static_cast(gsource); source->pump->HandleObserverPrepare(); *timeout_ms = -1; // We always want to poll. return FALSE; } gboolean ObserverCheck(GSource* gsource) { auto* source = static_cast(gsource); return source->pump->HandleObserverCheck(); } GSourceFuncs g_observer_funcs = {ObserverPrepare, ObserverCheck, nullptr, nullptr}; struct FdWatchSource : public GSource { raw_ptr pump; raw_ptr controller; }; gboolean FdWatchSourcePrepare(GSource* source, gint* timeout_ms) { *timeout_ms = -1; return FALSE; } gboolean FdWatchSourceCheck(GSource* gsource) { auto* source = static_cast(gsource); return source->pump->HandleFdWatchCheck(source->controller) ? TRUE : FALSE; } gboolean FdWatchSourceDispatch(GSource* gsource, GSourceFunc unused_func, gpointer unused_data) { auto* source = static_cast(gsource); source->pump->HandleFdWatchDispatch(source->controller); return TRUE; } GSourceFuncs g_fd_watch_source_funcs = { FdWatchSourcePrepare, FdWatchSourceCheck, FdWatchSourceDispatch, nullptr}; } // namespace struct MessagePumpGlib::RunState { explicit RunState(Delegate* delegate) : delegate(delegate) { CHECK(delegate); } const raw_ptr delegate; // Used to flag that the current Run() invocation should return ASAP. bool should_quit = false; // Keeps track of the number of calls to DoWork() on the stack for the current // Run() invocation. Used to detect reentrancy from DoWork in order to make // decisions about tracking nested work. int do_work_depth = 0; // Value of g_main_depth() captured before the call to // g_main_context_iteration() in Run(). nullopt if Run() is not calling // g_main_context_iteration(). Used to track whether the pump has forced a // nested state due to a native pump. absl::optional g_depth_on_iteration; // Used to keep track of the native event work items processed by the message // pump. Delegate::ScopedDoWorkItem scoped_do_work_item; // Used to force the pump into a nested state when a native runloop was // dispatched from main. Delegate::ScopedDoWorkItem native_loop_do_work_item; // The information of the next task available at this run-level. Stored in // RunState because different set of tasks can be accessible at various // run-levels (e.g. non-nestable tasks). Delegate::NextWorkInfo next_work_info; }; MessagePumpGlib::MessagePumpGlib() : state_(nullptr), wakeup_gpollfd_(std::make_unique()) { DCHECK(!g_main_context_get_thread_default()); if (RunningOnMainThread()) { context_ = g_main_context_default(); } else { owned_context_ = std::unique_ptr( g_main_context_new()); context_ = owned_context_.get(); g_main_context_push_thread_default(context_); } // Create our wakeup pipe, which is used to flag when work was scheduled. int fds[2]; [[maybe_unused]] int ret = pipe2(fds, O_CLOEXEC); DCHECK_EQ(ret, 0); wakeup_pipe_read_ = fds[0]; wakeup_pipe_write_ = fds[1]; wakeup_gpollfd_->fd = wakeup_pipe_read_; wakeup_gpollfd_->events = G_IO_IN; observer_source_ = std::unique_ptr( g_source_new(&g_observer_funcs, sizeof(ObserverSource))); static_cast(observer_source_.get())->pump = this; g_source_attach(observer_source_.get(), context_); work_source_ = std::unique_ptr( g_source_new(&g_work_source_funcs, sizeof(WorkSource))); static_cast(work_source_.get())->pump = this; g_source_add_poll(work_source_.get(), wakeup_gpollfd_.get()); g_source_set_priority(work_source_.get(), kPriorityWork); // This is needed to allow Run calls inside Dispatch. g_source_set_can_recurse(work_source_.get(), TRUE); g_source_attach(work_source_.get(), context_); } MessagePumpGlib::~MessagePumpGlib() { work_source_.reset(); close(wakeup_pipe_read_); close(wakeup_pipe_write_); context_ = nullptr; owned_context_.reset(); } MessagePumpGlib::FdWatchController::FdWatchController(const Location& location) : FdWatchControllerInterface(location) {} MessagePumpGlib::FdWatchController::~FdWatchController() { if (IsInitialized()) { CHECK(StopWatchingFileDescriptor()); } if (was_destroyed_) { DCHECK(!*was_destroyed_); *was_destroyed_ = true; } } bool MessagePumpGlib::FdWatchController::StopWatchingFileDescriptor() { if (!IsInitialized()) return false; g_source_destroy(source_); g_source_unref(source_.ExtractAsDangling()); watcher_ = nullptr; return true; } bool MessagePumpGlib::FdWatchController::IsInitialized() const { return !!source_; } bool MessagePumpGlib::FdWatchController::InitOrUpdate(int fd, int mode, FdWatcher* watcher) { gushort event_flags = 0; if (mode & WATCH_READ) { event_flags |= G_IO_IN; } if (mode & WATCH_WRITE) { event_flags |= G_IO_OUT; } if (!IsInitialized()) { poll_fd_ = std::make_unique(); poll_fd_->fd = fd; } else { if (poll_fd_->fd != fd) return false; // Combine old/new event masks. event_flags |= poll_fd_->events; // Destroy previous source bool stopped = StopWatchingFileDescriptor(); DCHECK(stopped); } poll_fd_->events = event_flags; poll_fd_->revents = 0; source_ = g_source_new(&g_fd_watch_source_funcs, sizeof(FdWatchSource)); DCHECK(source_); g_source_add_poll(source_, poll_fd_.get()); g_source_set_can_recurse(source_, TRUE); g_source_set_callback(source_, nullptr, nullptr, nullptr); g_source_set_priority(source_, kPriorityFdWatch); watcher_ = watcher; return true; } bool MessagePumpGlib::FdWatchController::Attach(MessagePumpGlib* pump) { DCHECK(pump); if (!IsInitialized()) { return false; } auto* source = static_cast(source_); source->controller = this; source->pump = pump; g_source_attach(source_, pump->context_); return true; } void MessagePumpGlib::FdWatchController::NotifyCanRead() { if (!watcher_) return; DCHECK(poll_fd_); watcher_->OnFileCanReadWithoutBlocking(poll_fd_->fd); } void MessagePumpGlib::FdWatchController::NotifyCanWrite() { if (!watcher_) return; DCHECK(poll_fd_); watcher_->OnFileCanWriteWithoutBlocking(poll_fd_->fd); } bool MessagePumpGlib::WatchFileDescriptor(int fd, bool persistent, int mode, FdWatchController* controller, FdWatcher* watcher) { DCHECK_GE(fd, 0); DCHECK(controller); DCHECK(watcher); DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE); // WatchFileDescriptor should be called on the pump thread. It is not // threadsafe, so the watcher may never be registered. DCHECK_CALLED_ON_VALID_THREAD(watch_fd_caller_checker_); if (!controller->InitOrUpdate(fd, mode, watcher)) { DPLOG(ERROR) << "FdWatchController init failed (fd=" << fd << ")"; return false; } return controller->Attach(this); } void MessagePumpGlib::HandleObserverPrepare() { // |state_| may be null during tests. if (!state_) { return; } if (state_->do_work_depth > 0) { // Contingency 1.1.1 detailed above SetScopedWorkItem(); ClearScopedWorkItem(); } else { // Contingency 1.1.2 detailed above NestIfRequired(); } return; } bool MessagePumpGlib::HandleObserverCheck() { // |state_| may be null in tests. if (!state_) { return FALSE; } // Make sure we record the fact that we're awake. Chrome won't get Check()ed // if a higher priority work item returns TRUE from Check(). EnsureSetScopedWorkItem(); if (state_->do_work_depth > 0) { // Contingency 2.1.1 ClearScopedWorkItem(); } // The observer never needs to run anything. return FALSE; } // Return the timeout we want passed to poll. int MessagePumpGlib::HandlePrepare() { // |state_| may be null during tests. if (!state_) return 0; const int next_wakeup_millis = GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time); if (next_wakeup_millis != 0) { // When this is called, it is not possible to know for sure if a // ScopedWorkItem is on the stack, because HandleObserverCheck may have set // it during an iteration of the pump where a high priority native work item // executed. EnsureClearedScopedWorkItem(); state_->delegate->BeforeWait(); } return next_wakeup_millis; } bool MessagePumpGlib::HandleCheck() { if (!state_) // state_ may be null during tests. return false; // Ensure pump is awake. EnsureSetScopedWorkItem(); if (state_->do_work_depth > 0) { // Contingency 2.1.1 ClearScopedWorkItem(); } // We usually have a single message on the wakeup pipe, since we are only // signaled when the queue went from empty to non-empty, but there can be // two messages if a task posted a task, hence we read at most two bytes. // The glib poll will tell us whether there was data, so this read // shouldn't block. if (wakeup_gpollfd_->revents & G_IO_IN) { char msg[2]; const long num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2)); if (num_bytes < 1) { NOTREACHED() << "Error reading from the wakeup pipe."; } DCHECK((num_bytes == 1 && msg[0] == '!') || (num_bytes == 2 && msg[0] == '!' && msg[1] == '!')); // Since we ate the message, we need to record that we have immediate work, // because HandleCheck() may be called without HandleDispatch being called // afterwards. state_->next_work_info = {TimeTicks()}; return true; } // As described in the summary at the top : Check is a second-chance to // Prepare, verify whether we have work ready again. if (GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time) == 0) { return true; } return false; } void MessagePumpGlib::HandleDispatch() { // Contingency 3.2.1 EnsureClearedScopedWorkItem(); // Contingency 3.1.1 ++state_->do_work_depth; state_->next_work_info = state_->delegate->DoWork(); --state_->do_work_depth; if (state_ && state_->do_work_depth > 0) { // Contingency 3.1.2 EnsureClearedScopedWorkItem(); } } void MessagePumpGlib::Run(Delegate* delegate) { RunState state(delegate); RunState* previous_state = state_; state_ = &state; // We really only do a single task for each iteration of the loop. If we // have done something, assume there is likely something more to do. This // will mean that we don't block on the message pump until there was nothing // more to do. We also set this to true to make sure not to block on the // first iteration of the loop, so RunUntilIdle() works correctly. bool more_work_is_plausible = true; // We run our own loop instead of using g_main_loop_quit in one of the // callbacks. This is so we only quit our own loops, and we don't quit // nested loops run by others. TODO(deanm): Is this what we want? for (;;) { // ScopedWorkItem to account for any native work until the runloop starts // running chrome work. SetScopedWorkItem(); // Don't block if we think we have more work to do. bool block = !more_work_is_plausible; OnEntryToGlib(); more_work_is_plausible = g_main_context_iteration(context_, block); OnExitFromGlib(); if (state_->should_quit) break; // Contingency 4.2.1 EnsureClearedScopedWorkItem(); // Contingency 4.1.1 ++state_->do_work_depth; state_->next_work_info = state_->delegate->DoWork(); --state_->do_work_depth; more_work_is_plausible |= state_->next_work_info.is_immediate(); if (state_->should_quit) break; if (more_work_is_plausible) continue; more_work_is_plausible = state_->delegate->DoIdleWork(); if (state_->should_quit) break; } state_ = previous_state; } void MessagePumpGlib::Quit() { if (state_) { state_->should_quit = true; } else { NOTREACHED() << "Quit called outside Run!"; } } void MessagePumpGlib::ScheduleWork() { // This can be called on any thread, so we don't want to touch any state // variables as we would then need locks all over. This ensures that if // we are sleeping in a poll that we will wake up. char msg = '!'; if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) { NOTREACHED() << "Could not write to the UI message loop wakeup pipe!"; } } void MessagePumpGlib::ScheduleDelayedWork( const Delegate::NextWorkInfo& next_work_info) { // We need to wake up the loop in case the poll timeout needs to be // adjusted. This will cause us to try to do work, but that's OK. ScheduleWork(); } bool MessagePumpGlib::HandleFdWatchCheck(FdWatchController* controller) { DCHECK(controller); gushort flags = controller->poll_fd_->revents; return (flags & G_IO_IN) || (flags & G_IO_OUT); } void MessagePumpGlib::HandleFdWatchDispatch(FdWatchController* controller) { DCHECK(controller); DCHECK(controller->poll_fd_); gushort flags = controller->poll_fd_->revents; if ((flags & G_IO_IN) && (flags & G_IO_OUT)) { // Both callbacks will be called. It is necessary to check that // |controller| is not destroyed. bool controller_was_destroyed = false; controller->was_destroyed_ = &controller_was_destroyed; controller->NotifyCanWrite(); if (!controller_was_destroyed) controller->NotifyCanRead(); if (!controller_was_destroyed) controller->was_destroyed_ = nullptr; } else if (flags & G_IO_IN) { controller->NotifyCanRead(); } else if (flags & G_IO_OUT) { controller->NotifyCanWrite(); } } bool MessagePumpGlib::ShouldQuit() const { CHECK(state_); return state_->should_quit; } void MessagePumpGlib::SetScopedWorkItem() { // |state_| can be null during tests if (!state_) { return; } // If there exists a ScopedDoWorkItem in the current RunState, it cannot be // overwritten. CHECK(state_->scoped_do_work_item.IsNull()); // In the case that we're more than two work items deep, don't bother tracking // individual native events anymore. Note that this won't cause out-of-order // end work items, because the work item is cleared before entering the second // DoWork(). if (state_->do_work_depth < 2) { state_->scoped_do_work_item = state_->delegate->BeginWorkItem(); } } void MessagePumpGlib::ClearScopedWorkItem() { // |state_| can be null during tests if (!state_) { return; } CHECK(!state_->scoped_do_work_item.IsNull()); // See identical check in SetScopedWorkItem if (state_->do_work_depth < 2) { state_->scoped_do_work_item = Delegate::ScopedDoWorkItem(); } } void MessagePumpGlib::EnsureSetScopedWorkItem() { // |state_| can be null during tests if (!state_) { return; } if (state_->scoped_do_work_item.IsNull()) { SetScopedWorkItem(); } } void MessagePumpGlib::EnsureClearedScopedWorkItem() { // |state_| can be null during tests if (!state_) { return; } if (!state_->scoped_do_work_item.IsNull()) { ClearScopedWorkItem(); } } void MessagePumpGlib::RegisterNested() { // |state_| can be null during tests if (!state_) { return; } CHECK(state_->native_loop_do_work_item.IsNull()); // Transfer `scoped_do_work_item` to `native_do_work_item`, and so the // ephemeral `scoped_do_work_item` will be coming in and out of existence on // top of `native_do_work_item`, whose state hasn't been deleted. if (state_->scoped_do_work_item.IsNull()) { state_->native_loop_do_work_item = state_->delegate->BeginWorkItem(); } else { // This clears state_->scoped_do_work_item. state_->native_loop_do_work_item = std::move(state_->scoped_do_work_item); } SetScopedWorkItem(); ClearScopedWorkItem(); } void MessagePumpGlib::UnregisterNested() { // |state_| can be null during tests if (!state_) { return; } CHECK(!state_->native_loop_do_work_item.IsNull()); EnsureClearedScopedWorkItem(); // Nesting exits here. state_->native_loop_do_work_item = Delegate::ScopedDoWorkItem(); } void MessagePumpGlib::NestIfRequired() { // |state_| can be null during tests if (!state_) { return; } if (state_->native_loop_do_work_item.IsNull() && state_->g_depth_on_iteration.has_value() && g_main_depth() != state_->g_depth_on_iteration.value()) { RegisterNested(); } } void MessagePumpGlib::UnnestIfRequired() { // |state_| can be null during tests if (!state_) { return; } if (!state_->native_loop_do_work_item.IsNull()) { UnregisterNested(); } } void MessagePumpGlib::OnEntryToGlib() { // |state_| can be null during tests if (!state_) { return; } CHECK(!state_->g_depth_on_iteration.has_value()); state_->g_depth_on_iteration.emplace(g_main_depth()); } void MessagePumpGlib::OnExitFromGlib() { // |state_| can be null during tests if (!state_) { return; } state_->g_depth_on_iteration.reset(); UnnestIfRequired(); } } // namespace base