/** * fsck.c * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "fsck.h" #include "xattr.h" #include "quotaio.h" #include char *tree_mark; uint32_t tree_mark_size = 256; int f2fs_set_main_bitmap(struct f2fs_sb_info *sbi, u32 blk, int type) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct seg_entry *se; int fix = 0; se = get_seg_entry(sbi, GET_SEGNO(sbi, blk)); if (se->type >= NO_CHECK_TYPE) fix = 1; else if (IS_DATASEG(se->type) != IS_DATASEG(type)) fix = 1; /* just check data and node types */ if (fix) { DBG(1, "Wrong segment type [0x%x] %x -> %x", GET_SEGNO(sbi, blk), se->type, type); se->type = type; } return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap); } static inline int f2fs_test_main_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap); } static inline int f2fs_clear_main_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_clear_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->main_area_bitmap); } static inline int f2fs_test_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap); } int f2fs_set_sit_bitmap(struct f2fs_sb_info *sbi, u32 blk) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); return f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk), fsck->sit_area_bitmap); } static int add_into_hard_link_list(struct f2fs_sb_info *sbi, u32 nid, u32 link_cnt) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL; node = calloc(sizeof(struct hard_link_node), 1); ASSERT(node != NULL); node->nid = nid; node->links = link_cnt; node->actual_links = 1; node->next = NULL; if (fsck->hard_link_list_head == NULL) { fsck->hard_link_list_head = node; goto out; } tmp = fsck->hard_link_list_head; /* Find insertion position */ while (tmp && (nid < tmp->nid)) { ASSERT(tmp->nid != nid); prev = tmp; tmp = tmp->next; } if (tmp == fsck->hard_link_list_head) { node->next = tmp; fsck->hard_link_list_head = node; } else { prev->next = node; node->next = tmp; } out: DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt); return 0; } static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL, *prev = NULL; if (fsck->hard_link_list_head == NULL) return -EINVAL; node = fsck->hard_link_list_head; while (node && (nid < node->nid)) { prev = node; node = node->next; } if (node == NULL || (nid != node->nid)) return -EINVAL; /* Decrease link count */ node->links = node->links - 1; node->actual_links++; /* if link count becomes one, remove the node */ if (node->links == 1) { if (fsck->hard_link_list_head == node) fsck->hard_link_list_head = node->next; else prev->next = node->next; free(node); } return 0; } static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid, u32 blk_addr) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_summary_block *sum_blk; struct f2fs_summary *sum_entry; struct seg_entry * se; u32 segno, offset; int need_fix = 0, ret = 0; int type; if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) return 0; segno = GET_SEGNO(sbi, blk_addr); offset = OFFSET_IN_SEG(sbi, blk_addr); sum_blk = get_sum_block(sbi, segno, &type); if (type != SEG_TYPE_NODE && type != SEG_TYPE_CUR_NODE) { /* can't fix current summary, then drop the block */ if (!c.fix_on || type < 0) { ASSERT_MSG("Summary footer is not for node segment"); ret = -EINVAL; goto out; } need_fix = 1; se = get_seg_entry(sbi, segno); if(IS_NODESEG(se->type)) { FIX_MSG("Summary footer indicates a node segment: 0x%x", segno); sum_blk->footer.entry_type = SUM_TYPE_NODE; } else { ret = -EINVAL; goto out; } } sum_entry = &(sum_blk->entries[offset]); if (le32_to_cpu(sum_entry->nid) != nid) { if (!c.fix_on || type < 0) { DBG(0, "nid [0x%x]\n", nid); DBG(0, "target blk_addr [0x%x]\n", blk_addr); DBG(0, "summary blk_addr [0x%x]\n", GET_SUM_BLKADDR(sbi, GET_SEGNO(sbi, blk_addr))); DBG(0, "seg no / offset [0x%x / 0x%x]\n", GET_SEGNO(sbi, blk_addr), OFFSET_IN_SEG(sbi, blk_addr)); DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry->nid)); DBG(0, "--> node block's nid [0x%x]\n", nid); ASSERT_MSG("Invalid node seg summary\n"); ret = -EINVAL; } else { FIX_MSG("Set node summary 0x%x -> [0x%x] [0x%x]", segno, nid, blk_addr); sum_entry->nid = cpu_to_le32(nid); need_fix = 1; } } if (need_fix && f2fs_dev_is_writable()) { u64 ssa_blk; int ret2; ssa_blk = GET_SUM_BLKADDR(sbi, segno); ret2 = dev_write_block(sum_blk, ssa_blk); ASSERT(ret2 >= 0); } out: if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA || type == SEG_TYPE_MAX) free(sum_blk); return ret; } static int is_valid_summary(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, u32 blk_addr) { u16 ofs_in_node = le16_to_cpu(sum->ofs_in_node); u32 nid = le32_to_cpu(sum->nid); struct f2fs_node *node_blk = NULL; __le32 target_blk_addr; struct node_info ni; int ret = 0; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); if (!IS_VALID_NID(sbi, nid)) goto out; get_node_info(sbi, nid, &ni); if (!IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) goto out; /* read node_block */ ret = dev_read_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); if (le32_to_cpu(node_blk->footer.nid) != nid) goto out; /* check its block address */ if (node_blk->footer.nid == node_blk->footer.ino) { int ofs = get_extra_isize(node_blk); if (ofs + ofs_in_node >= DEF_ADDRS_PER_INODE) goto out; target_blk_addr = node_blk->i.i_addr[ofs + ofs_in_node]; } else { if (ofs_in_node >= DEF_ADDRS_PER_BLOCK) goto out; target_blk_addr = node_blk->dn.addr[ofs_in_node]; } if (blk_addr == le32_to_cpu(target_blk_addr)) ret = 1; out: free(node_blk); return ret; } static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr, u32 parent_nid, u16 idx_in_node, u8 version) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_summary_block *sum_blk; struct f2fs_summary *sum_entry; struct seg_entry * se; u32 segno, offset; int need_fix = 0, ret = 0; int type; if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) return 0; segno = GET_SEGNO(sbi, blk_addr); offset = OFFSET_IN_SEG(sbi, blk_addr); sum_blk = get_sum_block(sbi, segno, &type); if (type != SEG_TYPE_DATA && type != SEG_TYPE_CUR_DATA) { /* can't fix current summary, then drop the block */ if (!c.fix_on || type < 0) { ASSERT_MSG("Summary footer is not for data segment"); ret = -EINVAL; goto out; } need_fix = 1; se = get_seg_entry(sbi, segno); if (IS_DATASEG(se->type)) { FIX_MSG("Summary footer indicates a data segment: 0x%x", segno); sum_blk->footer.entry_type = SUM_TYPE_DATA; } else { ret = -EINVAL; goto out; } } sum_entry = &(sum_blk->entries[offset]); if (le32_to_cpu(sum_entry->nid) != parent_nid || sum_entry->version != version || le16_to_cpu(sum_entry->ofs_in_node) != idx_in_node) { if (!c.fix_on || type < 0) { DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry->nid)); DBG(0, "summary_entry.version [0x%x]\n", sum_entry->version); DBG(0, "summary_entry.ofs_in_node [0x%x]\n", le16_to_cpu(sum_entry->ofs_in_node)); DBG(0, "parent nid [0x%x]\n", parent_nid); DBG(0, "version from nat [0x%x]\n", version); DBG(0, "idx in parent node [0x%x]\n", idx_in_node); DBG(0, "Target data block addr [0x%x]\n", blk_addr); ASSERT_MSG("Invalid data seg summary\n"); ret = -EINVAL; } else if (is_valid_summary(sbi, sum_entry, blk_addr)) { /* delete wrong index */ ret = -EINVAL; } else { FIX_MSG("Set data summary 0x%x -> [0x%x] [0x%x] [0x%x]", segno, parent_nid, version, idx_in_node); sum_entry->nid = cpu_to_le32(parent_nid); sum_entry->version = version; sum_entry->ofs_in_node = cpu_to_le16(idx_in_node); need_fix = 1; } } if (need_fix && f2fs_dev_is_writable()) { u64 ssa_blk; int ret2; ssa_blk = GET_SUM_BLKADDR(sbi, segno); ret2 = dev_write_block(sum_blk, ssa_blk); ASSERT(ret2 >= 0); } out: if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA || type == SEG_TYPE_MAX) free(sum_blk); return ret; } static int __check_inode_mode(u32 nid, enum FILE_TYPE ftype, u16 mode) { if (ftype >= F2FS_FT_MAX) return 0; /* f2fs_iget will return -EIO if mode is not valid file type */ if (!S_ISLNK(mode) && !S_ISREG(mode) && !S_ISDIR(mode) && !S_ISCHR(mode) && !S_ISBLK(mode) && !S_ISFIFO(mode) && !S_ISSOCK(mode)) { ASSERT_MSG("inode [0x%x] unknown file type i_mode [0x%x]", nid, mode); return -1; } if (S_ISLNK(mode) && ftype != F2FS_FT_SYMLINK) goto err; if (S_ISREG(mode) && ftype != F2FS_FT_REG_FILE) goto err; if (S_ISDIR(mode) && ftype != F2FS_FT_DIR) goto err; if (S_ISCHR(mode) && ftype != F2FS_FT_CHRDEV) goto err; if (S_ISBLK(mode) && ftype != F2FS_FT_BLKDEV) goto err; if (S_ISFIFO(mode) && ftype != F2FS_FT_FIFO) goto err; if (S_ISSOCK(mode) && ftype != F2FS_FT_SOCK) goto err; return 0; err: ASSERT_MSG("inode [0x%x] mismatch i_mode [0x%x vs. 0x%x]", nid, ftype, mode); return -1; } static int sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_node *node_blk, enum FILE_TYPE ftype, enum NODE_TYPE ntype, struct node_info *ni) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); int ret; if (!IS_VALID_NID(sbi, nid)) { ASSERT_MSG("nid is not valid. [0x%x]", nid); return -EINVAL; } get_node_info(sbi, nid, ni); if (ni->ino == 0) { ASSERT_MSG("nid[0x%x] ino is 0", nid); return -EINVAL; } if (ni->blk_addr == NEW_ADDR) { ASSERT_MSG("nid is NEW_ADDR. [0x%x]", nid); return -EINVAL; } if (!IS_VALID_BLK_ADDR(sbi, ni->blk_addr)) { ASSERT_MSG("blkaddress is not valid. [0x%x]", ni->blk_addr); return -EINVAL; } ret = dev_read_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); if (ntype == TYPE_INODE && node_blk->footer.nid != node_blk->footer.ino) { ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]", nid, le32_to_cpu(node_blk->footer.nid), le32_to_cpu(node_blk->footer.ino)); return -EINVAL; } if (ni->ino != le32_to_cpu(node_blk->footer.ino)) { ASSERT_MSG("nid[0x%x] nat_entry->ino[0x%x] footer.ino[0x%x]", nid, ni->ino, le32_to_cpu(node_blk->footer.ino)); return -EINVAL; } if (ntype != TYPE_INODE && node_blk->footer.nid == node_blk->footer.ino) { ASSERT_MSG("nid[0x%x] footer.nid[0x%x] footer.ino[0x%x]", nid, le32_to_cpu(node_blk->footer.nid), le32_to_cpu(node_blk->footer.ino)); return -EINVAL; } if (le32_to_cpu(node_blk->footer.nid) != nid) { ASSERT_MSG("nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]", nid, ni->blk_addr, le32_to_cpu(node_blk->footer.nid)); return -EINVAL; } if (ntype == TYPE_XATTR) { u32 flag = le32_to_cpu(node_blk->footer.flag); if ((flag >> OFFSET_BIT_SHIFT) != XATTR_NODE_OFFSET) { ASSERT_MSG("xnid[0x%x] has wrong ofs:[0x%x]", nid, flag); return -EINVAL; } } if ((ntype == TYPE_INODE && ftype == F2FS_FT_DIR) || (ntype == TYPE_XATTR && ftype == F2FS_FT_XATTR)) { /* not included '.' & '..' */ if (f2fs_test_main_bitmap(sbi, ni->blk_addr) != 0) { ASSERT_MSG("Duplicated node blk. nid[0x%x][0x%x]\n", nid, ni->blk_addr); return -EINVAL; } } /* this if only from fix_hard_links */ if (ftype == F2FS_FT_MAX) return 0; if (ntype == TYPE_INODE && __check_inode_mode(nid, ftype, le16_to_cpu(node_blk->i.i_mode))) return -EINVAL; /* workaround to fix later */ if (ftype != F2FS_FT_ORPHAN || f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0) { f2fs_clear_bit(nid, fsck->nat_area_bitmap); /* avoid reusing nid when reconnecting files */ f2fs_set_bit(nid, NM_I(sbi)->nid_bitmap); } else ASSERT_MSG("orphan or xattr nid is duplicated [0x%x]\n", nid); if (is_valid_ssa_node_blk(sbi, nid, ni->blk_addr)) { ASSERT_MSG("summary node block is not valid. [0x%x]", nid); return -EINVAL; } if (f2fs_test_sit_bitmap(sbi, ni->blk_addr) == 0) ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", ni->blk_addr); if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) { fsck->chk.valid_blk_cnt++; fsck->chk.valid_node_cnt++; /* Progress report */ if (!c.show_file_map && sbi->total_valid_node_count > 1000) { unsigned int p10 = sbi->total_valid_node_count / 10; if (sbi->fsck->chk.checked_node_cnt++ % p10) return 0; printf("[FSCK] Check node %"PRIu64" / %u (%.2f%%)\n", sbi->fsck->chk.checked_node_cnt, sbi->total_valid_node_count, 10 * (float)sbi->fsck->chk.checked_node_cnt / p10); } } return 0; } int fsck_sanity_check_nid(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_node *node_blk, enum FILE_TYPE ftype, enum NODE_TYPE ntype, struct node_info *ni) { return sanity_check_nid(sbi, nid, node_blk, ftype, ntype, ni); } static int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino, u32 x_nid, u32 *blk_cnt) { struct f2fs_node *node_blk = NULL; struct node_info ni; int ret = 0; if (x_nid == 0x0) return 0; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); /* Sanity check */ if (sanity_check_nid(sbi, x_nid, node_blk, F2FS_FT_XATTR, TYPE_XATTR, &ni)) { ret = -EINVAL; goto out; } *blk_cnt = *blk_cnt + 1; f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid); out: free(node_blk); return ret; } int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 nid, enum FILE_TYPE ftype, enum NODE_TYPE ntype, u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc, struct child_info *child) { struct node_info ni; struct f2fs_node *node_blk = NULL; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); if (sanity_check_nid(sbi, nid, node_blk, ftype, ntype, &ni)) goto err; if (ntype == TYPE_INODE) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, cbc, &ni, child); quota_add_inode_usage(fsck->qctx, nid, &node_blk->i); } else { switch (ntype) { case TYPE_DIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_WARM_NODE); fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk, blk_cnt, cbc, child, &ni); break; case TYPE_INDIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); fsck_chk_idnode_blk(sbi, inode, ftype, node_blk, blk_cnt, cbc, child); break; case TYPE_DOUBLE_INDIRECT_NODE: f2fs_set_main_bitmap(sbi, ni.blk_addr, CURSEG_COLD_NODE); fsck_chk_didnode_blk(sbi, inode, ftype, node_blk, blk_cnt, cbc, child); break; default: ASSERT(0); } } free(node_blk); return 0; err: free(node_blk); return -EINVAL; } static inline void get_extent_info(struct extent_info *ext, struct f2fs_extent *i_ext) { ext->fofs = le32_to_cpu(i_ext->fofs); ext->blk = le32_to_cpu(i_ext->blk_addr); ext->len = le32_to_cpu(i_ext->len); } static void check_extent_info(struct child_info *child, block_t blkaddr, int last) { struct extent_info *ei = &child->ei; u32 pgofs = child->pgofs; int is_hole = 0; if (!ei->len) return; if (child->state & FSCK_UNMATCHED_EXTENT) return; if ((child->state & FSCK_INLINE_INODE) && ei->len) goto unmatched; if (last) { /* hole exist in the back of extent */ if (child->last_blk != ei->blk + ei->len - 1) child->state |= FSCK_UNMATCHED_EXTENT; return; } if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) is_hole = 1; if (pgofs >= ei->fofs && pgofs < ei->fofs + ei->len) { /* unmatched blkaddr */ if (is_hole || (blkaddr != pgofs - ei->fofs + ei->blk)) goto unmatched; if (!child->last_blk) { /* hole exists in the front of extent */ if (pgofs != ei->fofs) goto unmatched; } else if (child->last_blk + 1 != blkaddr) { /* hole exists in the middle of extent */ goto unmatched; } child->last_blk = blkaddr; return; } if (is_hole) return; if (blkaddr < ei->blk || blkaddr >= ei->blk + ei->len) return; /* unmatched file offset */ unmatched: child->state |= FSCK_UNMATCHED_EXTENT; } void fsck_reada_node_block(struct f2fs_sb_info *sbi, u32 nid) { struct node_info ni; if (nid != 0 && IS_VALID_NID(sbi, nid)) { get_node_info(sbi, nid, &ni); if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) dev_reada_block(ni.blk_addr); } } void fsck_reada_all_direct_node_blocks(struct f2fs_sb_info *sbi, struct f2fs_node *node_blk) { int i; for (i = 0; i < NIDS_PER_BLOCK; i++) { u32 nid = le32_to_cpu(node_blk->in.nid[i]); fsck_reada_node_block(sbi, nid); } } static bool is_zeroed(const u8 *p, size_t size) { size_t i; for (i = 0; i < size; i++) { if (p[i]) return false; } return true; } int chk_extended_attributes(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_node *inode) { void *xattr; void *last_base_addr; struct f2fs_xattr_entry *ent; __u32 xattr_size = XATTR_SIZE(&inode->i); bool need_fix = false; if (xattr_size == 0) return 0; xattr = read_all_xattrs(sbi, inode, false); ASSERT(xattr); last_base_addr = (void *)xattr + xattr_size; list_for_each_xattr(ent, xattr) { if ((void *)(ent) + sizeof(__u32) > last_base_addr || (void *)XATTR_NEXT_ENTRY(ent) > last_base_addr) { ASSERT_MSG("[0x%x] last xattr entry (offset: %lx) " "crosses the boundary", nid, (long int)((void *)ent - xattr)); need_fix = true; break; } } if (!need_fix && !is_zeroed((u8 *)ent, (u8 *)last_base_addr - (u8 *)ent)) { ASSERT_MSG("[0x%x] nonzero bytes in xattr space after " "end of list", nid); need_fix = true; } if (need_fix && c.fix_on) { memset(ent, 0, (u8 *)last_base_addr - (u8 *)ent); write_all_xattrs(sbi, inode, xattr_size, xattr); FIX_MSG("[0x%x] nullify wrong xattr entries", nid); free(xattr); return 1; } free(xattr); return 0; } /* start with valid nid and blkaddr */ void fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc, struct node_info *ni, struct child_info *child_d) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct child_info child; enum NODE_TYPE ntype; u32 i_links = le32_to_cpu(node_blk->i.i_links); u64 i_size = le64_to_cpu(node_blk->i.i_size); u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks); bool compr_supported = c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION); u32 i_flags = le32_to_cpu(node_blk->i.i_flags); bool compressed = i_flags & F2FS_COMPR_FL; bool compr_rel = node_blk->i.i_inline & F2FS_COMPRESS_RELEASED; u64 i_compr_blocks = le64_to_cpu(node_blk->i.i_compr_blocks); nid_t i_xattr_nid = le32_to_cpu(node_blk->i.i_xattr_nid); int ofs; char *en; u32 namelen; unsigned int addrs, idx = 0; unsigned short i_gc_failures; int need_fix = 0; int ret; u32 cluster_size = 1 << node_blk->i.i_log_cluster_size; if (!compressed) goto check_next; if (!compr_supported || (node_blk->i.i_inline & F2FS_INLINE_DATA)) { /* * The 'compression' flag in i_flags affects the traverse of * the node tree. Thus, it must be fixed unconditionally * in the memory (node_blk). */ node_blk->i.i_flags &= ~cpu_to_le32(F2FS_COMPR_FL); compressed = false; if (c.fix_on) { need_fix = 1; FIX_MSG("[0x%x] i_flags=0x%x -> 0x%x", nid, i_flags, node_blk->i.i_flags); } i_flags &= ~F2FS_COMPR_FL; } check_next: memset(&child, 0, sizeof(child)); child.links = 2; child.p_ino = nid; child.pp_ino = le32_to_cpu(node_blk->i.i_pino); child.dir_level = node_blk->i.i_dir_level; if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) fsck->chk.valid_inode_cnt++; if (ftype == F2FS_FT_DIR) { f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_HOT_NODE); namelen = le32_to_cpu(node_blk->i.i_namelen); if (namelen > F2FS_NAME_LEN) namelen = F2FS_NAME_LEN; memcpy(child.p_name, node_blk->i.i_name, namelen); } else { if (f2fs_test_main_bitmap(sbi, ni->blk_addr) == 0) { f2fs_set_main_bitmap(sbi, ni->blk_addr, CURSEG_WARM_NODE); if (i_links > 1 && ftype != F2FS_FT_ORPHAN && !is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) { /* First time. Create new hard link node */ add_into_hard_link_list(sbi, nid, i_links); fsck->chk.multi_hard_link_files++; } } else { DBG(3, "[0x%x] has hard links [0x%x]\n", nid, i_links); if (find_and_dec_hard_link_list(sbi, nid)) { ASSERT_MSG("[0x%x] needs more i_links=0x%x", nid, i_links); if (c.fix_on) { node_blk->i.i_links = cpu_to_le32(i_links + 1); need_fix = 1; FIX_MSG("File: 0x%x " "i_links= 0x%x -> 0x%x", nid, i_links, i_links + 1); } goto skip_blkcnt_fix; } /* No need to go deep into the node */ return; } } /* readahead xattr node block */ fsck_reada_node_block(sbi, i_xattr_nid); if (fsck_chk_xattr_blk(sbi, nid, i_xattr_nid, blk_cnt)) { if (c.fix_on) { node_blk->i.i_xattr_nid = 0; need_fix = 1; FIX_MSG("Remove xattr block: 0x%x, x_nid = 0x%x", nid, i_xattr_nid); } } if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV || ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK) goto check; /* init extent info */ get_extent_info(&child.ei, &node_blk->i.i_ext); child.last_blk = 0; if (f2fs_has_extra_isize(&node_blk->i)) { if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) { unsigned int isize = le16_to_cpu(node_blk->i.i_extra_isize); if (isize > 4 * DEF_ADDRS_PER_INODE) { ASSERT_MSG("[0x%x] wrong i_extra_isize=0x%x", nid, isize); if (c.fix_on) { FIX_MSG("ino[0x%x] recover i_extra_isize " "from %u to %u", nid, isize, calc_extra_isize()); node_blk->i.i_extra_isize = cpu_to_le16(calc_extra_isize()); need_fix = 1; } } } else { ASSERT_MSG("[0x%x] wrong extra_attr flag", nid); if (c.fix_on) { FIX_MSG("ino[0x%x] remove F2FS_EXTRA_ATTR " "flag in i_inline:%u", nid, node_blk->i.i_inline); /* we don't support tuning F2FS_FEATURE_EXTRA_ATTR now */ node_blk->i.i_inline &= ~F2FS_EXTRA_ATTR; need_fix = 1; } } if ((c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) && (node_blk->i.i_inline & F2FS_INLINE_XATTR)) { unsigned int inline_size = le16_to_cpu(node_blk->i.i_inline_xattr_size); if (!inline_size || inline_size > MAX_INLINE_XATTR_SIZE) { ASSERT_MSG("[0x%x] wrong inline_xattr_size:%u", nid, inline_size); if (c.fix_on) { FIX_MSG("ino[0x%x] recover inline xattr size " "from %u to %u", nid, inline_size, DEFAULT_INLINE_XATTR_ADDRS); node_blk->i.i_inline_xattr_size = cpu_to_le16(DEFAULT_INLINE_XATTR_ADDRS); need_fix = 1; } } } } ofs = get_extra_isize(node_blk); if ((node_blk->i.i_flags & cpu_to_le32(F2FS_CASEFOLD_FL)) && (ftype != F2FS_FT_DIR || !(c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)))) { ASSERT_MSG("[0x%x] unexpected casefold flag", nid); if (c.fix_on) { FIX_MSG("ino[0x%x] clear casefold flag", nid); node_blk->i.i_flags &= ~cpu_to_le32(F2FS_CASEFOLD_FL); need_fix = 1; } } if (chk_extended_attributes(sbi, nid, node_blk)) need_fix = 1; if ((node_blk->i.i_inline & F2FS_INLINE_DATA)) { unsigned int inline_size = MAX_INLINE_DATA(node_blk); if (cur_qtype != -1) qf_szchk_type[cur_qtype] = QF_SZCHK_INLINE; block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]); if (blkaddr != 0) { ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u", nid, blkaddr); if (c.fix_on) { FIX_MSG("inline_data has wrong 0'th block = %x", blkaddr); node_blk->i.i_addr[ofs] = 0; node_blk->i.i_blocks = cpu_to_le64(*blk_cnt); need_fix = 1; } } if (i_size > inline_size) { ASSERT_MSG("[0x%x] wrong inline size:%lu", nid, (unsigned long)i_size); if (c.fix_on) { node_blk->i.i_size = cpu_to_le64(inline_size); FIX_MSG("inline_data has wrong i_size %lu", (unsigned long)i_size); need_fix = 1; } } if (!(node_blk->i.i_inline & F2FS_DATA_EXIST)) { char buf[MAX_INLINE_DATA(node_blk)]; memset(buf, 0, MAX_INLINE_DATA(node_blk)); if (memcmp(buf, inline_data_addr(node_blk), MAX_INLINE_DATA(node_blk))) { ASSERT_MSG("[0x%x] junk inline data", nid); if (c.fix_on) { FIX_MSG("inline_data has DATA_EXIST"); node_blk->i.i_inline |= F2FS_DATA_EXIST; need_fix = 1; } } } DBG(3, "ino[0x%x] has inline data!\n", nid); child.state |= FSCK_INLINE_INODE; goto check; } if ((node_blk->i.i_inline & F2FS_INLINE_DENTRY)) { block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs]); DBG(3, "ino[0x%x] has inline dentry!\n", nid); if (blkaddr != 0) { ASSERT_MSG("[0x%x] wrong inline reserve blkaddr:%u", nid, blkaddr); if (c.fix_on) { FIX_MSG("inline_dentry has wrong 0'th block = %x", blkaddr); node_blk->i.i_addr[ofs] = 0; node_blk->i.i_blocks = cpu_to_le64(*blk_cnt); need_fix = 1; } } ret = fsck_chk_inline_dentries(sbi, node_blk, &child); if (ret < 0) { if (c.fix_on) need_fix = 1; } child.state |= FSCK_INLINE_INODE; goto check; } /* check data blocks in inode */ addrs = ADDRS_PER_INODE(&node_blk->i); if (cur_qtype != -1) { u64 addrs_per_blk = (u64)ADDRS_PER_BLOCK(&node_blk->i); qf_szchk_type[cur_qtype] = QF_SZCHK_REGFILE; qf_maxsize[cur_qtype] = (u64)(addrs + 2 * addrs_per_blk + 2 * addrs_per_blk * NIDS_PER_BLOCK + addrs_per_blk * NIDS_PER_BLOCK * NIDS_PER_BLOCK) * F2FS_BLKSIZE; } for (idx = 0; idx < addrs; idx++, child.pgofs++) { block_t blkaddr = le32_to_cpu(node_blk->i.i_addr[ofs + idx]); /* check extent info */ check_extent_info(&child, blkaddr, 0); if (blkaddr == NULL_ADDR) continue; if (blkaddr == COMPRESS_ADDR) { if (!compressed || (child.pgofs & (cluster_size - 1)) != 0) { if (c.fix_on) { node_blk->i.i_addr[ofs + idx] = NULL_ADDR; need_fix = 1; FIX_MSG("[0x%x] i_addr[%d] = 0", nid, ofs + idx); } continue; } if (!compr_rel) { fsck->chk.valid_blk_cnt++; *blk_cnt = *blk_cnt + 1; cbc->cheader_pgofs = child.pgofs; cbc->cnt++; } continue; } if (!compr_rel && blkaddr == NEW_ADDR && child.pgofs - cbc->cheader_pgofs < cluster_size) cbc->cnt++; ret = fsck_chk_data_blk(sbi, IS_CASEFOLDED(&node_blk->i), blkaddr, &child, (i_blocks == *blk_cnt), ftype, nid, idx, ni->version, file_is_encrypt(&node_blk->i)); if (!ret) { *blk_cnt = *blk_cnt + 1; if (cur_qtype != -1 && blkaddr != NEW_ADDR) qf_last_blkofs[cur_qtype] = child.pgofs; } else if (c.fix_on) { node_blk->i.i_addr[ofs + idx] = 0; need_fix = 1; FIX_MSG("[0x%x] i_addr[%d] = 0", nid, ofs + idx); } } /* readahead node blocks */ for (idx = 0; idx < 5; idx++) { u32 nid = le32_to_cpu(node_blk->i.i_nid[idx]); fsck_reada_node_block(sbi, nid); } /* check node blocks in inode */ for (idx = 0; idx < 5; idx++) { nid_t i_nid = le32_to_cpu(node_blk->i.i_nid[idx]); if (idx == 0 || idx == 1) ntype = TYPE_DIRECT_NODE; else if (idx == 2 || idx == 3) ntype = TYPE_INDIRECT_NODE; else if (idx == 4) ntype = TYPE_DOUBLE_INDIRECT_NODE; else ASSERT(0); if (i_nid == 0x0) goto skip; ret = fsck_chk_node_blk(sbi, &node_blk->i, i_nid, ftype, ntype, blk_cnt, cbc, &child); if (!ret) { *blk_cnt = *blk_cnt + 1; } else if (ret == -EINVAL) { if (c.fix_on) { node_blk->i.i_nid[idx] = 0; need_fix = 1; FIX_MSG("[0x%x] i_nid[%d] = 0", nid, idx); } skip: if (ntype == TYPE_DIRECT_NODE) child.pgofs += ADDRS_PER_BLOCK(&node_blk->i); else if (ntype == TYPE_INDIRECT_NODE) child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) * NIDS_PER_BLOCK; else child.pgofs += ADDRS_PER_BLOCK(&node_blk->i) * NIDS_PER_BLOCK * NIDS_PER_BLOCK; } } check: /* check uncovered range in the back of extent */ check_extent_info(&child, 0, 1); if (child.state & FSCK_UNMATCHED_EXTENT) { ASSERT_MSG("ino: 0x%x has wrong ext: [pgofs:%u, blk:%u, len:%u]", nid, child.ei.fofs, child.ei.blk, child.ei.len); if (c.fix_on) need_fix = 1; } if (i_blocks != *blk_cnt) { ASSERT_MSG("ino: 0x%x has i_blocks: %08"PRIx64", " "but has %u blocks", nid, i_blocks, *blk_cnt); if (c.fix_on) { node_blk->i.i_blocks = cpu_to_le64(*blk_cnt); need_fix = 1; FIX_MSG("[0x%x] i_blocks=0x%08"PRIx64" -> 0x%x", nid, i_blocks, *blk_cnt); } } if (compressed && i_compr_blocks != cbc->cnt) { if (c.fix_on) { node_blk->i.i_compr_blocks = cpu_to_le64(cbc->cnt); need_fix = 1; FIX_MSG("[0x%x] i_compr_blocks=0x%08"PRIx64" -> 0x%x", nid, i_compr_blocks, cbc->cnt); } } skip_blkcnt_fix: en = malloc(F2FS_PRINT_NAMELEN); ASSERT(en); namelen = le32_to_cpu(node_blk->i.i_namelen); if (namelen > F2FS_NAME_LEN) { if (child_d && child_d->i_namelen <= F2FS_NAME_LEN) { ASSERT_MSG("ino: 0x%x has i_namelen: 0x%x, " "but has %d characters for name", nid, namelen, child_d->i_namelen); if (c.fix_on) { FIX_MSG("[0x%x] i_namelen=0x%x -> 0x%x", nid, namelen, child_d->i_namelen); node_blk->i.i_namelen = cpu_to_le32(child_d->i_namelen); need_fix = 1; } namelen = child_d->i_namelen; } else namelen = F2FS_NAME_LEN; } pretty_print_filename(node_blk->i.i_name, namelen, en, file_enc_name(&node_blk->i)); if (ftype == F2FS_FT_ORPHAN) DBG(1, "Orphan Inode: 0x%x [%s] i_blocks: %u\n\n", le32_to_cpu(node_blk->footer.ino), en, (u32)i_blocks); if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) DBG(1, "Quota Inode: 0x%x [%s] i_blocks: %u\n\n", le32_to_cpu(node_blk->footer.ino), en, (u32)i_blocks); if (ftype == F2FS_FT_DIR) { DBG(1, "Directory Inode: 0x%x [%s] depth: %d has %d files\n\n", le32_to_cpu(node_blk->footer.ino), en, le32_to_cpu(node_blk->i.i_current_depth), child.files); if (i_links != child.links) { ASSERT_MSG("ino: 0x%x i_links: %u, real links: %u", nid, i_links, child.links); if (c.fix_on) { node_blk->i.i_links = cpu_to_le32(child.links); need_fix = 1; FIX_MSG("Dir: 0x%x i_links= 0x%x -> 0x%x", nid, i_links, child.links); } } if (child.dots < 2 && !(node_blk->i.i_inline & F2FS_INLINE_DOTS)) { ASSERT_MSG("ino: 0x%x dots: %u", nid, child.dots); if (c.fix_on) { node_blk->i.i_inline |= F2FS_INLINE_DOTS; need_fix = 1; FIX_MSG("Dir: 0x%x set inline_dots", nid); } } } i_gc_failures = le16_to_cpu(node_blk->i.i_gc_failures); /* * old kernel initialized i_gc_failures as 0x01, in preen mode 2, * let's skip repairing. */ if (ftype == F2FS_FT_REG_FILE && i_gc_failures && (c.preen_mode != PREEN_MODE_2 || i_gc_failures != 0x01)) { DBG(1, "Regular Inode: 0x%x [%s] depth: %d\n\n", le32_to_cpu(node_blk->footer.ino), en, i_gc_failures); if (c.fix_on) { node_blk->i.i_gc_failures = cpu_to_le16(0); need_fix = 1; FIX_MSG("Regular: 0x%x reset i_gc_failures from 0x%x to 0x00", nid, i_gc_failures); } } free(en); if (ftype == F2FS_FT_SYMLINK && i_size == 0 && i_blocks == (i_xattr_nid ? 3 : 2)) { node_blk->i.i_size = cpu_to_le64(F2FS_BLKSIZE); need_fix = 1; FIX_MSG("Symlink: recover 0x%x with i_size=%lu", nid, (unsigned long)F2FS_BLKSIZE); } if (ftype == F2FS_FT_ORPHAN && i_links) { ASSERT_MSG("ino: 0x%x is orphan inode, but has i_links: %u", nid, i_links); if (c.fix_on) { node_blk->i.i_links = 0; need_fix = 1; FIX_MSG("ino: 0x%x orphan_inode, i_links= 0x%x -> 0", nid, i_links); } } /* drop extent information to avoid potential wrong access */ if (need_fix && f2fs_dev_is_writable()) node_blk->i.i_ext.len = 0; if ((c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) && f2fs_has_extra_isize(&node_blk->i)) { __u32 provided, calculated; provided = le32_to_cpu(node_blk->i.i_inode_checksum); calculated = f2fs_inode_chksum(node_blk); if (provided != calculated) { ASSERT_MSG("ino: 0x%x chksum:0x%x, but calculated one is: 0x%x", nid, provided, calculated); if (c.fix_on) { node_blk->i.i_inode_checksum = cpu_to_le32(calculated); need_fix = 1; FIX_MSG("ino: 0x%x recover, i_inode_checksum= 0x%x -> 0x%x", nid, provided, calculated); } } } if (need_fix && f2fs_dev_is_writable()) { ret = dev_write_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); } } int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc, struct child_info *child, struct node_info *ni) { int idx, ret; int need_fix = 0; child->p_ino = nid; child->pp_ino = le32_to_cpu(inode->i_pino); u32 i_flags = le32_to_cpu(inode->i_flags); bool compressed = i_flags & F2FS_COMPR_FL; bool compr_rel = inode->i_inline & F2FS_COMPRESS_RELEASED; u32 cluster_size = 1 << inode->i_log_cluster_size; for (idx = 0; idx < ADDRS_PER_BLOCK(inode); idx++, child->pgofs++) { block_t blkaddr = le32_to_cpu(node_blk->dn.addr[idx]); check_extent_info(child, blkaddr, 0); if (blkaddr == NULL_ADDR) continue; if (blkaddr == COMPRESS_ADDR) { if (!compressed || (child->pgofs & (cluster_size - 1)) != 0) { if (c.fix_on) { node_blk->dn.addr[idx] = NULL_ADDR; need_fix = 1; FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx); } continue; } if (!compr_rel) { F2FS_FSCK(sbi)->chk.valid_blk_cnt++; *blk_cnt = *blk_cnt + 1; cbc->cheader_pgofs = child->pgofs; cbc->cnt++; } continue; } if (!compr_rel && blkaddr == NEW_ADDR && child->pgofs - cbc->cheader_pgofs < cluster_size) cbc->cnt++; ret = fsck_chk_data_blk(sbi, IS_CASEFOLDED(inode), blkaddr, child, le64_to_cpu(inode->i_blocks) == *blk_cnt, ftype, nid, idx, ni->version, file_is_encrypt(inode)); if (!ret) { *blk_cnt = *blk_cnt + 1; if (cur_qtype != -1 && blkaddr != NEW_ADDR) qf_last_blkofs[cur_qtype] = child->pgofs; } else if (c.fix_on) { node_blk->dn.addr[idx] = NULL_ADDR; need_fix = 1; FIX_MSG("[0x%x] dn.addr[%d] = 0", nid, idx); } } if (need_fix && f2fs_dev_is_writable()) { ret = dev_write_block(node_blk, ni->blk_addr); ASSERT(ret >= 0); } return 0; } int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc, struct child_info *child) { int need_fix = 0, ret; int i = 0; fsck_reada_all_direct_node_blocks(sbi, node_blk); for (i = 0; i < NIDS_PER_BLOCK; i++) { if (le32_to_cpu(node_blk->in.nid[i]) == 0x0) goto skip; ret = fsck_chk_node_blk(sbi, inode, le32_to_cpu(node_blk->in.nid[i]), ftype, TYPE_DIRECT_NODE, blk_cnt, cbc, child); if (!ret) *blk_cnt = *blk_cnt + 1; else if (ret == -EINVAL) { if (!c.fix_on) printf("should delete in.nid[i] = 0;\n"); else { node_blk->in.nid[i] = 0; need_fix = 1; FIX_MSG("Set indirect node 0x%x -> 0", i); } skip: child->pgofs += ADDRS_PER_BLOCK(&node_blk->i); } } if (need_fix && f2fs_dev_is_writable()) { struct node_info ni; nid_t nid = le32_to_cpu(node_blk->footer.nid); get_node_info(sbi, nid, &ni); ret = dev_write_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); } return 0; } int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct f2fs_compr_blk_cnt *cbc, struct child_info *child) { int i = 0; int need_fix = 0, ret = 0; fsck_reada_all_direct_node_blocks(sbi, node_blk); for (i = 0; i < NIDS_PER_BLOCK; i++) { if (le32_to_cpu(node_blk->in.nid[i]) == 0x0) goto skip; ret = fsck_chk_node_blk(sbi, inode, le32_to_cpu(node_blk->in.nid[i]), ftype, TYPE_INDIRECT_NODE, blk_cnt, cbc, child); if (!ret) *blk_cnt = *blk_cnt + 1; else if (ret == -EINVAL) { if (!c.fix_on) printf("should delete in.nid[i] = 0;\n"); else { node_blk->in.nid[i] = 0; need_fix = 1; FIX_MSG("Set double indirect node 0x%x -> 0", i); } skip: child->pgofs += ADDRS_PER_BLOCK(&node_blk->i) * NIDS_PER_BLOCK; } } if (need_fix && f2fs_dev_is_writable()) { struct node_info ni; nid_t nid = le32_to_cpu(node_blk->footer.nid); get_node_info(sbi, nid, &ni); ret = dev_write_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); } return 0; } static const char *lookup_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; /** * base64_encode() - * * Encodes the input string using characters from the set [A-Za-z0-9+,]. * The encoded string is roughly 4/3 times the size of the input string. */ static int base64_encode(const u8 *src, int len, char *dst) { int i, bits = 0, ac = 0; char *cp = dst; for (i = 0; i < len; i++) { ac += src[i] << bits; bits += 8; do { *cp++ = lookup_table[ac & 0x3f]; ac >>= 6; bits -= 6; } while (bits >= 6); } if (bits) *cp++ = lookup_table[ac & 0x3f]; return cp - dst; } void pretty_print_filename(const u8 *raw_name, u32 len, char out[F2FS_PRINT_NAMELEN], int enc_name) { len = min(len, (u32)F2FS_NAME_LEN); if (enc_name) len = base64_encode(raw_name, len, out); else memcpy(out, raw_name, len); out[len] = 0; } static void print_dentry(struct f2fs_sb_info *sbi, __u8 *name, u8 *bitmap, struct f2fs_dir_entry *dentry, int max, int idx, int last_blk, int enc_name) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); u32 depth = fsck->dentry_depth; int last_de = 0; int next_idx = 0; u32 name_len; unsigned int i; int bit_offset; char new[F2FS_PRINT_NAMELEN]; if (!c.show_dentry && !c.show_file_map) return; name_len = le16_to_cpu(dentry[idx].name_len); next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; bit_offset = find_next_bit_le(bitmap, max, next_idx); if (bit_offset >= max && last_blk) last_de = 1; if (tree_mark_size <= depth) { tree_mark_size *= 2; ASSERT(tree_mark_size != 0); tree_mark = realloc(tree_mark, tree_mark_size); ASSERT(tree_mark != NULL); } if (last_de) tree_mark[depth] = '`'; else tree_mark[depth] = '|'; if (tree_mark[depth - 1] == '`') tree_mark[depth - 1] = ' '; pretty_print_filename(name, name_len, new, enc_name); if (c.show_file_map) { struct f2fs_dentry *d = fsck->dentry; if (dentry[idx].file_type != F2FS_FT_REG_FILE) return; while (d) { if (d->depth > 1) printf("/%s", d->name); d = d->next; } printf("/%s", new); if (dump_node(sbi, le32_to_cpu(dentry[idx].ino), 0)) printf("\33[2K\r"); } else { for (i = 1; i < depth; i++) printf("%c ", tree_mark[i]); printf("%c-- %s , \n", last_de ? '`' : '|', new, le32_to_cpu(dentry[idx].ino), enc_name); } } static int f2fs_check_hash_code(int encoding, int casefolded, struct f2fs_dir_entry *dentry, const unsigned char *name, u32 len, int enc_name) { /* Casefolded Encrypted names require a key to compute siphash */ if (enc_name && casefolded) return 0; f2fs_hash_t hash_code = f2fs_dentry_hash(encoding, casefolded, name, len); /* fix hash_code made by old buggy code */ if (dentry->hash_code != hash_code) { char new[F2FS_PRINT_NAMELEN]; pretty_print_filename(name, len, new, enc_name); FIX_MSG("Mismatch hash_code for \"%s\" [%x:%x]", new, le32_to_cpu(dentry->hash_code), hash_code); dentry->hash_code = cpu_to_le32(hash_code); return 1; } return 0; } static int __get_current_level(int dir_level, u32 pgofs) { unsigned int bidx = 0; int i; for (i = 0; i < MAX_DIR_HASH_DEPTH; i++) { bidx += dir_buckets(i, dir_level) * bucket_blocks(i); if (bidx > pgofs) break; } return i; } static int f2fs_check_dirent_position(const struct f2fs_dir_entry *dentry, const char *printable_name, u32 pgofs, u8 dir_level, u32 pino) { unsigned int nbucket, nblock; unsigned int bidx, end_block; int level; level = __get_current_level(dir_level, pgofs); nbucket = dir_buckets(level, dir_level); nblock = bucket_blocks(level); bidx = dir_block_index(level, dir_level, le32_to_cpu(dentry->hash_code) % nbucket); end_block = bidx + nblock; if (pgofs >= bidx && pgofs < end_block) return 0; ASSERT_MSG("Wrong position of dirent pino:%u, name:%s, level:%d, " "dir_level:%d, pgofs:%u, correct range:[%u, %u]\n", pino, printable_name, level, dir_level, pgofs, bidx, end_block - 1); return 1; } static int __chk_dots_dentries(struct f2fs_sb_info *sbi, int casefolded, struct f2fs_dir_entry *dentry, struct child_info *child, u8 *name, int len, __u8 (*filename)[F2FS_SLOT_LEN], int enc_name) { int fixed = 0; if ((name[0] == '.' && len == 1)) { if (le32_to_cpu(dentry->ino) != child->p_ino) { ASSERT_MSG("Bad inode number[0x%x] for '.', parent_ino is [0x%x]\n", le32_to_cpu(dentry->ino), child->p_ino); dentry->ino = cpu_to_le32(child->p_ino); fixed = 1; } } if (name[0] == '.' && name[1] == '.' && len == 2) { if (child->p_ino == F2FS_ROOT_INO(sbi)) { if (le32_to_cpu(dentry->ino) != F2FS_ROOT_INO(sbi)) { ASSERT_MSG("Bad inode number[0x%x] for '..'\n", le32_to_cpu(dentry->ino)); dentry->ino = cpu_to_le32(F2FS_ROOT_INO(sbi)); fixed = 1; } } else if (le32_to_cpu(dentry->ino) != child->pp_ino) { ASSERT_MSG("Bad inode number[0x%x] for '..', parent parent ino is [0x%x]\n", le32_to_cpu(dentry->ino), child->pp_ino); dentry->ino = cpu_to_le32(child->pp_ino); fixed = 1; } } if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry, name, len, enc_name)) fixed = 1; if (name[len] != '\0') { ASSERT_MSG("'.' is not NULL terminated\n"); name[len] = '\0'; memcpy(*filename, name, len); fixed = 1; } return fixed; } static void nullify_dentry(struct f2fs_dir_entry *dentry, int offs, __u8 (*filename)[F2FS_SLOT_LEN], u8 **bitmap) { memset(dentry, 0, sizeof(struct f2fs_dir_entry)); test_and_clear_bit_le(offs, *bitmap); memset(*filename, 0, F2FS_SLOT_LEN); } static int __chk_dentries(struct f2fs_sb_info *sbi, int casefolded, struct child_info *child, u8 *bitmap, struct f2fs_dir_entry *dentry, __u8 (*filenames)[F2FS_SLOT_LEN], int max, int last_blk, int enc_name) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); enum FILE_TYPE ftype; int dentries = 0; u32 blk_cnt; struct f2fs_compr_blk_cnt cbc; u8 *name; char en[F2FS_PRINT_NAMELEN]; u16 name_len; int ret = 0; int fixed = 0; int i, slots; /* readahead inode blocks */ for (i = 0; i < max; i++) { u32 ino; if (test_bit_le(i, bitmap) == 0) continue; ino = le32_to_cpu(dentry[i].ino); if (IS_VALID_NID(sbi, ino)) { struct node_info ni; get_node_info(sbi, ino, &ni); if (IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) { dev_reada_block(ni.blk_addr); name_len = le16_to_cpu(dentry[i].name_len); if (name_len > 0) i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN - 1; } } } for (i = 0; i < max;) { if (test_bit_le(i, bitmap) == 0) { i++; continue; } if (!IS_VALID_NID(sbi, le32_to_cpu(dentry[i].ino))) { ASSERT_MSG("Bad dentry 0x%x with invalid NID/ino 0x%x", i, le32_to_cpu(dentry[i].ino)); if (c.fix_on) { FIX_MSG("Clear bad dentry 0x%x with bad ino 0x%x", i, le32_to_cpu(dentry[i].ino)); test_and_clear_bit_le(i, bitmap); fixed = 1; } i++; continue; } ftype = dentry[i].file_type; if ((ftype <= F2FS_FT_UNKNOWN || ftype > F2FS_FT_LAST_FILE_TYPE)) { ASSERT_MSG("Bad dentry 0x%x with unexpected ftype 0x%x", le32_to_cpu(dentry[i].ino), ftype); if (c.fix_on) { FIX_MSG("Clear bad dentry 0x%x with bad ftype 0x%x", i, ftype); test_and_clear_bit_le(i, bitmap); fixed = 1; } i++; continue; } name_len = le16_to_cpu(dentry[i].name_len); if (name_len == 0 || name_len > F2FS_NAME_LEN) { ASSERT_MSG("Bad dentry 0x%x with invalid name_len", i); if (c.fix_on) { FIX_MSG("Clear bad dentry 0x%x", i); test_and_clear_bit_le(i, bitmap); fixed = 1; } i++; continue; } name = calloc(name_len + 1, 1); ASSERT(name); memcpy(name, filenames[i], name_len); slots = (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN; /* Becareful. 'dentry.file_type' is not imode. */ if (ftype == F2FS_FT_DIR) { if ((name[0] == '.' && name_len == 1) || (name[0] == '.' && name[1] == '.' && name_len == 2)) { ret = __chk_dots_dentries(sbi, casefolded, &dentry[i], child, name, name_len, &filenames[i], enc_name); switch (ret) { case 1: fixed = 1; fallthrough; case 0: child->dots++; break; } if (child->dots > 2) { ASSERT_MSG("More than one '.' or '..', should delete the extra one\n"); nullify_dentry(&dentry[i], i, &filenames[i], &bitmap); child->dots--; fixed = 1; } i++; free(name); continue; } } if (f2fs_check_hash_code(get_encoding(sbi), casefolded, dentry + i, name, name_len, enc_name)) fixed = 1; pretty_print_filename(name, name_len, en, enc_name); if (max == NR_DENTRY_IN_BLOCK) { ret = f2fs_check_dirent_position(dentry + i, en, child->pgofs, child->dir_level, child->p_ino); if (ret) { if (c.fix_on) { FIX_MSG("Clear bad dentry 0x%x", i); test_and_clear_bit_le(i, bitmap); fixed = 1; } i++; free(name); continue; } } DBG(1, "[%3u]-[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n", fsck->dentry_depth, i, en, name_len, le32_to_cpu(dentry[i].ino), dentry[i].file_type); print_dentry(sbi, name, bitmap, dentry, max, i, last_blk, enc_name); blk_cnt = 1; cbc.cnt = 0; cbc.cheader_pgofs = CHEADER_PGOFS_NONE; child->i_namelen = name_len; ret = fsck_chk_node_blk(sbi, NULL, le32_to_cpu(dentry[i].ino), ftype, TYPE_INODE, &blk_cnt, &cbc, child); if (ret && c.fix_on) { int j; for (j = 0; j < slots; j++) test_and_clear_bit_le(i + j, bitmap); FIX_MSG("Unlink [0x%x] - %s len[0x%x], type[0x%x]", le32_to_cpu(dentry[i].ino), en, name_len, dentry[i].file_type); fixed = 1; } else if (ret == 0) { if (ftype == F2FS_FT_DIR) child->links++; dentries++; child->files++; } i += slots; free(name); } return fixed ? -1 : dentries; } int fsck_chk_inline_dentries(struct f2fs_sb_info *sbi, struct f2fs_node *node_blk, struct child_info *child) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_dentry *cur_dentry = fsck->dentry_end; struct f2fs_dentry *new_dentry; struct f2fs_dentry_ptr d; void *inline_dentry; int dentries; inline_dentry = inline_data_addr(node_blk); ASSERT(inline_dentry != NULL); make_dentry_ptr(&d, node_blk, inline_dentry, 2); fsck->dentry_depth++; new_dentry = calloc(sizeof(struct f2fs_dentry), 1); ASSERT(new_dentry != NULL); new_dentry->depth = fsck->dentry_depth; memcpy(new_dentry->name, child->p_name, F2FS_NAME_LEN); cur_dentry->next = new_dentry; fsck->dentry_end = new_dentry; dentries = __chk_dentries(sbi, IS_CASEFOLDED(&node_blk->i), child, d.bitmap, d.dentry, d.filename, d.max, 1, file_is_encrypt(&node_blk->i));// pass through if (dentries < 0) { DBG(1, "[%3d] Inline Dentry Block Fixed hash_codes\n\n", fsck->dentry_depth); } else { DBG(1, "[%3d] Inline Dentry Block Done : " "dentries:%d in %d slots (len:%d)\n\n", fsck->dentry_depth, dentries, d.max, F2FS_NAME_LEN); } fsck->dentry = cur_dentry; fsck->dentry_end = cur_dentry; cur_dentry->next = NULL; free(new_dentry); fsck->dentry_depth--; return dentries; } int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi, int casefolded, u32 blk_addr, struct child_info *child, int last_blk, int enc_name) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_dentry_block *de_blk; struct f2fs_dentry *cur_dentry = fsck->dentry_end; struct f2fs_dentry *new_dentry; int dentries, ret; de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1); ASSERT(de_blk != NULL); ret = dev_read_block(de_blk, blk_addr); ASSERT(ret >= 0); fsck->dentry_depth++; new_dentry = calloc(sizeof(struct f2fs_dentry), 1); ASSERT(new_dentry != NULL); new_dentry->depth = fsck->dentry_depth; memcpy(new_dentry->name, child->p_name, F2FS_NAME_LEN); cur_dentry->next = new_dentry; fsck->dentry_end = new_dentry; dentries = __chk_dentries(sbi, casefolded, child, de_blk->dentry_bitmap, de_blk->dentry, de_blk->filename, NR_DENTRY_IN_BLOCK, last_blk, enc_name); if (dentries < 0 && f2fs_dev_is_writable()) { ret = dev_write_block(de_blk, blk_addr); ASSERT(ret >= 0); DBG(1, "[%3d] Dentry Block [0x%x] Fixed hash_codes\n\n", fsck->dentry_depth, blk_addr); } else { DBG(1, "[%3d] Dentry Block [0x%x] Done : " "dentries:%d in %d slots (len:%d)\n\n", fsck->dentry_depth, blk_addr, dentries, NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN); } fsck->dentry = cur_dentry; fsck->dentry_end = cur_dentry; cur_dentry->next = NULL; free(new_dentry); fsck->dentry_depth--; free(de_blk); return 0; } int fsck_chk_data_blk(struct f2fs_sb_info *sbi, int casefolded, u32 blk_addr, struct child_info *child, int last_blk, enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver, int enc_name) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); /* Is it reserved block? */ if (blk_addr == NEW_ADDR) { fsck->chk.valid_blk_cnt++; return 0; } if (!IS_VALID_BLK_ADDR(sbi, blk_addr)) { ASSERT_MSG("blkaddress is not valid. [0x%x]", blk_addr); return -EINVAL; } if (is_valid_ssa_data_blk(sbi, blk_addr, parent_nid, idx_in_node, ver)) { ASSERT_MSG("summary data block is not valid. [0x%x]", parent_nid); return -EINVAL; } if (f2fs_test_sit_bitmap(sbi, blk_addr) == 0) ASSERT_MSG("SIT bitmap is 0x0. blk_addr[0x%x]", blk_addr); if (f2fs_test_main_bitmap(sbi, blk_addr) != 0) ASSERT_MSG("Duplicated data [0x%x]. pnid[0x%x] idx[0x%x]", blk_addr, parent_nid, idx_in_node); fsck->chk.valid_blk_cnt++; if (ftype == F2FS_FT_DIR) { f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_HOT_DATA); return fsck_chk_dentry_blk(sbi, casefolded, blk_addr, child, last_blk, enc_name); } else { f2fs_set_main_bitmap(sbi, blk_addr, CURSEG_WARM_DATA); } return 0; } int fsck_chk_orphan_node(struct f2fs_sb_info *sbi) { u32 blk_cnt = 0; struct f2fs_compr_blk_cnt cbc = {0, CHEADER_PGOFS_NONE}; block_t start_blk, orphan_blkaddr, i, j; struct f2fs_orphan_block *orphan_blk, *new_blk; struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); u32 entry_count; if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) return 0; start_blk = __start_cp_addr(sbi) + 1 + get_sb(cp_payload); orphan_blkaddr = __start_sum_addr(sbi) - 1 - get_sb(cp_payload); f2fs_ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); orphan_blk = calloc(BLOCK_SZ, 1); ASSERT(orphan_blk); new_blk = calloc(BLOCK_SZ, 1); ASSERT(new_blk); for (i = 0; i < orphan_blkaddr; i++) { int ret = dev_read_block(orphan_blk, start_blk + i); u32 new_entry_count = 0; ASSERT(ret >= 0); entry_count = le32_to_cpu(orphan_blk->entry_count); for (j = 0; j < entry_count; j++) { nid_t ino = le32_to_cpu(orphan_blk->ino[j]); DBG(1, "[%3d] ino [0x%x]\n", i, ino); struct node_info ni; blk_cnt = 1; cbc.cnt = 0; cbc.cheader_pgofs = CHEADER_PGOFS_NONE; if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) { get_node_info(sbi, ino, &ni); if (!IS_VALID_NID(sbi, ino) || !IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) { free(orphan_blk); free(new_blk); return -EINVAL; } continue; } ret = fsck_chk_node_blk(sbi, NULL, ino, F2FS_FT_ORPHAN, TYPE_INODE, &blk_cnt, &cbc, NULL); if (!ret) new_blk->ino[new_entry_count++] = orphan_blk->ino[j]; else if (ret && c.fix_on) FIX_MSG("[0x%x] remove from orphan list", ino); else if (ret) ASSERT_MSG("[0x%x] wrong orphan inode", ino); } if (f2fs_dev_is_writable() && c.fix_on && entry_count != new_entry_count) { new_blk->entry_count = cpu_to_le32(new_entry_count); ret = dev_write_block(new_blk, start_blk + i); ASSERT(ret >= 0); } memset(orphan_blk, 0, BLOCK_SZ); memset(new_blk, 0, BLOCK_SZ); } free(orphan_blk); free(new_blk); return 0; } int fsck_chk_quota_node(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); enum quota_type qtype; int ret = 0; u32 blk_cnt = 0; struct f2fs_compr_blk_cnt cbc = {0, CHEADER_PGOFS_NONE}; for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { cur_qtype = qtype; if (sb->qf_ino[qtype] == 0) continue; nid_t ino = QUOTA_INO(sb, qtype); struct node_info ni; DBG(1, "qtype [%d] ino [0x%x]\n", qtype, ino); blk_cnt = 1; cbc.cnt = 0; cbc.cheader_pgofs = CHEADER_PGOFS_NONE; if (c.preen_mode == PREEN_MODE_1 && !c.fix_on) { get_node_info(sbi, ino, &ni); if (!IS_VALID_NID(sbi, ino) || !IS_VALID_BLK_ADDR(sbi, ni.blk_addr)) return -EINVAL; continue; } ret = fsck_chk_node_blk(sbi, NULL, ino, F2FS_FT_REG_FILE, TYPE_INODE, &blk_cnt, &cbc, NULL); if (ret) { ASSERT_MSG("wrong quota inode, qtype [%d] ino [0x%x]", qtype, ino); qf_szchk_type[qtype] = QF_SZCHK_ERR; if (c.fix_on) f2fs_rebuild_qf_inode(sbi, qtype); } } cur_qtype = -1; return ret; } int fsck_chk_quota_files(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); enum quota_type qtype; f2fs_ino_t ino; int ret = 0; int needs_writeout; /* Return if quota feature is disabled */ if (!fsck->qctx) return 0; for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { ino = sb->qf_ino[qtype]; if (!ino) continue; DBG(1, "Checking Quota file ([%3d] ino [0x%x])\n", qtype, ino); needs_writeout = 0; ret = quota_compare_and_update(sbi, qtype, &needs_writeout, c.preserve_limits); if (ret == 0 && needs_writeout == 0) { DBG(1, "OK\n"); continue; } /* Something is wrong */ if (c.fix_on) { DBG(0, "Fixing Quota file ([%3d] ino [0x%x])\n", qtype, ino); f2fs_filesize_update(sbi, ino, 0); ret = quota_write_inode(sbi, qtype); if (!ret) { c.quota_fixed = true; DBG(1, "OK\n"); } else { ASSERT_MSG("Unable to write quota file"); } } else { ASSERT_MSG("Quota file is missing or invalid" " quota file content found."); } } return ret; } int fsck_chk_meta(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct seg_entry *se; unsigned int sit_valid_segs = 0, sit_node_blks = 0; unsigned int i; /* 1. check sit usage with CP: curseg is lost? */ for (i = 0; i < MAIN_SEGS(sbi); i++) { se = get_seg_entry(sbi, i); if (se->valid_blocks != 0) sit_valid_segs++; else if (IS_CUR_SEGNO(sbi, i)) { /* curseg has not been written back to device */ MSG(1, "\tInfo: curseg %u is counted in valid segs\n", i); sit_valid_segs++; } if (IS_NODESEG(se->type)) sit_node_blks += se->valid_blocks; } if (fsck->chk.sit_free_segs + sit_valid_segs != get_usable_seg_count(sbi)) { ASSERT_MSG("SIT usage does not match: sit_free_segs %u, " "sit_valid_segs %u, total_segs %u", fsck->chk.sit_free_segs, sit_valid_segs, get_usable_seg_count(sbi)); return -EINVAL; } /* 2. check node count */ if (fsck->chk.valid_nat_entry_cnt != sit_node_blks) { ASSERT_MSG("node count does not match: valid_nat_entry_cnt %u," " sit_node_blks %u", fsck->chk.valid_nat_entry_cnt, sit_node_blks); return -EINVAL; } /* 3. check SIT with CP */ if (fsck->chk.sit_free_segs != le32_to_cpu(cp->free_segment_count)) { ASSERT_MSG("free segs does not match: sit_free_segs %u, " "free_segment_count %u", fsck->chk.sit_free_segs, le32_to_cpu(cp->free_segment_count)); return -EINVAL; } /* 4. check NAT with CP */ if (fsck->chk.valid_nat_entry_cnt != le32_to_cpu(cp->valid_node_count)) { ASSERT_MSG("valid node does not match: valid_nat_entry_cnt %u," " valid_node_count %u", fsck->chk.valid_nat_entry_cnt, le32_to_cpu(cp->valid_node_count)); return -EINVAL; } /* 4. check orphan inode simply */ if (fsck_chk_orphan_node(sbi)) return -EINVAL; /* 5. check nat entry -- must be done before quota check */ for (i = 0; i < fsck->nr_nat_entries; i++) { u32 blk = le32_to_cpu(fsck->entries[i].block_addr); nid_t ino = le32_to_cpu(fsck->entries[i].ino); if (!blk) /* * skip entry whose ino is 0, otherwise, we will * get a negative number by BLKOFF_FROM_MAIN(sbi, blk) */ continue; if (!IS_VALID_BLK_ADDR(sbi, blk)) { MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]" " is in valid\n", ino, blk); return -EINVAL; } if (!f2fs_test_sit_bitmap(sbi, blk)) { MSG(0, "\tError: nat entry[ino %u block_addr 0x%x]" " not find it in sit_area_bitmap\n", ino, blk); return -EINVAL; } if (!IS_VALID_NID(sbi, ino)) { MSG(0, "\tError: nat_entry->ino %u exceeds the range" " of nat entries %u\n", ino, fsck->nr_nat_entries); return -EINVAL; } if (!f2fs_test_bit(ino, fsck->nat_area_bitmap)) { MSG(0, "\tError: nat_entry->ino %u is not set in" " nat_area_bitmap\n", ino); return -EINVAL; } } /* 6. check quota inode simply */ if (fsck_chk_quota_node(sbi)) return -EINVAL; if (fsck->nat_valid_inode_cnt != le32_to_cpu(cp->valid_inode_count)) { ASSERT_MSG("valid inode does not match: nat_valid_inode_cnt %u," " valid_inode_count %u", fsck->nat_valid_inode_cnt, le32_to_cpu(cp->valid_inode_count)); return -EINVAL; } return 0; } void fsck_chk_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); if (get_cp(ckpt_flags) & CP_LARGE_NAT_BITMAP_FLAG) { if (get_cp(checksum_offset) != CP_MIN_CHKSUM_OFFSET) { ASSERT_MSG("Deprecated layout of large_nat_bitmap, " "chksum_offset:%u", get_cp(checksum_offset)); c.fix_chksum = 1; } } } void fsck_init(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); /* * We build three bitmap for main/sit/nat so that may check consistency * of filesystem. * 1. main_area_bitmap will be used to check whether all blocks of main * area is used or not. * 2. nat_area_bitmap has bitmap information of used nid in NAT. * 3. sit_area_bitmap has bitmap information of used main block. * At Last sequence, we compare main_area_bitmap with sit_area_bitmap. */ fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg; fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8; fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1); ASSERT(fsck->main_area_bitmap != NULL); build_nat_area_bitmap(sbi); build_sit_area_bitmap(sbi); ASSERT(tree_mark_size != 0); tree_mark = calloc(tree_mark_size, 1); ASSERT(tree_mark != NULL); fsck->dentry = calloc(sizeof(struct f2fs_dentry), 1); ASSERT(fsck->dentry != NULL); memcpy(fsck->dentry->name, "/", 1); fsck->dentry_end = fsck->dentry; c.quota_fixed = false; } static void fix_hard_links(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *tmp, *node; struct f2fs_node *node_blk = NULL; struct node_info ni; int ret; if (fsck->hard_link_list_head == NULL) return; node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); node = fsck->hard_link_list_head; while (node) { /* Sanity check */ if (sanity_check_nid(sbi, node->nid, node_blk, F2FS_FT_MAX, TYPE_INODE, &ni)) FIX_MSG("Failed to fix, rerun fsck.f2fs"); node_blk->i.i_links = cpu_to_le32(node->actual_links); FIX_MSG("File: 0x%x i_links= 0x%x -> 0x%x", node->nid, node->links, node->actual_links); ret = dev_write_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); tmp = node; node = node->next; free(tmp); } free(node_blk); } static void fix_nat_entries(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); u32 i; for (i = 0; i < fsck->nr_nat_entries; i++) if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) nullify_nat_entry(sbi, i); } static void flush_curseg_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sit_block *sit_blk; int i; sit_blk = calloc(BLOCK_SZ, 1); ASSERT(sit_blk); /* update curseg sit entries, since we may change * a segment type in move_curseg_info */ for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); struct f2fs_sit_entry *sit; struct seg_entry *se; se = get_seg_entry(sbi, curseg->segno); get_current_sit_page(sbi, curseg->segno, sit_blk); sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, curseg->segno)]; sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks); rewrite_current_sit_page(sbi, curseg->segno, sit_blk); } free(sit_blk); } static void fix_checksum(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); struct sit_info *sit_i = SIT_I(sbi); void *bitmap_offset; if (!c.fix_chksum) return; bitmap_offset = cp->sit_nat_version_bitmap + sizeof(__le32); memcpy(bitmap_offset, nm_i->nat_bitmap, nm_i->bitmap_size); memcpy(bitmap_offset + nm_i->bitmap_size, sit_i->sit_bitmap, sit_i->bitmap_size); } static void fix_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); unsigned long long cp_blk_no; u32 flags = c.alloc_failed ? CP_FSCK_FLAG: CP_UMOUNT_FLAG; block_t orphan_blks = 0; block_t cp_blocks; u32 i; int ret; uint32_t crc = 0; /* should call from fsck */ ASSERT(c.func == FSCK); if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) { orphan_blks = __start_sum_addr(sbi) - 1; flags |= CP_ORPHAN_PRESENT_FLAG; } if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG)) flags |= CP_TRIMMED_FLAG; if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG)) flags |= CP_DISABLED_FLAG; if (is_set_ckpt_flags(cp, CP_LARGE_NAT_BITMAP_FLAG)) { flags |= CP_LARGE_NAT_BITMAP_FLAG; set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET); } else { set_cp(checksum_offset, CP_CHKSUM_OFFSET); } if (flags & CP_UMOUNT_FLAG) cp_blocks = 8; else cp_blocks = 5; set_cp(cp_pack_total_block_count, cp_blocks + orphan_blks + get_sb(cp_payload)); flags = update_nat_bits_flags(sb, cp, flags); flags |= CP_NOCRC_RECOVERY_FLAG; set_cp(ckpt_flags, flags); set_cp(free_segment_count, get_free_segments(sbi)); set_cp(valid_block_count, fsck->chk.valid_blk_cnt); set_cp(valid_node_count, fsck->chk.valid_node_cnt); set_cp(valid_inode_count, fsck->chk.valid_inode_cnt); crc = f2fs_checkpoint_chksum(cp); *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) = cpu_to_le32(crc); cp_blk_no = get_sb(cp_blkaddr); if (sbi->cur_cp == 2) cp_blk_no += 1 << get_sb(log_blocks_per_seg); ret = dev_write_block(cp, cp_blk_no++); ASSERT(ret >= 0); for (i = 0; i < get_sb(cp_payload); i++) { ret = dev_write_block(((unsigned char *)cp) + (i + 1) * F2FS_BLKSIZE, cp_blk_no++); ASSERT(ret >= 0); } cp_blk_no += orphan_blks; for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (!(flags & CP_UMOUNT_FLAG) && IS_NODESEG(i)) continue; ret = dev_write_block(curseg->sum_blk, cp_blk_no++); ASSERT(ret >= 0); } /* Write nat bits */ if (flags & CP_NAT_BITS_FLAG) write_nat_bits(sbi, sb, cp, sbi->cur_cp); ret = f2fs_fsync_device(); ASSERT(ret >= 0); ret = dev_write_block(cp, cp_blk_no++); ASSERT(ret >= 0); ret = f2fs_fsync_device(); ASSERT(ret >= 0); } static void fix_checkpoints(struct f2fs_sb_info *sbi) { /* copy valid checkpoint to its mirror position */ duplicate_checkpoint(sbi); /* repair checkpoint at CP #0 position */ sbi->cur_cp = 1; fix_checkpoint(sbi); } #ifdef HAVE_LINUX_BLKZONED_H /* * Refer valid block map and return offset of the last valid block in the zone. * Obtain valid block map from SIT and fsync data. * If there is no valid block in the zone, return -1. */ static int last_vblk_off_in_zone(struct f2fs_sb_info *sbi, unsigned int zone_segno) { int s, b; unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone; struct seg_entry *se; for (s = segs_per_zone - 1; s >= 0; s--) { se = get_seg_entry(sbi, zone_segno + s); /* * Refer not cur_valid_map but ckpt_valid_map which reflects * fsync data. */ ASSERT(se->ckpt_valid_map); for (b = sbi->blocks_per_seg - 1; b >= 0; b--) if (f2fs_test_bit(b, (const char*)se->ckpt_valid_map)) return b + (s << sbi->log_blocks_per_seg); } return -1; } static int check_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct blk_zone blkz; block_t cs_block, wp_block, zone_last_vblock; uint64_t cs_sector, wp_sector; int i, ret; unsigned int zone_segno; int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; /* get the device the curseg points to */ cs_block = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; for (i = 0; i < MAX_DEVICES; i++) { if (!c.devices[i].path) break; if (c.devices[i].start_blkaddr <= cs_block && cs_block <= c.devices[i].end_blkaddr) break; } if (i >= MAX_DEVICES) return -EINVAL; if (c.devices[i].zoned_model != F2FS_ZONED_HM) return 0; /* get write pointer position of the zone the curseg points to */ cs_sector = (cs_block - c.devices[i].start_blkaddr) << log_sectors_per_block; ret = f2fs_report_zone(i, cs_sector, &blkz); if (ret) return ret; if (blk_zone_type(&blkz) != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; /* check consistency between the curseg and the write pointer */ wp_block = c.devices[i].start_blkaddr + (blk_zone_wp_sector(&blkz) >> log_sectors_per_block); wp_sector = blk_zone_wp_sector(&blkz); if (cs_sector == wp_sector) return 0; if (cs_sector > wp_sector) { MSG(0, "Inconsistent write pointer with curseg %d: " "curseg %d[0x%x,0x%x] > wp[0x%x,0x%x]\n", type, type, curseg->segno, curseg->next_blkoff, GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block)); fsck->chk.wp_inconsistent_zones++; return -EINVAL; } MSG(0, "Write pointer goes advance from curseg %d: " "curseg %d[0x%x,0x%x] wp[0x%x,0x%x]\n", type, type, curseg->segno, curseg->next_blkoff, GET_SEGNO(sbi, wp_block), OFFSET_IN_SEG(sbi, wp_block)); zone_segno = GET_SEG_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, curseg->segno)); zone_last_vblock = START_BLOCK(sbi, zone_segno) + last_vblk_off_in_zone(sbi, zone_segno); /* * If valid blocks exist between the curseg position and the write * pointer, they are fsync data. This is not an error to fix. Leave it * for kernel to recover later. * If valid blocks exist between the curseg's zone start and the curseg * position, or if there is no valid block in the curseg's zone, fix * the inconsistency between the curseg and the writ pointer. * Of Note is that if there is no valid block in the curseg's zone, * last_vblk_off_in_zone() returns -1 and zone_last_vblock is always * smaller than cs_block. */ if (cs_block <= zone_last_vblock && zone_last_vblock < wp_block) { MSG(0, "Curseg has fsync data: curseg %d[0x%x,0x%x] " "last valid block in zone[0x%x,0x%x]\n", type, curseg->segno, curseg->next_blkoff, GET_SEGNO(sbi, zone_last_vblock), OFFSET_IN_SEG(sbi, zone_last_vblock)); return 0; } fsck->chk.wp_inconsistent_zones++; return -EINVAL; } #else static int check_curseg_write_pointer(struct f2fs_sb_info *UNUSED(sbi), int UNUSED(type)) { return 0; } #endif int check_curseg_offset(struct f2fs_sb_info *sbi, int type) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); struct seg_entry *se; int j, nblocks; if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO) && type != CURSEG_HOT_DATA && type != CURSEG_HOT_NODE) return 0; if ((curseg->next_blkoff >> 3) >= SIT_VBLOCK_MAP_SIZE) { ASSERT_MSG("Next block offset:%u is invalid, type:%d", curseg->next_blkoff, type); return -EINVAL; } se = get_seg_entry(sbi, curseg->segno); if (f2fs_test_bit(curseg->next_blkoff, (const char *)se->cur_valid_map)) { ASSERT_MSG("Next block offset is not free, type:%d", type); return -EINVAL; } if (curseg->alloc_type == SSR) return 0; nblocks = sbi->blocks_per_seg; for (j = curseg->next_blkoff + 1; j < nblocks; j++) { if (f2fs_test_bit(j, (const char *)se->cur_valid_map)) { ASSERT_MSG("For LFS curseg, space after .next_blkoff " "should be unused, type:%d", type); return -EINVAL; } } if (c.zoned_model == F2FS_ZONED_HM) return check_curseg_write_pointer(sbi, type); return 0; } int check_curseg_offsets(struct f2fs_sb_info *sbi) { int i, ret; for (i = 0; i < NO_CHECK_TYPE; i++) { ret = check_curseg_offset(sbi, i); if (ret) return ret; } return 0; } static void fix_curseg_info(struct f2fs_sb_info *sbi) { int i, need_update = 0; for (i = 0; i < NO_CHECK_TYPE; i++) { if (check_curseg_offset(sbi, i)) { update_curseg_info(sbi, i); need_update = 1; } } if (need_update) { write_curseg_info(sbi); flush_curseg_sit_entries(sbi); } } int check_sit_types(struct f2fs_sb_info *sbi) { unsigned int i; int err = 0; for (i = 0; i < MAIN_SEGS(sbi); i++) { struct seg_entry *se; se = get_seg_entry(sbi, i); if (se->orig_type != se->type) { if (se->orig_type == CURSEG_COLD_DATA && se->type <= CURSEG_COLD_DATA) { se->type = se->orig_type; } else { FIX_MSG("Wrong segment type [0x%x] %x -> %x", i, se->orig_type, se->type); err = -EINVAL; } } } return err; } static struct f2fs_node *fsck_get_lpf(struct f2fs_sb_info *sbi) { struct f2fs_node *node; struct node_info ni; nid_t lpf_ino; int err; /* read root inode first */ node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); get_node_info(sbi, F2FS_ROOT_INO(sbi), &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); /* lookup lost+found in root directory */ lpf_ino = f2fs_lookup(sbi, node, (u8 *)LPF, strlen(LPF)); if (lpf_ino) { /* found */ get_node_info(sbi, lpf_ino, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); DBG(1, "Found lost+found 0x%x at blkaddr [0x%x]\n", lpf_ino, ni.blk_addr); if (!S_ISDIR(le16_to_cpu(node->i.i_mode))) { ASSERT_MSG("lost+found is not directory [0%o]\n", le16_to_cpu(node->i.i_mode)); /* FIXME: give up? */ goto out; } } else { /* not found, create it */ struct dentry de; memset(&de, 0, sizeof(de)); de.name = (u8 *) LPF; de.len = strlen(LPF); de.mode = 0x41c0; de.pino = F2FS_ROOT_INO(sbi), de.file_type = F2FS_FT_DIR, de.uid = getuid(); de.gid = getgid(); de.mtime = time(NULL); err = f2fs_mkdir(sbi, &de); if (err) { ASSERT_MSG("Failed create lost+found"); goto out; } get_node_info(sbi, de.ino, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); DBG(1, "Create lost+found 0x%x at blkaddr [0x%x]\n", de.ino, ni.blk_addr); } c.lpf_ino = le32_to_cpu(node->footer.ino); return node; out: free(node); return NULL; } static int fsck_do_reconnect_file(struct f2fs_sb_info *sbi, struct f2fs_node *lpf, struct f2fs_node *fnode) { char name[80]; size_t namelen; nid_t ino = le32_to_cpu(fnode->footer.ino); struct node_info ni; int ftype, ret; namelen = snprintf(name, 80, "%u", ino); if (namelen >= 80) /* ignore terminating '\0', should never happen */ namelen = 79; if (f2fs_lookup(sbi, lpf, (u8 *)name, namelen)) { ASSERT_MSG("Name %s already exist in lost+found", name); return -EEXIST; } get_node_info(sbi, le32_to_cpu(lpf->footer.ino), &ni); ftype = map_de_type(le16_to_cpu(fnode->i.i_mode)); ret = f2fs_add_link(sbi, lpf, (unsigned char *)name, namelen, ino, ftype, ni.blk_addr, 0); if (ret) { ASSERT_MSG("Failed to add inode [0x%x] to lost+found", ino); return -EINVAL; } /* update fnode */ memcpy(fnode->i.i_name, name, namelen); fnode->i.i_namelen = cpu_to_le32(namelen); fnode->i.i_pino = c.lpf_ino; get_node_info(sbi, le32_to_cpu(fnode->footer.ino), &ni); ret = dev_write_block(fnode, ni.blk_addr); ASSERT(ret >= 0); DBG(1, "Reconnect inode [0x%x] to lost+found\n", ino); return 0; } static void fsck_failed_reconnect_file_dnode(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_node *node; struct node_info ni; u32 addr; int i, err; node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); get_node_info(sbi, nid, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); fsck->chk.valid_node_cnt--; fsck->chk.valid_blk_cnt--; f2fs_clear_main_bitmap(sbi, ni.blk_addr); for (i = 0; i < ADDRS_PER_BLOCK(&node->i); i++) { addr = le32_to_cpu(node->dn.addr[i]); if (!addr) continue; fsck->chk.valid_blk_cnt--; if (addr == NEW_ADDR) continue; f2fs_clear_main_bitmap(sbi, addr); } free(node); } static void fsck_failed_reconnect_file_idnode(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_node *node; struct node_info ni; nid_t tmp; int i, err; node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); get_node_info(sbi, nid, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); fsck->chk.valid_node_cnt--; fsck->chk.valid_blk_cnt--; f2fs_clear_main_bitmap(sbi, ni.blk_addr); for (i = 0; i < NIDS_PER_BLOCK; i++) { tmp = le32_to_cpu(node->in.nid[i]); if (!tmp) continue; fsck_failed_reconnect_file_dnode(sbi, tmp); } free(node); } static void fsck_failed_reconnect_file_didnode(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_node *node; struct node_info ni; nid_t tmp; int i, err; node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); get_node_info(sbi, nid, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); fsck->chk.valid_node_cnt--; fsck->chk.valid_blk_cnt--; f2fs_clear_main_bitmap(sbi, ni.blk_addr); for (i = 0; i < NIDS_PER_BLOCK; i++) { tmp = le32_to_cpu(node->in.nid[i]); if (!tmp) continue; fsck_failed_reconnect_file_idnode(sbi, tmp); } free(node); } /* * Counters and main_area_bitmap are already changed during checking * inode block, so clear them. There is no need to clear new blocks * allocted to lost+found. */ static void fsck_failed_reconnect_file(struct f2fs_sb_info *sbi, nid_t ino) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_node *node; struct node_info ni; nid_t nid; int ofs, i, err; node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); get_node_info(sbi, ino, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); /* clear inode counters */ fsck->chk.valid_inode_cnt--; fsck->chk.valid_node_cnt--; fsck->chk.valid_blk_cnt--; f2fs_clear_main_bitmap(sbi, ni.blk_addr); /* clear xnid counters */ if (node->i.i_xattr_nid) { nid = le32_to_cpu(node->i.i_xattr_nid); fsck->chk.valid_node_cnt--; fsck->chk.valid_blk_cnt--; get_node_info(sbi, nid, &ni); f2fs_clear_main_bitmap(sbi, ni.blk_addr); } /* clear data counters */ if(!(node->i.i_inline & F2FS_INLINE_DATA)) { ofs = get_extra_isize(node); for (i = 0; i < ADDRS_PER_INODE(&node->i); i++) { block_t addr = le32_to_cpu(node->i.i_addr[ofs + i]); if (!addr) continue; fsck->chk.valid_blk_cnt--; if (addr == NEW_ADDR) continue; f2fs_clear_main_bitmap(sbi, addr); } } for (i = 0; i < 5; i++) { nid = le32_to_cpu(node->i.i_nid[i]); if (!nid) continue; switch (i) { case 0: /* direct node */ case 1: fsck_failed_reconnect_file_dnode(sbi, nid); break; case 2: /* indirect node */ case 3: fsck_failed_reconnect_file_idnode(sbi, nid); break; case 4: /* double indirect node */ fsck_failed_reconnect_file_didnode(sbi, nid); break; } } free(node); } /* * Scan unreachable nids and find only regular file inodes. If these files * are not corrupted, reconnect them to lost+found. * * Since all unreachable nodes are already checked, we can allocate new * blocks safely. * * This function returns the number of files been reconnected. */ static int fsck_reconnect_file(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_node *lpf_node, *node; struct node_info ni; char *reconnect_bitmap; u32 blk_cnt; struct f2fs_compr_blk_cnt cbc; nid_t nid; int err, cnt = 0, ftype; node = calloc(F2FS_BLKSIZE, 1); ASSERT(node); reconnect_bitmap = calloc(fsck->nat_area_bitmap_sz, 1); ASSERT(reconnect_bitmap); for (nid = 0; nid < fsck->nr_nat_entries; nid++) { if (f2fs_test_bit(nid, fsck->nat_area_bitmap)) { if (is_qf_ino(F2FS_RAW_SUPER(sbi), nid)) { DBG(1, "Not support quota inode [0x%x]\n", nid); continue; } get_node_info(sbi, nid, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); /* reconnection will restore these nodes if needed */ if (node->footer.ino != node->footer.nid) { DBG(1, "Not support non-inode node [0x%x]\n", nid); continue; } if (S_ISDIR(le16_to_cpu(node->i.i_mode))) { DBG(1, "Not support directory inode [0x%x]\n", nid); continue; } ftype = map_de_type(le16_to_cpu(node->i.i_mode)); if (sanity_check_nid(sbi, nid, node, ftype, TYPE_INODE, &ni)) { ASSERT_MSG("Invalid nid [0x%x]\n", nid); continue; } DBG(1, "Check inode 0x%x\n", nid); blk_cnt = 1; cbc.cnt = 0; cbc.cheader_pgofs = CHEADER_PGOFS_NONE; fsck_chk_inode_blk(sbi, nid, ftype, node, &blk_cnt, &cbc, &ni, NULL); f2fs_set_bit(nid, reconnect_bitmap); } } lpf_node = fsck_get_lpf(sbi); if (!lpf_node) goto out; for (nid = 0; nid < fsck->nr_nat_entries; nid++) { if (f2fs_test_bit(nid, reconnect_bitmap)) { get_node_info(sbi, nid, &ni); err = dev_read_block(node, ni.blk_addr); ASSERT(err >= 0); if (fsck_do_reconnect_file(sbi, lpf_node, node)) { DBG(1, "Failed to reconnect inode [0x%x]\n", nid); fsck_failed_reconnect_file(sbi, nid); continue; } quota_add_inode_usage(fsck->qctx, nid, &node->i); DBG(1, "Reconnected inode [0x%x] to lost+found\n", nid); cnt++; } } out: free(node); free(lpf_node); free(reconnect_bitmap); return cnt; } #ifdef HAVE_LINUX_BLKZONED_H struct write_pointer_check_data { struct f2fs_sb_info *sbi; int dev_index; }; static int chk_and_fix_wp_with_sit(int UNUSED(i), void *blkzone, void *opaque) { struct blk_zone *blkz = (struct blk_zone *)blkzone; struct write_pointer_check_data *wpd = opaque; struct f2fs_sb_info *sbi = wpd->sbi; struct device_info *dev = c.devices + wpd->dev_index; struct f2fs_fsck *fsck = F2FS_FSCK(sbi); block_t zone_block, wp_block, wp_blkoff; unsigned int zone_segno, wp_segno; struct curseg_info *cs; int cs_index, ret, last_valid_blkoff; int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; unsigned int segs_per_zone = sbi->segs_per_sec * sbi->secs_per_zone; if (blk_zone_conv(blkz)) return 0; zone_block = dev->start_blkaddr + (blk_zone_sector(blkz) >> log_sectors_per_block); zone_segno = GET_SEGNO(sbi, zone_block); if (zone_segno >= MAIN_SEGS(sbi)) return 0; wp_block = dev->start_blkaddr + (blk_zone_wp_sector(blkz) >> log_sectors_per_block); wp_segno = GET_SEGNO(sbi, wp_block); wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); /* if a curseg points to the zone, skip the check */ for (cs_index = 0; cs_index < NO_CHECK_TYPE; cs_index++) { cs = &SM_I(sbi)->curseg_array[cs_index]; if (zone_segno <= cs->segno && cs->segno < zone_segno + segs_per_zone) return 0; } last_valid_blkoff = last_vblk_off_in_zone(sbi, zone_segno); /* * When there is no valid block in the zone, check write pointer is * at zone start. If not, reset the write pointer. */ if (last_valid_blkoff < 0 && blk_zone_wp_sector(blkz) != blk_zone_sector(blkz)) { if (!c.fix_on) { MSG(0, "Inconsistent write pointer: wp[0x%x,0x%x]\n", wp_segno, wp_blkoff); fsck->chk.wp_inconsistent_zones++; return 0; } FIX_MSG("Reset write pointer of zone at segment 0x%x", zone_segno); ret = f2fs_reset_zone(wpd->dev_index, blkz); if (ret) { printf("[FSCK] Write pointer reset failed: %s\n", dev->path); return ret; } fsck->chk.wp_fixed = 1; return 0; } /* * If valid blocks exist in the zone beyond the write pointer, it * is a bug. No need to fix because the zone is not selected for the * write. Just report it. */ if (last_valid_blkoff + zone_block > wp_block) { MSG(0, "Unexpected invalid write pointer: wp[0x%x,0x%x]\n", wp_segno, wp_blkoff); return 0; } return 0; } static void fix_wp_sit_alignment(struct f2fs_sb_info *sbi) { unsigned int i; struct write_pointer_check_data wpd = { sbi, 0 }; if (c.zoned_model != F2FS_ZONED_HM) return; for (i = 0; i < MAX_DEVICES; i++) { if (!c.devices[i].path) break; if (c.devices[i].zoned_model != F2FS_ZONED_HM) break; wpd.dev_index = i; if (f2fs_report_zones(i, chk_and_fix_wp_with_sit, &wpd)) { printf("[FSCK] Write pointer check failed: %s\n", c.devices[i].path); return; } } } #else static void fix_wp_sit_alignment(struct f2fs_sb_info *UNUSED(sbi)) { return; } #endif /* * Check and fix consistency with write pointers at the beginning of * fsck so that following writes by fsck do not fail. */ void fsck_chk_and_fix_write_pointers(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); if (c.zoned_model != F2FS_ZONED_HM) return; if (check_curseg_offsets(sbi) && c.fix_on) { fix_curseg_info(sbi); fsck->chk.wp_fixed = 1; } fix_wp_sit_alignment(sbi); } int fsck_chk_curseg_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); struct curseg_info *curseg; struct seg_entry *se; struct f2fs_summary_block *sum_blk; int i, ret = 0; for (i = 0; i < NO_CHECK_TYPE; i++) { curseg = CURSEG_I(sbi, i); se = get_seg_entry(sbi, curseg->segno); sum_blk = curseg->sum_blk; if ((get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) && (i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)) continue; if (se->type != i) { ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] " "type(SIT) [%d]", i, curseg->segno, se->type); if (c.fix_on || c.preen_mode) se->type = i; ret = -1; } if (i <= CURSEG_COLD_DATA && IS_SUM_DATA_SEG(sum_blk->footer)) { continue; } else if (i > CURSEG_COLD_DATA && IS_SUM_NODE_SEG(sum_blk->footer)) { continue; } else { ASSERT_MSG("Incorrect curseg [%d]: segno [0x%x] " "type(SSA) [%d]", i, curseg->segno, sum_blk->footer.entry_type); if (c.fix_on || c.preen_mode) sum_blk->footer.entry_type = i <= CURSEG_COLD_DATA ? SUM_TYPE_DATA : SUM_TYPE_NODE; ret = -1; } } return ret; } int fsck_verify(struct f2fs_sb_info *sbi) { unsigned int i = 0; int ret = 0; int force = 0; u32 nr_unref_nid = 0; struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL; bool verify_failed = false; uint64_t max_blks, data_secs, node_secs, free_blks; if (c.show_file_map) return 0; printf("\n"); if (c.zoned_model == F2FS_ZONED_HM) { printf("[FSCK] Write pointers consistency "); if (fsck->chk.wp_inconsistent_zones == 0x0) { printf(" [Ok..]\n"); } else { printf(" [Fail] [0x%x]\n", fsck->chk.wp_inconsistent_zones); verify_failed = true; } if (fsck->chk.wp_fixed && c.fix_on) force = 1; } if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) { for (i = 0; i < fsck->nr_nat_entries; i++) if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) break; if (i < fsck->nr_nat_entries) { i = fsck_reconnect_file(sbi); printf("[FSCK] Reconnect %u files to lost+found\n", i); } } for (i = 0; i < fsck->nr_nat_entries; i++) { if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) { struct node_info ni; get_node_info(sbi, i, &ni); printf("NID[0x%x] is unreachable, blkaddr:0x%x\n", i, ni.blk_addr); nr_unref_nid++; } } if (fsck->hard_link_list_head != NULL) { node = fsck->hard_link_list_head; while (node) { printf("NID[0x%x] has [0x%x] more unreachable links\n", node->nid, node->links); node = node->next; } c.bug_on = 1; } data_secs = round_up(sbi->total_valid_node_count, BLKS_PER_SEC(sbi)); node_secs = round_up(sbi->total_valid_block_count - sbi->total_valid_node_count, BLKS_PER_SEC(sbi)); free_blks = (sbi->total_sections - data_secs - node_secs) * BLKS_PER_SEC(sbi); max_blks = SM_I(sbi)->main_blkaddr + (data_secs + node_secs) * BLKS_PER_SEC(sbi); printf("[FSCK] Max image size: %"PRIu64" MB, Free space: %"PRIu64" MB\n", max_blks >> 8, free_blks >> 8); printf("[FSCK] Unreachable nat entries "); if (nr_unref_nid == 0x0) { printf(" [Ok..] [0x%x]\n", nr_unref_nid); } else { printf(" [Fail] [0x%x]\n", nr_unref_nid); verify_failed = true; } printf("[FSCK] SIT valid block bitmap checking "); if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap, fsck->sit_area_bitmap_sz) == 0x0) { printf("[Ok..]\n"); } else { printf("[Fail]\n"); verify_failed = true; } printf("[FSCK] Hard link checking for regular file "); if (fsck->hard_link_list_head == NULL) { printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files); } else { printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files); verify_failed = true; } printf("[FSCK] valid_block_count matching with CP "); if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) { printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt); } else { printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt); verify_failed = true; } printf("[FSCK] valid_node_count matching with CP (de lookup) "); if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt); verify_failed = true; } printf("[FSCK] valid_node_count matching with CP (nat lookup)"); if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); verify_failed = true; } printf("[FSCK] valid_inode_count matched with CP "); if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt); verify_failed = true; } printf("[FSCK] free segment_count matched with CP "); if (le32_to_cpu(F2FS_CKPT(sbi)->free_segment_count) == fsck->chk.sit_free_segs) { printf(" [Ok..] [0x%x]\n", fsck->chk.sit_free_segs); } else { printf(" [Fail] [0x%x]\n", fsck->chk.sit_free_segs); verify_failed = true; } printf("[FSCK] next block offset is free "); if (check_curseg_offsets(sbi) == 0) { printf(" [Ok..]\n"); } else { printf(" [Fail]\n"); verify_failed = true; } printf("[FSCK] fixing SIT types\n"); if (check_sit_types(sbi) != 0) force = 1; printf("[FSCK] other corrupted bugs "); if (c.bug_on == 0) { printf(" [Ok..]\n"); } else { printf(" [Fail]\n"); ret = EXIT_ERR_CODE; } if (verify_failed) { ret = EXIT_ERR_CODE; c.bug_on = 1; } #ifndef WITH_ANDROID if (nr_unref_nid && !c.ro) { char ans[255] = {0}; int res; printf("\nDo you want to restore lost files into ./lost_found/? [Y/N] "); res = scanf("%s", ans); ASSERT(res >= 0); if (!strcasecmp(ans, "y")) { for (i = 0; i < fsck->nr_nat_entries; i++) { if (f2fs_test_bit(i, fsck->nat_area_bitmap)) dump_node(sbi, i, 1); } } } #endif /* fix global metadata */ if (force || (c.fix_on && f2fs_dev_is_writable())) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); if (force || c.bug_on || c.bug_nat_bits || c.quota_fixed) { /* flush nats to write_nit_bits below */ flush_journal_entries(sbi); fix_hard_links(sbi); fix_nat_entries(sbi); rewrite_sit_area_bitmap(sbi); fix_wp_sit_alignment(sbi); fix_curseg_info(sbi); fix_checksum(sbi); fix_checkpoints(sbi); } else if (is_set_ckpt_flags(cp, CP_FSCK_FLAG) || is_set_ckpt_flags(cp, CP_QUOTA_NEED_FSCK_FLAG)) { write_checkpoints(sbi); } if (c.abnormal_stop) memset(sb->s_stop_reason, 0, MAX_STOP_REASON); if (c.fs_errors) memset(sb->s_errors, 0, MAX_F2FS_ERRORS); if (c.abnormal_stop || c.fs_errors) update_superblock(sb, SB_MASK_ALL); /* to return FSCK_ERROR_CORRECTED */ ret = 0; } return ret; } void fsck_free(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); if (fsck->qctx) quota_release_context(&fsck->qctx); if (fsck->main_area_bitmap) free(fsck->main_area_bitmap); if (fsck->nat_area_bitmap) free(fsck->nat_area_bitmap); if (fsck->sit_area_bitmap) free(fsck->sit_area_bitmap); if (fsck->entries) free(fsck->entries); if (tree_mark) free(tree_mark); while (fsck->dentry) { struct f2fs_dentry *dentry = fsck->dentry; fsck->dentry = fsck->dentry->next; free(dentry); } }