// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/metrics/sample_vector.h" #include #include #include #include #include #include "base/metrics/bucket_ranges.h" #include "base/metrics/histogram.h" #include "base/metrics/persistent_memory_allocator.h" #include "base/test/gtest_util.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { // This framework class has "friend" access to the SampleVector for accessing // non-public methods and fields. class SampleVectorTest : public testing::Test { public: const HistogramBase::AtomicCount* GetSamplesCounts( const SampleVectorBase& samples) { return samples.counts(); } }; TEST_F(SampleVectorTest, Accumulate) { // Custom buckets: [1, 5) [5, 10) BucketRanges ranges(3); ranges.set_range(0, 1); ranges.set_range(1, 5); ranges.set_range(2, 10); SampleVector samples(1, &ranges); samples.Accumulate(1, 200); samples.Accumulate(2, -300); EXPECT_EQ(-100, samples.GetCountAtIndex(0)); samples.Accumulate(5, 200); EXPECT_EQ(200, samples.GetCountAtIndex(1)); EXPECT_EQ(600, samples.sum()); EXPECT_EQ(100, samples.redundant_count()); EXPECT_EQ(samples.TotalCount(), samples.redundant_count()); samples.Accumulate(5, -100); EXPECT_EQ(100, samples.GetCountAtIndex(1)); EXPECT_EQ(100, samples.sum()); EXPECT_EQ(0, samples.redundant_count()); EXPECT_EQ(samples.TotalCount(), samples.redundant_count()); } TEST_F(SampleVectorTest, Accumulate_LargeValuesDontOverflow) { // Custom buckets: [1, 250000000) [250000000, 500000000) BucketRanges ranges(3); ranges.set_range(0, 1); ranges.set_range(1, 250000000); ranges.set_range(2, 500000000); SampleVector samples(1, &ranges); samples.Accumulate(240000000, 200); samples.Accumulate(249999999, -300); EXPECT_EQ(-100, samples.GetCountAtIndex(0)); samples.Accumulate(250000000, 200); EXPECT_EQ(200, samples.GetCountAtIndex(1)); EXPECT_EQ(23000000300LL, samples.sum()); EXPECT_EQ(100, samples.redundant_count()); EXPECT_EQ(samples.TotalCount(), samples.redundant_count()); samples.Accumulate(250000000, -100); EXPECT_EQ(100, samples.GetCountAtIndex(1)); EXPECT_EQ(-1999999700LL, samples.sum()); EXPECT_EQ(0, samples.redundant_count()); EXPECT_EQ(samples.TotalCount(), samples.redundant_count()); } TEST_F(SampleVectorTest, AddSubtract) { // Custom buckets: [0, 1) [1, 2) [2, 3) [3, INT_MAX) BucketRanges ranges(5); ranges.set_range(0, 0); ranges.set_range(1, 1); ranges.set_range(2, 2); ranges.set_range(3, 3); ranges.set_range(4, INT_MAX); SampleVector samples1(1, &ranges); samples1.Accumulate(0, 100); samples1.Accumulate(2, 100); samples1.Accumulate(4, 100); EXPECT_EQ(600, samples1.sum()); EXPECT_EQ(300, samples1.TotalCount()); EXPECT_EQ(samples1.redundant_count(), samples1.TotalCount()); SampleVector samples2(2, &ranges); samples2.Accumulate(1, 200); samples2.Accumulate(2, 200); samples2.Accumulate(4, 200); EXPECT_EQ(1400, samples2.sum()); EXPECT_EQ(600, samples2.TotalCount()); EXPECT_EQ(samples2.redundant_count(), samples2.TotalCount()); samples1.Add(samples2); EXPECT_EQ(100, samples1.GetCountAtIndex(0)); EXPECT_EQ(200, samples1.GetCountAtIndex(1)); EXPECT_EQ(300, samples1.GetCountAtIndex(2)); EXPECT_EQ(300, samples1.GetCountAtIndex(3)); EXPECT_EQ(2000, samples1.sum()); EXPECT_EQ(900, samples1.TotalCount()); EXPECT_EQ(samples1.redundant_count(), samples1.TotalCount()); samples1.Subtract(samples2); EXPECT_EQ(100, samples1.GetCountAtIndex(0)); EXPECT_EQ(0, samples1.GetCountAtIndex(1)); EXPECT_EQ(100, samples1.GetCountAtIndex(2)); EXPECT_EQ(100, samples1.GetCountAtIndex(3)); EXPECT_EQ(600, samples1.sum()); EXPECT_EQ(300, samples1.TotalCount()); EXPECT_EQ(samples1.redundant_count(), samples1.TotalCount()); } TEST_F(SampleVectorTest, BucketIndexDeath) { // 8 buckets with exponential layout: // [0, 1) [1, 2) [2, 4) [4, 8) [8, 16) [16, 32) [32, 64) [64, INT_MAX) BucketRanges ranges(9); Histogram::InitializeBucketRanges(1, 64, &ranges); SampleVector samples(1, &ranges); // Normal case samples.Accumulate(0, 1); samples.Accumulate(3, 2); samples.Accumulate(64, 3); EXPECT_EQ(1, samples.GetCount(0)); EXPECT_EQ(2, samples.GetCount(2)); EXPECT_EQ(3, samples.GetCount(65)); // Extreme case. EXPECT_DEATH_IF_SUPPORTED(samples.Accumulate(INT_MIN, 100), ""); EXPECT_DEATH_IF_SUPPORTED(samples.Accumulate(-1, 100), ""); EXPECT_DEATH_IF_SUPPORTED(samples.Accumulate(INT_MAX, 100), ""); // Custom buckets: [1, 5) [5, 10) // Note, this is not a valid BucketRanges for Histogram because it does not // have overflow buckets. BucketRanges ranges2(3); ranges2.set_range(0, 1); ranges2.set_range(1, 5); ranges2.set_range(2, 10); SampleVector samples2(2, &ranges2); // Normal case. samples2.Accumulate(1, 1); samples2.Accumulate(4, 1); samples2.Accumulate(5, 2); samples2.Accumulate(9, 2); EXPECT_EQ(2, samples2.GetCount(1)); EXPECT_EQ(4, samples2.GetCount(5)); // Extreme case. EXPECT_DEATH_IF_SUPPORTED(samples2.Accumulate(0, 100), ""); EXPECT_DEATH_IF_SUPPORTED(samples2.Accumulate(10, 100), ""); } TEST_F(SampleVectorTest, AddSubtractBucketNotMatchDeath) { // Custom buckets 1: [1, 3) [3, 5) BucketRanges ranges1(3); ranges1.set_range(0, 1); ranges1.set_range(1, 3); ranges1.set_range(2, 5); SampleVector samples1(1, &ranges1); // Custom buckets 2: [0, 1) [1, 3) [3, 6) [6, 7) BucketRanges ranges2(5); ranges2.set_range(0, 0); ranges2.set_range(1, 1); ranges2.set_range(2, 3); ranges2.set_range(3, 6); ranges2.set_range(4, 7); SampleVector samples2(2, &ranges2); samples2.Accumulate(1, 100); samples1.Add(samples2); EXPECT_EQ(100, samples1.GetCountAtIndex(0)); // Extra bucket in the beginning. These should CHECK in GetBucketIndex. samples2.Accumulate(0, 100); EXPECT_DEATH_IF_SUPPORTED(samples1.Add(samples2), ""); EXPECT_DEATH_IF_SUPPORTED(samples1.Subtract(samples2), ""); // Extra bucket in the end. These should cause AddSubtractImpl to fail, and // Add to DCHECK as a result. samples2.Accumulate(0, -100); samples2.Accumulate(6, 100); EXPECT_DCHECK_DEATH(samples1.Add(samples2)); EXPECT_DCHECK_DEATH(samples1.Subtract(samples2)); // Bucket not match: [3, 5) VS [3, 6). These should cause AddSubtractImpl to // DCHECK. samples2.Accumulate(6, -100); samples2.Accumulate(3, 100); EXPECT_DCHECK_DEATH(samples1.Add(samples2)); EXPECT_DCHECK_DEATH(samples1.Subtract(samples2)); } TEST_F(SampleVectorTest, Iterate) { BucketRanges ranges(5); ranges.set_range(0, 0); ranges.set_range(1, 1); ranges.set_range(2, 2); ranges.set_range(3, 3); ranges.set_range(4, 4); // Create iterator from SampleVector. SampleVector samples(1, &ranges); samples.Accumulate(0, 0); // Iterator will bypass this empty bucket. samples.Accumulate(1, 1); samples.Accumulate(2, 2); samples.Accumulate(3, 3); std::unique_ptr it = samples.Iterator(); int i; size_t index; HistogramBase::Sample min; int64_t max; HistogramBase::Count count; for (i = 1; !it->Done(); i++, it->Next()) { it->Get(&min, &max, &count); EXPECT_EQ(i, min); EXPECT_EQ(i + 1, max); EXPECT_EQ(i, count); EXPECT_TRUE(it->GetBucketIndex(&index)); EXPECT_EQ(static_cast(i), index); } EXPECT_EQ(4, i); } TEST_F(SampleVectorTest, IterateDoneDeath) { BucketRanges ranges(5); ranges.set_range(0, 0); ranges.set_range(1, 1); ranges.set_range(2, 2); ranges.set_range(3, 3); ranges.set_range(4, INT_MAX); SampleVector samples(1, &ranges); std::unique_ptr it = samples.Iterator(); EXPECT_TRUE(it->Done()); HistogramBase::Sample min; int64_t max; HistogramBase::Count count; EXPECT_DCHECK_DEATH(it->Get(&min, &max, &count)); EXPECT_DCHECK_DEATH(it->Next()); samples.Accumulate(2, 100); it = samples.Iterator(); EXPECT_FALSE(it->Done()); } TEST_F(SampleVectorTest, SingleSample) { // Custom buckets: [1, 5) [5, 10) BucketRanges ranges(3); ranges.set_range(0, 1); ranges.set_range(1, 5); ranges.set_range(2, 10); SampleVector samples(&ranges); // Ensure that a single value accumulates correctly. EXPECT_FALSE(GetSamplesCounts(samples)); samples.Accumulate(3, 200); EXPECT_EQ(200, samples.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples)); samples.Accumulate(3, 400); EXPECT_EQ(600, samples.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples)); EXPECT_EQ(3 * 600, samples.sum()); EXPECT_EQ(600, samples.TotalCount()); EXPECT_EQ(600, samples.redundant_count()); // Ensure that the iterator returns only one value. HistogramBase::Sample min; int64_t max; HistogramBase::Count count; std::unique_ptr it = samples.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(600, count); it->Next(); EXPECT_TRUE(it->Done()); // Ensure that it can be merged to another single-sample vector. SampleVector samples_copy(&ranges); samples_copy.Add(samples); EXPECT_FALSE(GetSamplesCounts(samples_copy)); EXPECT_EQ(3 * 600, samples_copy.sum()); EXPECT_EQ(600, samples_copy.TotalCount()); EXPECT_EQ(600, samples_copy.redundant_count()); // A different value should cause creation of the counts array. samples.Accumulate(8, 100); EXPECT_TRUE(GetSamplesCounts(samples)); EXPECT_EQ(600, samples.GetCount(3)); EXPECT_EQ(100, samples.GetCount(8)); EXPECT_EQ(3 * 600 + 8 * 100, samples.sum()); EXPECT_EQ(600 + 100, samples.TotalCount()); EXPECT_EQ(600 + 100, samples.redundant_count()); // The iterator should now return both values. it = samples.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(600, count); it->Next(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(5, min); EXPECT_EQ(10, max); EXPECT_EQ(100, count); it->Next(); EXPECT_TRUE(it->Done()); // Ensure that it can merged to a single-sample vector. samples_copy.Add(samples); EXPECT_TRUE(GetSamplesCounts(samples_copy)); EXPECT_EQ(3 * 1200 + 8 * 100, samples_copy.sum()); EXPECT_EQ(1200 + 100, samples_copy.TotalCount()); EXPECT_EQ(1200 + 100, samples_copy.redundant_count()); } TEST_F(SampleVectorTest, PersistentSampleVector) { LocalPersistentMemoryAllocator allocator(64 << 10, 0, ""); std::atomic samples_ref; samples_ref.store(0, std::memory_order_relaxed); HistogramSamples::Metadata samples_meta; memset(&samples_meta, 0, sizeof(samples_meta)); // Custom buckets: [1, 5) [5, 10) BucketRanges ranges(3); ranges.set_range(0, 1); ranges.set_range(1, 5); ranges.set_range(2, 10); // Persistent allocation. const size_t counts_bytes = sizeof(HistogramBase::AtomicCount) * ranges.bucket_count(); const DelayedPersistentAllocation allocation(&allocator, &samples_ref, 1, counts_bytes, false); PersistentSampleVector samples1(0, &ranges, &samples_meta, allocation); EXPECT_FALSE(GetSamplesCounts(samples1)); samples1.Accumulate(3, 200); EXPECT_EQ(200, samples1.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples1)); EXPECT_EQ(0, samples1.GetCount(8)); EXPECT_FALSE(GetSamplesCounts(samples1)); PersistentSampleVector samples2(0, &ranges, &samples_meta, allocation); EXPECT_EQ(200, samples2.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples2)); HistogramBase::Sample min; int64_t max; HistogramBase::Count count; std::unique_ptr it = samples2.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(200, count); it->Next(); EXPECT_TRUE(it->Done()); samples1.Accumulate(8, 100); EXPECT_TRUE(GetSamplesCounts(samples1)); EXPECT_FALSE(GetSamplesCounts(samples2)); EXPECT_EQ(200, samples2.GetCount(3)); EXPECT_EQ(100, samples2.GetCount(8)); EXPECT_TRUE(GetSamplesCounts(samples2)); EXPECT_EQ(3 * 200 + 8 * 100, samples2.sum()); EXPECT_EQ(300, samples2.TotalCount()); EXPECT_EQ(300, samples2.redundant_count()); it = samples2.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(200, count); it->Next(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(5, min); EXPECT_EQ(10, max); EXPECT_EQ(100, count); it->Next(); EXPECT_TRUE(it->Done()); PersistentSampleVector samples3(0, &ranges, &samples_meta, allocation); EXPECT_TRUE(GetSamplesCounts(samples2)); EXPECT_EQ(200, samples3.GetCount(3)); EXPECT_EQ(100, samples3.GetCount(8)); EXPECT_EQ(3 * 200 + 8 * 100, samples3.sum()); EXPECT_EQ(300, samples3.TotalCount()); EXPECT_EQ(300, samples3.redundant_count()); it = samples3.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(200, count); it->Next(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(5, min); EXPECT_EQ(10, max); EXPECT_EQ(100, count); it->Next(); EXPECT_TRUE(it->Done()); } TEST_F(SampleVectorTest, PersistentSampleVectorTestWithOutsideAlloc) { LocalPersistentMemoryAllocator allocator(64 << 10, 0, ""); std::atomic samples_ref; samples_ref.store(0, std::memory_order_relaxed); HistogramSamples::Metadata samples_meta; memset(&samples_meta, 0, sizeof(samples_meta)); // Custom buckets: [1, 5) [5, 10) BucketRanges ranges(3); ranges.set_range(0, 1); ranges.set_range(1, 5); ranges.set_range(2, 10); // Persistent allocation. const size_t counts_bytes = sizeof(HistogramBase::AtomicCount) * ranges.bucket_count(); const DelayedPersistentAllocation allocation(&allocator, &samples_ref, 1, counts_bytes, false); PersistentSampleVector samples1(0, &ranges, &samples_meta, allocation); EXPECT_FALSE(GetSamplesCounts(samples1)); samples1.Accumulate(3, 200); EXPECT_EQ(200, samples1.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples1)); // Because the delayed allocation can be shared with other objects (the // |offset| parameter allows concatinating multiple data blocks into the // same allocation), it's possible that the allocation gets realized from // the outside even though the data block being accessed is all zero. allocation.Get(); EXPECT_EQ(200, samples1.GetCount(3)); EXPECT_FALSE(GetSamplesCounts(samples1)); HistogramBase::Sample min; int64_t max; HistogramBase::Count count; std::unique_ptr it = samples1.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(200, count); it->Next(); EXPECT_TRUE(it->Done()); // A duplicate samples object should still see the single-sample entry even // when storage is available. PersistentSampleVector samples2(0, &ranges, &samples_meta, allocation); EXPECT_EQ(200, samples2.GetCount(3)); // New accumulations, in both directions, of the existing value should work. samples1.Accumulate(3, 50); EXPECT_EQ(250, samples1.GetCount(3)); EXPECT_EQ(250, samples2.GetCount(3)); samples2.Accumulate(3, 50); EXPECT_EQ(300, samples1.GetCount(3)); EXPECT_EQ(300, samples2.GetCount(3)); it = samples1.Iterator(); ASSERT_FALSE(it->Done()); it->Get(&min, &max, &count); EXPECT_EQ(1, min); EXPECT_EQ(5, max); EXPECT_EQ(300, count); it->Next(); EXPECT_TRUE(it->Done()); samples1.Accumulate(8, 100); EXPECT_TRUE(GetSamplesCounts(samples1)); EXPECT_EQ(300, samples1.GetCount(3)); EXPECT_EQ(300, samples2.GetCount(3)); EXPECT_EQ(100, samples1.GetCount(8)); EXPECT_EQ(100, samples2.GetCount(8)); samples2.Accumulate(8, 100); EXPECT_EQ(300, samples1.GetCount(3)); EXPECT_EQ(300, samples2.GetCount(3)); EXPECT_EQ(200, samples1.GetCount(8)); EXPECT_EQ(200, samples2.GetCount(8)); } // Tests GetPeakBucketSize() returns accurate max bucket size. TEST_F(SampleVectorTest, GetPeakBucketSize) { // Custom buckets: [1, 5) [5, 10) [10, 20) BucketRanges ranges(4); ranges.set_range(0, 1); ranges.set_range(1, 5); ranges.set_range(2, 10); ranges.set_range(3, 20); SampleVector samples(1, &ranges); samples.Accumulate(3, 1); samples.Accumulate(6, 2); samples.Accumulate(12, 3); EXPECT_EQ(3, samples.GetPeakBucketSize()); } } // namespace base