/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_ports/mem.h" #include "aom_ports/aom_timer.h" #if CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_MISMATCH_DEBUG #include "av1/common/cfl.h" #include "av1/common/common.h" #include "av1/common/common_data.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/mv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconintra.h" #include "av1/common/reconinter.h" #include "av1/common/seg_common.h" #include "av1/common/tile_common.h" #include "av1/common/warped_motion.h" #include "av1/encoder/allintra_vis.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/global_motion_facade.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/ethread.h" #include "av1/encoder/extend.h" #include "av1/encoder/intra_mode_search_utils.h" #include "av1/encoder/ml.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/partition_strategy.h" #if !CONFIG_REALTIME_ONLY #include "av1/encoder/partition_model_weights.h" #endif #include "av1/encoder/partition_search.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/tokenize.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/var_based_part.h" #if CONFIG_TUNE_VMAF #include "av1/encoder/tune_vmaf.h" #endif /*!\cond */ // This is used as a reference when computing the source variance for the // purposes of activity masking. // Eventually this should be replaced by custom no-reference routines, // which will be faster. const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 }; static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16 }; /*!\endcond */ void av1_init_rtc_counters(MACROBLOCK *const x) { av1_init_cyclic_refresh_counters(x); x->cnt_zeromv = 0; } void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) { if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x); cpi->rc.cnt_zeromv += x->cnt_zeromv; } unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi, const MACROBLOCKD *xd, const struct buf_2d *ref, BLOCK_SIZE bsize, int plane, int use_hbd) { const int subsampling_x = xd->plane[plane].subsampling_x; const int subsampling_y = xd->plane[plane].subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, subsampling_x, subsampling_y); unsigned int var, sse; if (use_hbd) { const int bd = xd->bd; assert(bd == 8 || bd == 10 || bd == 12); const int off_index = (bd - 8) >> 1; static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8, AV1_HIGH_VAR_OFFS_10, AV1_HIGH_VAR_OFFS_12 }; var = cpi->ppi->fn_ptr[plane_bsize].vf( ref->buf, ref->stride, CONVERT_TO_BYTEPTR(high_var_offs[off_index]), 0, &sse); } else { var = cpi->ppi->fn_ptr[plane_bsize].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); } return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]); } unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi, const MACROBLOCKD *xd, const struct buf_2d *ref, BLOCK_SIZE bsize, int plane) { const int use_hbd = is_cur_buf_hbd(xd); return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd); } void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const int num_planes, BLOCK_SIZE bsize) { // Set current frame pointer. x->e_mbd.cur_buf = src; // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { const int is_uv = i > 0; setup_pred_plane( &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } } #if !CONFIG_REALTIME_ONLY /*!\brief Assigns different quantization parameters to each super * block based on its TPL weight. * * \ingroup tpl_modelling * * \param[in] cpi Top level encoder instance structure * \param[in,out] td Thread data structure * \param[in,out] x Macro block level data for this block. * \param[in] tile_info Tile infromation / identification * \param[in] mi_row Block row (in "MI_SIZE" units) index * \param[in] mi_col Block column (in "MI_SIZE" units) index * \param[out] num_planes Number of image planes (e.g. Y,U,V) * * \remark No return value but updates macroblock and thread data * related to the q / q delta to be used. */ static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, MACROBLOCK *const x, const TileInfo *const tile_info, int mi_row, int mi_col, int num_planes) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const DeltaQInfo *const delta_q_info = &cm->delta_q_info; assert(delta_q_info->delta_q_present_flag); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; // Delta-q modulation based on variance av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); const int delta_q_res = delta_q_info->delta_q_res; int current_qindex = cm->quant_params.base_qindex; if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.qp_mode == DUCKY_ENCODE_FRAME_MODE_QINDEX) { const int sb_row = mi_row >> cm->seq_params->mib_size_log2; const int sb_col = mi_col >> cm->seq_params->mib_size_log2; const int sb_cols = CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2); const int sb_index = sb_row * sb_cols + sb_col; current_qindex = cpi->ducky_encode_info.frame_info.superblock_encode_qindex[sb_index]; } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) { if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { const int block_wavelet_energy_level = av1_block_wavelet_energy_level(cpi, x, sb_size); x->sb_energy_level = block_wavelet_energy_level; current_qindex = av1_compute_q_from_energy_level_deltaq_mode( cpi, block_wavelet_energy_level); } else { const int block_var_level = av1_log_block_var(cpi, x, sb_size); x->sb_energy_level = block_var_level; current_qindex = av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); } } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE && cpi->oxcf.algo_cfg.enable_tpl_model) { // Setup deltaq based on tpl stats current_qindex = av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col); } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) { current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col); } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col); } else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) { current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col); } x->rdmult_cur_qindex = current_qindex; MACROBLOCKD *const xd = &x->e_mbd; const int adjusted_qindex = av1_adjust_q_from_delta_q_res( delta_q_res, xd->current_base_qindex, current_qindex); if (cpi->use_ducky_encode) { assert(adjusted_qindex == current_qindex); } current_qindex = adjusted_qindex; x->delta_qindex = current_qindex - cm->quant_params.base_qindex; x->rdmult_delta_qindex = x->delta_qindex; av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); xd->mi[0]->current_qindex = current_qindex; av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); // keep track of any non-zero delta-q used td->deltaq_used |= (x->delta_qindex != 0); if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { const int delta_lf_res = delta_q_info->delta_lf_res; const int lfmask = ~(delta_lf_res - 1); const int delta_lf_from_base = ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); const int8_t delta_lf = (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; const int mib_size = cm->seq_params->mib_size; // pre-set the delta lf for loop filter. Note that this value is set // before mi is assigned for each block in current superblock for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; } } } } } static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row, int mi_col) { const AV1_COMMON *cm = &cpi->common; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const CommonModeInfoParams *const mi_params = &cm->mi_params; MACROBLOCK *x = &td->mb; const int frame_idx = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; av1_zero(x->tpl_keep_ref_frame); if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return; if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return; if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return; const int is_overlay = cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE; if (is_overlay) { memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame)); return; } TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; const int tpl_stride = tpl_frame->stride; int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 }; const int step = 1 << block_mis_log2; const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int mi_row_end = AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_col_end_sr = AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size], cm->superres_scale_denominator), mi_cols_sr); const int row_step = step; const int col_step_sr = coded_to_superres_mi(step, cm->superres_scale_denominator); for (int row = mi_row; row < mi_row_end; row += row_step) { for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 }; // Find the winner ref frame idx for the current block int64_t best_inter_cost = this_stats->pred_error[0]; int best_rf_idx = 0; for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) { if ((this_stats->pred_error[idx] < best_inter_cost) && (this_stats->pred_error[idx] != 0)) { best_inter_cost = this_stats->pred_error[idx]; best_rf_idx = idx; } } // tpl_pred_error is the pred_error reduction of best_ref w.r.t. // LAST_FRAME. tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] - this_stats->pred_error[LAST_FRAME - 1]; for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) inter_cost[rf_idx] += tpl_pred_error[rf_idx]; } } int rank_index[INTER_REFS_PER_FRAME - 1]; for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { rank_index[idx] = idx + 1; for (int i = idx; i > 0; --i) { if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) { const int tmp = rank_index[i - 1]; rank_index[i - 1] = rank_index[i]; rank_index[i] = tmp; } } } x->tpl_keep_ref_frame[INTRA_FRAME] = 1; x->tpl_keep_ref_frame[LAST_FRAME] = 1; int cutoff_ref = 0; for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1; if (idx > 2) { if (!cutoff_ref) { // If the predictive coding gains are smaller than the previous more // relevant frame over certain amount, discard this frame and all the // frames afterwards. if (llabs(inter_cost[rank_index[idx]]) < llabs(inter_cost[rank_index[idx - 1]]) / 8 || inter_cost[rank_index[idx]] == 0) cutoff_ref = 1; } if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0; } } } static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col) { const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; const int orig_rdmult = cpi->rd.RDMULT; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int gf_group_index = cpi->gf_frame_index; if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ && cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { const int dr = av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult); x->rdmult = dr; } } #endif // !CONFIG_REALTIME_ONLY #if CONFIG_RT_ML_PARTITIONING // Get a prediction(stored in x->est_pred) for the whole superblock. static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile, MACROBLOCK *x, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; const int is_key_frame = frame_is_intra_only(cm); MACROBLOCKD *xd = &x->e_mbd; // TODO(kyslov) Extend to 128x128 assert(cm->seq_params->sb_size == BLOCK_64X64); av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); if (!is_key_frame) { MB_MODE_INFO *mi = xd->mi[0]; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); assert(yv12 != NULL); av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, get_ref_scale_factors(cm, LAST_FRAME), 1); mi->ref_frame[0] = LAST_FRAME; mi->ref_frame[1] = NONE; mi->bsize = BLOCK_64X64; mi->mv[0].as_int = 0; mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); xd->plane[0].dst.buf = x->est_pred; xd->plane[0].dst.stride = 64; av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); } else { #if CONFIG_AV1_HIGHBITDEPTH switch (xd->bd) { case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break; case 10: memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0])); break; case 12: memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0])); break; } #else memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); #endif // CONFIG_VP9_HIGHBITDEPTH } } #endif // CONFIG_RT_ML_PARTITIONING #define AVG_CDF_WEIGHT_LEFT 3 #define AVG_CDF_WEIGHT_TOP_RIGHT 1 /*!\brief Encode a superblock (minimal RD search involved) * * \ingroup partition_search * Encodes the superblock by a pre-determined partition pattern, only minor * rd-based searches are allowed to adjust the initial pattern. It is only used * by realtime encoding. */ static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, const int mi_row, const int mi_col, const int seg_skip) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; const SPEED_FEATURES *const sf = &cpi->sf; const TileInfo *const tile_info = &tile_data->tile_info; MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; PC_TREE *const pc_root = td->rt_pc_root; #if CONFIG_RT_ML_PARTITIONING if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) { RD_STATS dummy_rdc; get_estimated_pred(cpi, tile_info, x, mi_row, mi_col); av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root); return; } #endif // Set the partition if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { // set a fixed-size partition av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); const BLOCK_SIZE bsize = seg_skip ? sb_size : sf->part_sf.fixed_partition_size; av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { // set a variance-based partition av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); } assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || sf->part_sf.partition_search_type == VAR_BASED_PARTITION); set_cb_offsets(td->mb.cb_offset, 0, 0); // Initialize the flag to skip cdef to 1. if (sf->rt_sf.skip_cdef_sb) { const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1; // If 128x128 block is used, we need to set the flag for all 4 64x64 sub // "blocks". for (int r = 0; r < block64_in_sb; ++r) { for (int c = 0; c < block64_in_sb; ++c) { const int idx_in_sb = r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64; if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1; } } } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, nonrd_use_partition_time); #endif av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, pc_root); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, nonrd_use_partition_time); #endif } // This function initializes the stats for encode_rd_sb. static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td, const TileDataEnc *tile_data, SIMPLE_MOTION_DATA_TREE *sms_root, RD_STATS *rd_cost, int mi_row, int mi_col, int gather_tpl_data) { const AV1_COMMON *cm = &cpi->common; const TileInfo *tile_info = &tile_data->tile_info; MACROBLOCK *x = &td->mb; const SPEED_FEATURES *sf = &cpi->sf; const int use_simple_motion_search = (sf->part_sf.simple_motion_search_split || sf->part_sf.simple_motion_search_prune_rect || sf->part_sf.simple_motion_search_early_term_none || sf->part_sf.ml_early_term_after_part_split_level) && !frame_is_intra_only(cm); if (use_simple_motion_search) { av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root, mi_row, mi_col); } #if !CONFIG_REALTIME_ONLY if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && cpi->oxcf.gf_cfg.lag_in_frames == 0)) { init_ref_frame_space(cpi, td, mi_row, mi_col); x->sb_energy_level = 0; x->part_search_info.cnn_output_valid = 0; if (gather_tpl_data) { if (cm->delta_q_info.delta_q_present_flag) { const int num_planes = av1_num_planes(cm); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col); } // TODO(jingning): revisit this function. if (cpi->oxcf.algo_cfg.enable_tpl_model && 0) { adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); } } } #else (void)tile_info; (void)mi_row; (void)mi_col; (void)gather_tpl_data; #endif x->reuse_inter_pred = false; x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; reset_mb_rd_record(x->txfm_search_info.mb_rd_record); av1_zero(x->picked_ref_frames_mask); av1_invalid_rd_stats(rd_cost); } #if !CONFIG_REALTIME_ONLY static void sb_qp_sweep_init_quantizers(AV1_COMP *cpi, ThreadData *td, const TileDataEnc *tile_data, SIMPLE_MOTION_DATA_TREE *sms_tree, RD_STATS *rd_cost, int mi_row, int mi_col, int delta_qp_ofs) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const TileInfo *tile_info = &tile_data->tile_info; const CommonModeInfoParams *const mi_params = &cm->mi_params; const DeltaQInfo *const delta_q_info = &cm->delta_q_info; assert(delta_q_info->delta_q_present_flag); const int delta_q_res = delta_q_info->delta_q_res; const SPEED_FEATURES *sf = &cpi->sf; const int use_simple_motion_search = (sf->part_sf.simple_motion_search_split || sf->part_sf.simple_motion_search_prune_rect || sf->part_sf.simple_motion_search_early_term_none || sf->part_sf.ml_early_term_after_part_split_level) && !frame_is_intra_only(cm); if (use_simple_motion_search) { av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_tree, mi_row, mi_col); } int current_qindex = x->rdmult_cur_qindex + delta_qp_ofs; MACROBLOCKD *const xd = &x->e_mbd; current_qindex = av1_adjust_q_from_delta_q_res( delta_q_res, xd->current_base_qindex, current_qindex); x->delta_qindex = current_qindex - cm->quant_params.base_qindex; av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); xd->mi[0]->current_qindex = current_qindex; av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); // keep track of any non-zero delta-q used td->deltaq_used |= (x->delta_qindex != 0); if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { const int delta_lf_res = delta_q_info->delta_lf_res; const int lfmask = ~(delta_lf_res - 1); const int delta_lf_from_base = ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); const int8_t delta_lf = (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; const int mib_size = cm->seq_params->mib_size; // pre-set the delta lf for loop filter. Note that this value is set // before mi is assigned for each block in current superblock for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; } } } } x->reuse_inter_pred = false; x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; reset_mb_rd_record(x->txfm_search_info.mb_rd_record); av1_zero(x->picked_ref_frames_mask); av1_invalid_rd_stats(rd_cost); } static int sb_qp_sweep(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, SIMPLE_MOTION_DATA_TREE *sms_tree, SB_FIRST_PASS_STATS *sb_org_stats) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; RD_STATS rdc_winner, cur_rdc; av1_invalid_rd_stats(&rdc_winner); int best_qindex = td->mb.rdmult_delta_qindex; const int start = cm->current_frame.frame_type == KEY_FRAME ? -20 : -12; const int end = cm->current_frame.frame_type == KEY_FRAME ? 20 : 12; const int step = cm->delta_q_info.delta_q_res; for (int sweep_qp_delta = start; sweep_qp_delta <= end; sweep_qp_delta += step) { sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_tree, &cur_rdc, mi_row, mi_col, sweep_qp_delta); const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); const int backup_current_qindex = cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; av1_reset_mbmi(&cm->mi_params, bsize, mi_row, mi_col); av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex; PC_TREE *const pc_root = av1_alloc_pc_tree_node(bsize); av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, &cur_rdc, cur_rdc, pc_root, sms_tree, NULL, SB_DRY_PASS, NULL); if ((rdc_winner.rdcost > cur_rdc.rdcost) || (abs(sweep_qp_delta) < abs(best_qindex - x->rdmult_delta_qindex) && rdc_winner.rdcost == cur_rdc.rdcost)) { rdc_winner = cur_rdc; best_qindex = x->rdmult_delta_qindex + sweep_qp_delta; } } return best_qindex; } #endif //! CONFIG_REALTIME_ONLY /*!\brief Encode a superblock (RD-search-based) * * \ingroup partition_search * Conducts partition search for a superblock, based on rate-distortion costs, * from scratch or adjusting from a pre-calculated partition pattern. */ static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, const int mi_row, const int mi_col, const int seg_skip) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; const SPEED_FEATURES *const sf = &cpi->sf; const TileInfo *const tile_info = &tile_data->tile_info; MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int num_planes = av1_num_planes(cm); int dummy_rate; int64_t dummy_dist; RD_STATS dummy_rdc; SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root; #if CONFIG_REALTIME_ONLY (void)seg_skip; #endif // CONFIG_REALTIME_ONLY init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, 1); // Encode the superblock if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { // partition search starting from a variance-based partition av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, rd_use_partition_time); #endif PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, &dummy_rate, &dummy_dist, 1, pc_root); av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, rd_use_partition_time); #endif } #if !CONFIG_REALTIME_ONLY else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { // partition search by adjusting a fixed-size partition av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); const BLOCK_SIZE bsize = seg_skip ? sb_size : sf->part_sf.fixed_partition_size; av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, &dummy_rate, &dummy_dist, 1, pc_root); av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0); } else { SB_FIRST_PASS_STATS *sb_org_stats = NULL; if (cpi->oxcf.sb_qp_sweep) { CHECK_MEM_ERROR( cm, sb_org_stats, (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(SB_FIRST_PASS_STATS))); av1_backup_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); } // The most exhaustive recursive partition search SuperBlockEnc *sb_enc = &x->sb_enc; // No stats for overlay frames. Exclude key frame. av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc); // Reset the tree for simple motion search data av1_reset_simple_motion_tree_partition(sms_root, sb_size); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, rd_pick_partition_time); #endif // Estimate the maximum square partition block size, which will be used // as the starting block size for partitioning the sb set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col); // The superblock can be searched only once, or twice consecutively for // better quality. Note that the meaning of passes here is different from // the general concept of 1-pass/2-pass encoders. const int num_passes = cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1; if (cpi->oxcf.sb_qp_sweep && !(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && cpi->oxcf.gf_cfg.lag_in_frames == 0) && cm->delta_q_info.delta_q_present_flag) { assert(x->rdmult_delta_qindex == x->delta_qindex); assert(sb_org_stats); const int best_qp_diff = sb_qp_sweep(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, sms_root, sb_org_stats) - x->rdmult_delta_qindex; sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, best_qp_diff); const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); const int backup_current_qindex = cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex; } if (num_passes == 1) { #if CONFIG_PARTITION_SEARCH_ORDER if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) { av1_reset_part_sf(&cpi->sf.part_sf); av1_reset_sf_for_ext_part(cpi); RD_STATS this_rdc; av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row, mi_col, sb_size, &this_rdc); } else { PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, &dummy_rdc, dummy_rdc, pc_root, sms_root, NULL, SB_SINGLE_PASS, NULL); } #else PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, &dummy_rdc, dummy_rdc, pc_root, sms_root, NULL, SB_SINGLE_PASS, NULL); #endif // CONFIG_PARTITION_SEARCH_ORDER } else { // First pass SB_FIRST_PASS_STATS sb_fp_stats; av1_backup_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col); PC_TREE *const pc_root_p0 = av1_alloc_pc_tree_node(sb_size); av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, &dummy_rdc, dummy_rdc, pc_root_p0, sms_root, NULL, SB_DRY_PASS, NULL); // Second pass init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, 0); av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); av1_reset_simple_motion_tree_partition(sms_root, sb_size); av1_restore_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col); PC_TREE *const pc_root_p1 = av1_alloc_pc_tree_node(sb_size); av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, &dummy_rdc, dummy_rdc, pc_root_p1, sms_root, NULL, SB_WET_PASS, NULL); } aom_free(sb_org_stats); // Reset to 0 so that it wouldn't be used elsewhere mistakenly. sb_enc->tpl_data_count = 0; #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, rd_pick_partition_time); #endif } #endif // !CONFIG_REALTIME_ONLY // Update the inter rd model // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && cm->tiles.cols == 1 && cm->tiles.rows == 1) { av1_inter_mode_data_fit(tile_data, x->rdmult); } } // Check if the cost update of symbols mode, coeff and dv are tile or off. static AOM_INLINE int is_mode_coeff_dv_upd_freq_tile_or_off( const AV1_COMP *const cpi) { const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; return (inter_sf->coeff_cost_upd_level <= INTERNAL_COST_UPD_TILE && inter_sf->mode_cost_upd_level <= INTERNAL_COST_UPD_TILE && cpi->sf.intra_sf.dv_cost_upd_level <= INTERNAL_COST_UPD_TILE); } // When row-mt is enabled and cost update frequencies are set to off/tile, // processing of current SB can start even before processing of top-right SB // is finished. This function checks if it is sufficient to wait for top SB // to finish processing before current SB starts processing. static AOM_INLINE int delay_wait_for_top_right_sb(const AV1_COMP *const cpi) { const MODE mode = cpi->oxcf.mode; if (mode == GOOD) return 0; if (mode == ALLINTRA) return is_mode_coeff_dv_upd_freq_tile_or_off(cpi); else if (mode == REALTIME) return (is_mode_coeff_dv_upd_freq_tile_or_off(cpi) && cpi->sf.inter_sf.mv_cost_upd_level <= INTERNAL_COST_UPD_TILE); else return 0; } /*!\brief Calculate source SAD at superblock level using 64x64 block source SAD * * \ingroup partition_search * \callgraph * \callergraph */ static AOM_INLINE uint64_t get_sb_source_sad(const AV1_COMP *cpi, int mi_row, int mi_col) { if (cpi->src_sad_blk_64x64 == NULL) return UINT64_MAX; const AV1_COMMON *const cm = &cpi->common; const int blk_64x64_in_mis = (cm->seq_params->sb_size == BLOCK_128X128) ? (cm->seq_params->mib_size >> 1) : cm->seq_params->mib_size; const int num_blk_64x64_cols = (cm->mi_params.mi_cols + blk_64x64_in_mis - 1) / blk_64x64_in_mis; const int num_blk_64x64_rows = (cm->mi_params.mi_rows + blk_64x64_in_mis - 1) / blk_64x64_in_mis; const int blk_64x64_col_index = mi_col / blk_64x64_in_mis; const int blk_64x64_row_index = mi_row / blk_64x64_in_mis; uint64_t curr_sb_sad = UINT64_MAX; const uint64_t *const src_sad_blk_64x64_data = &cpi->src_sad_blk_64x64[blk_64x64_col_index + blk_64x64_row_index * num_blk_64x64_cols]; if (cm->seq_params->sb_size == BLOCK_128X128 && blk_64x64_col_index + 1 < num_blk_64x64_cols && blk_64x64_row_index + 1 < num_blk_64x64_rows) { // Calculate SB source SAD by accumulating source SAD of 64x64 blocks in the // superblock curr_sb_sad = src_sad_blk_64x64_data[0] + src_sad_blk_64x64_data[1] + src_sad_blk_64x64_data[num_blk_64x64_cols] + src_sad_blk_64x64_data[num_blk_64x64_cols + 1]; } else if (cm->seq_params->sb_size == BLOCK_64X64) { curr_sb_sad = src_sad_blk_64x64_data[0]; } return curr_sb_sad; } /*!\brief Determine whether grading content can be skipped based on sad stat * * \ingroup partition_search * \callgraph * \callergraph */ static AOM_INLINE bool is_calc_src_content_needed(AV1_COMP *cpi, MACROBLOCK *const x, int mi_row, int mi_col) { if (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) return true; const uint64_t curr_sb_sad = get_sb_source_sad(cpi, mi_row, mi_col); if (curr_sb_sad == UINT64_MAX) return true; if (curr_sb_sad == 0) { x->content_state_sb.source_sad_nonrd = kZeroSad; return false; } AV1_COMMON *const cm = &cpi->common; bool do_calc_src_content = true; if (cpi->oxcf.speed < 9) return do_calc_src_content; // TODO(yunqing): Tune/validate the thresholds for 128x128 SB size. if (AOMMIN(cm->width, cm->height) < 360) { // Derive Average 64x64 block source SAD from SB source SAD const uint64_t avg_64x64_blk_sad = (cm->seq_params->sb_size == BLOCK_128X128) ? ((curr_sb_sad + 2) >> 2) : curr_sb_sad; // The threshold is determined based on kLowSad and kHighSad threshold and // test results. const uint64_t thresh_low = 15000; const uint64_t thresh_high = 40000; if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) { do_calc_src_content = false; // Note: set x->content_state_sb.source_sad_rd as well if this is extended // to RTC rd path. x->content_state_sb.source_sad_nonrd = kMedSad; } } return do_calc_src_content; } /*!\brief Determine whether grading content is needed based on sf and frame stat * * \ingroup partition_search * \callgraph * \callergraph */ // TODO(any): consolidate sfs to make interface cleaner static AOM_INLINE void grade_source_content_sb(AV1_COMP *cpi, MACROBLOCK *const x, TileDataEnc *tile_data, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; if (cm->current_frame.frame_type == KEY_FRAME || (cpi->ppi->use_svc && cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) { assert(x->content_state_sb.source_sad_nonrd == kMedSad); assert(x->content_state_sb.source_sad_rd == kMedSad); return; } bool calc_src_content = false; if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) { calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col); } else { x->content_state_sb.source_sad_nonrd = kZeroSad; } } else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) && (cm->width * cm->height <= 352 * 288)) { if (cpi->rc.frame_source_sad > 0) calc_src_content = true; else x->content_state_sb.source_sad_rd = kZeroSad; } if (calc_src_content) av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col); } /*!\brief Encode a superblock row by breaking it into superblocks * * \ingroup partition_search * \callgraph * \callergraph * Do partition and mode search for an sb row: one row of superblocks filling up * the width of the current tile. */ static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, TokenExtra **tp) { AV1_COMMON *const cm = &cpi->common; const TileInfo *const tile_info = &tile_data->tile_info; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; bool row_mt_enabled = mt_info->row_mt_enabled; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int mib_size = cm->seq_params->mib_size; const int mib_size_log2 = cm->seq_params->mib_size_log2; const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, encode_sb_row_time); #endif // Initialize the left context for the new SB row av1_zero_left_context(xd); // Reset delta for quantizer and loof filters at the beginning of every tile if (mi_row == tile_info->mi_row_start || row_mt_enabled) { if (cm->delta_q_info.delta_q_present_flag) xd->current_base_qindex = cm->quant_params.base_qindex; if (cm->delta_q_info.delta_lf_present_flag) { av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); } } reset_thresh_freq_fact(x); // Code each SB in the row for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { // In realtime/allintra mode and when frequency of cost updates is off/tile, // wait for the top superblock to finish encoding. Otherwise, wait for the // top-right superblock to finish encoding. enc_row_mt->sync_read_ptr( row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi)); const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled; if (update_cdf && (tile_info->mi_row_start != mi_row)) { if ((tile_info->mi_col_start == mi_col)) { // restore frame context at the 1st column sb memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx)); } else { // update context int wt_left = AVG_CDF_WEIGHT_LEFT; int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; if (tile_info->mi_col_end > (mi_col + mib_size)) av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, wt_left, wt_tr); else av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, wt_left, wt_tr); } } // Update the rate cost tables for some symbols av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col); // Reset color coding related parameters x->color_sensitivity_sb[0] = 0; x->color_sensitivity_sb[1] = 0; x->color_sensitivity_sb_g[0] = 0; x->color_sensitivity_sb_g[1] = 0; x->color_sensitivity[0] = 0; x->color_sensitivity[1] = 0; x->content_state_sb.source_sad_nonrd = kMedSad; x->content_state_sb.source_sad_rd = kMedSad; x->content_state_sb.lighting_change = 0; x->content_state_sb.low_sumdiff = 0; x->force_zeromv_skip_for_sb = 0; if (cpi->oxcf.mode == ALLINTRA) { x->intra_sb_rdmult_modifier = 128; } xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv; x->source_variance = UINT_MAX; td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); // Get segment id and skip flag const struct segmentation *const seg = &cm->seg; int seg_skip = 0; if (seg->enabled) { const uint8_t *const map = seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; const uint8_t segment_id = map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col) : 0; seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); } produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col); init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks, sb_size); // Grade the temporal variation of the sb, the grade will be used to decide // fast mode search strategy for coding blocks grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col); // encode the superblock if (use_nonrd_mode) { encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); } else { encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); } // Update the top-right context in row_mt coding if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) { if (sb_cols_in_tile == 1) memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx)); else if (sb_col_in_tile >= 1) memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx, sizeof(*xd->tile_ctx)); } enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile, sb_cols_in_tile); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, encode_sb_row_time); #endif } static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &cpi->td.mb; MACROBLOCKD *const xd = &x->e_mbd; // Copy data over into macro block data structures. av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, cm->seq_params->sb_size); av1_setup_block_planes(xd, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, num_planes); } void av1_alloc_tile_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; av1_row_mt_mem_dealloc(cpi); if (cpi->tile_data != NULL) aom_free(cpi->tile_data); CHECK_MEM_ERROR( cm, cpi->tile_data, aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); cpi->allocated_tiles = tile_cols * tile_rows; } void av1_init_tile_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int tile_col, tile_row; TokenInfo *const token_info = &cpi->token_info; TokenExtra *pre_tok = token_info->tile_tok[0][0]; TokenList *tplist = token_info->tplist[0][0]; unsigned int tile_tok = 0; int tplist_count = 0; if (!is_stat_generation_stage(cpi) && cm->features.allow_screen_content_tools) { // Number of tokens for which token info needs to be allocated. unsigned int tokens_required = get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols, MAX_SB_SIZE_LOG2, num_planes); // Allocate/reallocate memory for token related info if the number of tokens // required is more than the number of tokens already allocated. This could // occur in case of the following: // 1) If the memory is not yet allocated // 2) If the frame dimensions have changed const bool realloc_tokens = tokens_required > token_info->tokens_allocated; if (realloc_tokens) { free_token_info(token_info); alloc_token_info(cm, token_info, tokens_required); pre_tok = token_info->tile_tok[0][0]; tplist = token_info->tplist[0][0]; } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; TileInfo *const tile_info = &tile_data->tile_info; av1_tile_init(tile_info, cm, tile_row, tile_col); tile_data->firstpass_top_mv = kZeroMv; tile_data->abs_sum_level = 0; if (is_token_info_allocated(token_info)) { token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; pre_tok = token_info->tile_tok[tile_row][tile_col]; tile_tok = allocated_tokens( tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes); token_info->tplist[tile_row][tile_col] = tplist + tplist_count; tplist = token_info->tplist[tile_row][tile_col]; tplist_count = av1_get_sb_rows_in_tile(cm, tile_info); } tile_data->allow_update_cdf = !cm->tiles.large_scale; tile_data->allow_update_cdf = tile_data->allow_update_cdf && !cm->features.disable_cdf_update && !delay_wait_for_top_right_sb(cpi); tile_data->tctx = *cm->fc; } } } // Populate the start palette token info prior to encoding an SB row. static AOM_INLINE void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info, int tile_row, int tile_col, int mi_row, TokenExtra **tp) { const TokenInfo *token_info = &cpi->token_info; if (!is_token_info_allocated(token_info)) return; const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col]; const int sb_row_in_tile = (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; get_start_tok(cpi, tile_row, tile_col, mi_row, tp, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes); assert(tplist != NULL); tplist[sb_row_in_tile].start = *tp; } // Populate the token count after encoding an SB row. static AOM_INLINE void populate_token_count(AV1_COMP *cpi, const TileInfo *tile_info, int tile_row, int tile_col, int mi_row, TokenExtra *tok) { const TokenInfo *token_info = &cpi->token_info; if (!is_token_info_allocated(token_info)) return; const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); TokenList *const tplist = token_info->tplist[tile_row][tile_col]; const int sb_row_in_tile = (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; const int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; const int num_mb_rows_in_sb = ((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; tplist[sb_row_in_tile].count = (unsigned int)(tok - tplist[sb_row_in_tile].start); assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <= get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes)); (void)num_planes; (void)tile_mb_cols; (void)num_mb_rows_in_sb; } /*!\brief Encode a superblock row * * \ingroup partition_search */ void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, int tile_col, int mi_row) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; TokenExtra *tok = NULL; get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok); encode_sb_row(cpi, td, this_tile, mi_row, &tok); populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok); } /*!\brief Encode a tile * * \ingroup partition_search */ void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, int tile_col) { AV1_COMMON *const cm = &cpi->common; TileDataEnc *const this_tile = &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile); av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, tile_info->mi_col_end, tile_row); av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, &td->mb.e_mbd); if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra) cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); if (td->mb.txfm_search_info.mb_rd_record != NULL) { av1_crc32c_calculator_init( &td->mb.txfm_search_info.mb_rd_record->crc_calculator); } for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; mi_row += cm->seq_params->mib_size) { av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); } this_tile->abs_sum_level = td->abs_sum_level; } /*!\brief Break one frame into tiles and encode the tiles * * \ingroup partition_search * * \param[in] cpi Top-level encoder structure */ static AOM_INLINE void encode_tiles(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tiles.cols; const int tile_rows = cm->tiles.rows; int tile_col, tile_row; MACROBLOCK *const mb = &cpi->td.mb; assert(IMPLIES(cpi->tile_data == NULL, cpi->allocated_tiles < tile_cols * tile_rows)); if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); av1_init_tile_data(cpi); av1_alloc_mb_data(cpi, mb); for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const this_tile = &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; cpi->td.intrabc_used = 0; cpi->td.deltaq_used = 0; cpi->td.abs_sum_level = 0; cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0; cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0; cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; cpi->td.mb.tile_pb_ctx = &this_tile->tctx; av1_init_rtc_counters(&cpi->td.mb); av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); if (!frame_is_intra_only(&cpi->common)) av1_accumulate_rtc_counters(cpi, &cpi->td.mb); cpi->intrabc_used |= cpi->td.intrabc_used; cpi->deltaq_used |= cpi->td.deltaq_used; } } av1_dealloc_mb_data(cm, mb); } // Set the relative distance of a reference frame w.r.t. current frame static AOM_INLINE void set_rel_frame_dist( const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info, const int ref_frame_flags) { MV_REFERENCE_FRAME ref_frame; int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX; ref_frame_dist_info->nearest_past_ref = NONE_FRAME; ref_frame_dist_info->nearest_future_ref = NONE_FRAME; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0; if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { int dist = av1_encoder_get_relative_dist( cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME], cm->current_frame.display_order_hint); ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist; // Get the nearest ref_frame in the past if (abs(dist) < min_past_dist && dist < 0) { ref_frame_dist_info->nearest_past_ref = ref_frame; min_past_dist = abs(dist); } // Get the nearest ref_frame in the future if (dist < min_future_dist && dist > 0) { ref_frame_dist_info->nearest_future_ref = ref_frame; min_future_dist = dist; } } } } static INLINE int refs_are_one_sided(const AV1_COMMON *cm) { assert(!frame_is_intra_only(cm)); int one_sided_refs = 1; const int cur_display_order_hint = cm->current_frame.display_order_hint; for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); if (buf == NULL) continue; if (av1_encoder_get_relative_dist(buf->display_order_hint, cur_display_order_hint) > 0) { one_sided_refs = 0; // bwd reference break; } } return one_sided_refs; } static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, int ref_order_hint[2]) { const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; ref_order_hint[0] = ref_order_hint[1] = 0; if (!skip_mode_info->skip_mode_allowed) return; const RefCntBuffer *const buf_0 = get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); const RefCntBuffer *const buf_1 = get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); assert(buf_0 != NULL && buf_1 != NULL); ref_order_hint[0] = buf_0->order_hint; ref_order_hint[1] = buf_1->order_hint; } static int check_skip_mode_enabled(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; av1_setup_skip_mode_allowed(cm); if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; // Turn off skip mode if the temporal distances of the reference pair to the // current frame are different by more than 1 frame. const int cur_offset = (int)cm->current_frame.order_hint; int ref_offset[2]; get_skip_mode_ref_offsets(cm, ref_offset); const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info, cur_offset, ref_offset[0]); const int cur_to_ref1 = abs(get_relative_dist( &cm->seq_params->order_hint_info, cur_offset, ref_offset[1])); if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; // High Latency: Turn off skip mode if all refs are fwd. if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0; static const int flag_list[REF_FRAMES] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG }; const int ref_frame[2] = { cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME }; if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) return 0; return 1; } static AOM_INLINE void set_default_interp_skip_flags( const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) { const int num_planes = av1_num_planes(cm); interp_search_flags->default_interp_skip_flags = (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA : INTERP_SKIP_LUMA_SKIP_CHROMA; } static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) { if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp || cpi->sf.inter_sf.disable_onesided_comp) && cpi->all_one_sided_refs) { // Disable all compound references cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES); } else if (!cpi->sf.rt_sf.use_nonrd_pick_mode && cpi->sf.inter_sf.selective_ref_frame >= 2) { AV1_COMMON *const cm = &cpi->common; const int cur_frame_display_order_hint = cm->current_frame.display_order_hint; unsigned int *ref_display_order_hint = cm->cur_frame->ref_display_order_hint; const int arf2_dist = av1_encoder_get_relative_dist( ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME], cur_frame_display_order_hint); const int bwd_dist = av1_encoder_get_relative_dist( ref_display_order_hint[BWDREF_FRAME - LAST_FRAME], cur_frame_display_order_hint); for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) { MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_idx); if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) || !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) { continue; } if (!cpi->all_one_sided_refs) { int ref_dist[2]; for (int i = 0; i < 2; ++i) { ref_dist[i] = av1_encoder_get_relative_dist( ref_display_order_hint[rf[i] - LAST_FRAME], cur_frame_display_order_hint); } // One-sided compound is used only when all reference frames are // one-sided. if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) { cpi->prune_ref_frame_mask |= 1 << ref_idx; } } if (cpi->sf.inter_sf.selective_ref_frame >= 4 && (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) && (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) { // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer // reference to the current frame than ALTREF2_FRAME cpi->prune_ref_frame_mask |= 1 << ref_idx; } } } } } static int allow_deltaq_mode(AV1_COMP *cpi) { #if !CONFIG_REALTIME_ONLY AV1_COMMON *const cm = &cpi->common; BLOCK_SIZE sb_size = cm->seq_params->sb_size; int sbs_wide = mi_size_wide[sb_size]; int sbs_high = mi_size_high[sb_size]; int64_t delta_rdcost = 0; for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) { for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) { int64_t this_delta_rdcost = 0; av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size, mi_row, mi_col); delta_rdcost += this_delta_rdcost; } } return delta_rdcost < 0; #else (void)cpi; return 1; #endif // !CONFIG_REALTIME_ONLY } #define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000 #define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4 // Populates block level thresholds for force zeromv-skip decision static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) { if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return; // Threshold for forcing zeromv-skip decision is as below: // For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103. // For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221 // allowing slightly higher error for smaller blocks. // Per Pixel Threshold of 64x64 block Area of 64x64 block 1 1 // ------------------------------------=sqrt(---------------------)=sqrt(-)=- // Per Pixel Threshold of 128x128 block Area of 128x128 block 4 2 // Thus, per pixel thresholds for blocks of size 32x32, 16x16,... can be // chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for // small blocks, the same is clipped to 4. const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF; const int num_128x128_pix = block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128]; for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) { const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize]; // Calculate the threshold for zeromv-skip decision based on area of the // partition unsigned int thresh_exit_part_blk = (unsigned int)(thresh_exit_128x128_part * sqrt((double)num_block_pix / num_128x128_pix) + 0.5); thresh_exit_part_blk = AOMMIN( thresh_exit_part_blk, (unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix)); cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk; } } /*!\brief Encoder setup(only for the current frame), encoding, and recontruction * for a single frame * * \ingroup high_level_algo */ static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) { ThreadData *const td = &cpi->td; MACROBLOCK *const x = &td->mb; AV1_COMMON *const cm = &cpi->common; CommonModeInfoParams *const mi_params = &cm->mi_params; FeatureFlags *const features = &cm->features; MACROBLOCKD *const xd = &x->e_mbd; RD_COUNTS *const rdc = &cpi->td.rd_counts; #if CONFIG_FPMT_TEST FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs; FrameProbInfo *const temp_frame_probs_simulation = &cpi->ppi->temp_frame_probs_simulation; #endif FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs; IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode; int i; if (!cpi->sf.rt_sf.use_nonrd_pick_mode) { mi_params->setup_mi(mi_params); } set_mi_offsets(mi_params, xd, 0, 0); av1_zero(*td->counts); av1_zero(rdc->tx_type_used); av1_zero(rdc->obmc_used); av1_zero(rdc->warped_used); av1_zero(rdc->seg_tmp_pred_cost); // Reset the flag. cpi->intrabc_used = 0; // Need to disable intrabc when superres is selected if (av1_superres_scaled(cm)) { features->allow_intrabc = 0; } features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc); if (features->allow_warped_motion && cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); int warped_probability = #if CONFIG_FPMT_TEST cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? temp_frame_probs->warped_probs[update_type] : #endif // CONFIG_FPMT_TEST frame_probs->warped_probs[update_type]; if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh) features->allow_warped_motion = 0; } int hash_table_created = 0; if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && !cpi->sf.rt_sf.use_nonrd_pick_mode) { // TODO(any): move this outside of the recoding loop to avoid recalculating // the hash table. // add to hash table const int pic_width = cpi->source->y_crop_width; const int pic_height = cpi->source->y_crop_height; uint32_t *block_hash_values[2][2]; int8_t *is_block_same[2][3]; int k, j; for (k = 0; k < 2; k++) { for (j = 0; j < 2; j++) { CHECK_MEM_ERROR(cm, block_hash_values[k][j], aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); } for (j = 0; j < 3; j++) { CHECK_MEM_ERROR(cm, is_block_same[k][j], aom_malloc(sizeof(int8_t) * pic_width * pic_height)); } } av1_hash_table_init(intrabc_hash_info); if (!av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating intrabc_hash_table"); } hash_table_created = 1; av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source, block_hash_values[0], is_block_same[0]); // Hash data generated for screen contents is used for intraBC ME const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize]; const int max_sb_size = (1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)); int src_idx = 0; bool error = false; for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) { const int dst_idx = !src_idx; av1_generate_block_hash_value( intrabc_hash_info, cpi->source, size, block_hash_values[src_idx], block_hash_values[dst_idx], is_block_same[src_idx], is_block_same[dst_idx]); if (size >= min_alloc_size) { if (!av1_add_to_hash_map_by_row_with_precal_data( &intrabc_hash_info->intrabc_hash_table, block_hash_values[dst_idx], is_block_same[dst_idx][2], pic_width, pic_height, size)) { error = true; break; } } } for (k = 0; k < 2; k++) { for (j = 0; j < 2; j++) { aom_free(block_hash_values[k][j]); } for (j = 0; j < 3; j++) { aom_free(is_block_same[k][j]); } } if (error) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error adding data to intrabc_hash_table"); } } const CommonQuantParams *quant_params = &cm->quant_params; for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex) : quant_params->base_qindex; xd->lossless[i] = qindex == 0 && quant_params->y_dc_delta_q == 0 && quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1; xd->qindex[i] = qindex; if (xd->lossless[i]) { cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT; } else { cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients; } } features->coded_lossless = is_coded_lossless(cm, xd); features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); // Fix delta q resolution for the moment cm->delta_q_info.delta_q_res = 0; if (cpi->use_ducky_encode) { cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_DUCKY_ENCODE; } else if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ) { if (deltaq_mode == DELTA_Q_OBJECTIVE) cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; else if (deltaq_mode == DELTA_Q_PERCEPTUAL) cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI) cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; else if (deltaq_mode == DELTA_Q_USER_RATING_BASED) cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; else if (deltaq_mode == DELTA_Q_HDR) cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; // Set delta_q_present_flag before it is used for the first time cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q; // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q // is used for ineligible frames. That effectively will turn off row_mt // usage. Note objective delta_q and tpl eligible frames are only altref // frames currently. const GF_GROUP *gf_group = &cpi->ppi->gf_group; if (cm->delta_q_info.delta_q_present_flag) { if (deltaq_mode == DELTA_Q_OBJECTIVE && gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE) cm->delta_q_info.delta_q_present_flag = 0; if (deltaq_mode == DELTA_Q_OBJECTIVE && cm->delta_q_info.delta_q_present_flag) { cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi); } } // Reset delta_q_used flag cpi->deltaq_used = 0; cm->delta_q_info.delta_lf_present_flag = cm->delta_q_info.delta_q_present_flag && oxcf->tool_cfg.enable_deltalf_mode; cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; // update delta_q_present_flag and delta_lf_present_flag based on // base_qindex cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0; cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0; } else { cpi->cyclic_refresh->actual_num_seg1_blocks = 0; cpi->cyclic_refresh->actual_num_seg2_blocks = 0; cpi->rc.cnt_zeromv = 0; } av1_frame_init_quantizer(cpi); init_encode_frame_mb_context(cpi); set_default_interp_skip_flags(cm, &cpi->interp_search_flags); if (cm->prev_frame && cm->prev_frame->seg.enabled) cm->last_frame_seg_map = cm->prev_frame->seg_map; else cm->last_frame_seg_map = NULL; if (features->allow_intrabc || features->coded_lossless) { av1_set_default_ref_deltas(cm->lf.ref_deltas); av1_set_default_mode_deltas(cm->lf.mode_deltas); } else if (cm->prev_frame) { memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); } memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); cpi->all_one_sided_refs = frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm); cpi->prune_ref_frame_mask = 0; // Figure out which ref frames can be skipped at frame level. setup_prune_ref_frame_mask(cpi); x->txfm_search_info.txb_split_count = 0; #if CONFIG_SPEED_STATS x->txfm_search_info.tx_search_count = 0; #endif // CONFIG_SPEED_STATS #if !CONFIG_REALTIME_ONLY #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_compute_global_motion_time); #endif av1_compute_global_motion_facade(cpi); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_compute_global_motion_time); #endif #endif // !CONFIG_REALTIME_ONLY #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_setup_motion_field_time); #endif av1_calculate_ref_frame_side(cm); if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_setup_motion_field_time); #endif cm->current_frame.skip_mode_info.skip_mode_flag = check_skip_mode_enabled(cpi); // Initialization of skip mode cost depends on the value of // 'skip_mode_flag'. This initialization happens in the function // av1_fill_mode_rates(), which is in turn called in // av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts() // has to be called after 'skip_mode_flag' is initialized. av1_initialize_rd_consts(cpi); av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex); populate_thresh_to_force_zeromv_skip(cpi); enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; mt_info->row_mt_enabled = 0; mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS], cm->tiles.cols * cm->tiles.rows) > 1; if (oxcf->row_mt && (mt_info->num_workers > 1)) { mt_info->row_mt_enabled = 1; enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; av1_encode_tiles_row_mt(cpi); } else { if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) { av1_encode_tiles_mt(cpi); } else { // Preallocate the pc_tree for realtime coding to reduce the cost of // memory allocation. const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; td->rt_pc_root = use_nonrd_mode ? av1_alloc_pc_tree_node(cm->seq_params->sb_size) : NULL; encode_tiles(cpi); av1_free_pc_tree_recursive(td->rt_pc_root, av1_num_planes(cm), 0, 0); } } // If intrabc is allowed but never selected, reset the allow_intrabc flag. if (features->allow_intrabc && !cpi->intrabc_used) { features->allow_intrabc = 0; } if (features->allow_intrabc) { cm->delta_q_info.delta_lf_present_flag = 0; } if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { cm->delta_q_info.delta_q_present_flag = 0; } // Set the transform size appropriately before bitstream creation const MODE_EVAL_TYPE eval_type = cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch ? WINNER_MODE_EVAL : DEFAULT_EVAL; const TX_SIZE_SEARCH_METHOD tx_search_type = cpi->winner_mode_params.tx_size_search_methods[eval_type]; assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL); features->tx_mode = select_tx_mode(cm, tx_search_type); // Retain the frame level probability update conditions for parallel frames. // These conditions will be consumed during postencode stage to update the // probability. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] = cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats; cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] = (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX); cpi->do_update_frame_probs_warp[cpi->num_frame_recode] = (features->allow_warped_motion && cpi->sf.inter_sf.prune_warped_prob_thresh > 0); cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] = (cm->current_frame.frame_type != KEY_FRAME && cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && features->interp_filter == SWITCHABLE); } if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats || ((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != INT_MAX) && (cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); for (i = 0; i < TX_SIZES_ALL; i++) { int sum = 0; int j; int left = MAX_TX_TYPE_PROB; for (j = 0; j < TX_TYPES; j++) sum += cpi->td.rd_counts.tx_type_used[i][j]; for (j = TX_TYPES - 1; j >= 0; j--) { int update_txtype_frameprobs = 1; const int new_prob = sum ? MAX_TX_TYPE_PROB * cpi->td.rd_counts.tx_type_used[i][j] / sum : (j ? 0 : MAX_TX_TYPE_PROB); #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { int prob = (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] + new_prob) >> 1; left -= prob; if (j == 0) prob += left; temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = prob; // Copy temp_frame_probs_simulation to temp_frame_probs for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; update_type_idx++) { temp_frame_probs->tx_type_probs[update_type_idx][i][j] = temp_frame_probs_simulation ->tx_type_probs[update_type_idx][i][j]; } } update_txtype_frameprobs = 0; } #endif // CONFIG_FPMT_TEST // Track the frame probabilities of parallel encode frames to update // during postencode stage. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { update_txtype_frameprobs = 0; cpi->frame_new_probs[cpi->num_frame_recode] .tx_type_probs[update_type][i][j] = new_prob; } if (update_txtype_frameprobs) { int prob = (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; left -= prob; if (j == 0) prob += left; frame_probs->tx_type_probs[update_type][i][j] = prob; } } } } if (cm->seg.enabled) { cm->seg.temporal_update = 1; if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1]) cm->seg.temporal_update = 0; } if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); for (i = 0; i < BLOCK_SIZES_ALL; i++) { int sum = 0; int update_obmc_frameprobs = 1; for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j]; const int new_prob = sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { temp_frame_probs_simulation->obmc_probs[update_type][i] = (temp_frame_probs_simulation->obmc_probs[update_type][i] + new_prob) >> 1; // Copy temp_frame_probs_simulation to temp_frame_probs for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; update_type_idx++) { temp_frame_probs->obmc_probs[update_type_idx][i] = temp_frame_probs_simulation->obmc_probs[update_type_idx][i]; } } update_obmc_frameprobs = 0; } #endif // CONFIG_FPMT_TEST // Track the frame probabilities of parallel encode frames to update // during postencode stage. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { update_obmc_frameprobs = 0; cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] = new_prob; } if (update_obmc_frameprobs) { frame_probs->obmc_probs[update_type][i] = (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; } } } if (features->allow_warped_motion && cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); int update_warp_frameprobs = 1; int sum = 0; for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i]; const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { temp_frame_probs_simulation->warped_probs[update_type] = (temp_frame_probs_simulation->warped_probs[update_type] + new_prob) >> 1; // Copy temp_frame_probs_simulation to temp_frame_probs for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; update_type_idx++) { temp_frame_probs->warped_probs[update_type_idx] = temp_frame_probs_simulation->warped_probs[update_type_idx]; } } update_warp_frameprobs = 0; } #endif // CONFIG_FPMT_TEST // Track the frame probabilities of parallel encode frames to update // during postencode stage. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { update_warp_frameprobs = 0; cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] = new_prob; } if (update_warp_frameprobs) { frame_probs->warped_probs[update_type] = (frame_probs->warped_probs[update_type] + new_prob) >> 1; } } if (cm->current_frame.frame_type != KEY_FRAME && cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && features->interp_filter == SWITCHABLE) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { int sum = 0; int j; int left = 1536; for (j = 0; j < SWITCHABLE_FILTERS; j++) { sum += cpi->td.counts->switchable_interp[i][j]; } for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { int update_interpfilter_frameprobs = 1; const int new_prob = sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum : (j ? 0 : 1536); #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { int prob = (temp_frame_probs_simulation ->switchable_interp_probs[update_type][i][j] + new_prob) >> 1; left -= prob; if (j == 0) prob += left; temp_frame_probs_simulation ->switchable_interp_probs[update_type][i][j] = prob; // Copy temp_frame_probs_simulation to temp_frame_probs for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; update_type_idx++) { temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] = temp_frame_probs_simulation ->switchable_interp_probs[update_type_idx][i][j]; } } update_interpfilter_frameprobs = 0; } #endif // CONFIG_FPMT_TEST // Track the frame probabilities of parallel encode frames to update // during postencode stage. if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { update_interpfilter_frameprobs = 0; cpi->frame_new_probs[cpi->num_frame_recode] .switchable_interp_probs[update_type][i][j] = new_prob; } if (update_interpfilter_frameprobs) { int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + new_prob) >> 1; left -= prob; if (j == 0) prob += left; frame_probs->switchable_interp_probs[update_type][i][j] = prob; } } } } if (hash_table_created) { av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table); } } /*!\brief Setup reference frame buffers and encode a frame * * \ingroup high_level_algo * \callgraph * \callergraph * * \param[in] cpi Top-level encoder structure */ void av1_encode_frame(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; CurrentFrame *const current_frame = &cm->current_frame; FeatureFlags *const features = &cm->features; const int num_planes = av1_num_planes(cm); RD_COUNTS *const rdc = &cpi->td.rd_counts; const AV1EncoderConfig *const oxcf = &cpi->oxcf; // Indicates whether or not to use a default reduced set for ext-tx // rather than the potential full set of 16 transforms features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set; // Make sure segment_id is no larger than last_active_segid. if (cm->seg.enabled && cm->seg.update_map) { const int mi_rows = cm->mi_params.mi_rows; const int mi_cols = cm->mi_params.mi_cols; const int last_active_segid = cm->seg.last_active_segid; uint8_t *map = cpi->enc_seg.map; for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { map[mi_col] = AOMMIN(map[mi_col], last_active_segid); } map += mi_cols; } } av1_setup_frame_buf_refs(cm); enforce_max_ref_frames(cpi, &cpi->ref_frame_flags, cm->cur_frame->ref_display_order_hint, cm->current_frame.display_order_hint); set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info, cpi->ref_frame_flags); av1_setup_frame_sign_bias(cm); #if CONFIG_MISMATCH_DEBUG mismatch_reset_frame(num_planes); #else (void)num_planes; #endif rdc->newmv_or_intra_blocks = 0; if (cpi->sf.hl_sf.frame_parameter_update || cpi->sf.rt_sf.use_comp_ref_nonrd) { if (frame_is_intra_only(cm)) current_frame->reference_mode = SINGLE_REFERENCE; else current_frame->reference_mode = REFERENCE_MODE_SELECT; features->interp_filter = SWITCHABLE; if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR; features->switchable_motion_mode = is_switchable_motion_mode_allowed( features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); rdc->compound_ref_used_flag = 0; rdc->skip_mode_used_flag = 0; encode_frame_internal(cpi); if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { // Use a flag that includes 4x4 blocks if (rdc->compound_ref_used_flag == 0) { current_frame->reference_mode = SINGLE_REFERENCE; #if CONFIG_ENTROPY_STATS av1_zero(cpi->td.counts->comp_inter); #endif // CONFIG_ENTROPY_STATS } } // Re-check on the skip mode status as reference mode may have been // changed. SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; if (frame_is_intra_only(cm) || current_frame->reference_mode == SINGLE_REFERENCE) { skip_mode_info->skip_mode_allowed = 0; skip_mode_info->skip_mode_flag = 0; } if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) skip_mode_info->skip_mode_flag = 0; if (!cm->tiles.large_scale) { if (features->tx_mode == TX_MODE_SELECT && cpi->td.mb.txfm_search_info.txb_split_count == 0) features->tx_mode = TX_MODE_LARGEST; } } else { // This is needed if real-time speed setting is changed on the fly // from one using compound prediction to one using single reference. if (current_frame->reference_mode == REFERENCE_MODE_SELECT) current_frame->reference_mode = SINGLE_REFERENCE; encode_frame_internal(cpi); } }