/* * Copyright (c) 2022, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_NONRD_OPT_H_ #define AOM_AV1_ENCODER_NONRD_OPT_H_ #include "av1/encoder/rdopt_utils.h" #define RTC_INTER_MODES (4) #define RTC_INTRA_MODES (4) #define RTC_MODES (AOMMAX(RTC_INTER_MODES, RTC_INTRA_MODES)) static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, SMOOTH_PRED }; static const PREDICTION_MODE inter_mode_list[] = { NEARESTMV, NEARMV, GLOBALMV, NEWMV }; static const THR_MODES mode_idx[REF_FRAMES][RTC_MODES] = { { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH }, { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV }, { THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 }, { THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 }, { THR_NEARESTG, THR_NEARG, THR_GLOBALG, THR_NEWG }, { THR_NEARESTB, THR_NEARB, THR_GLOBALB, THR_NEWB }, { THR_NEARESTA2, THR_NEARA2, THR_GLOBALA2, THR_NEWA2 }, { THR_NEARESTA, THR_NEARA, THR_GLOBALA, THR_NEWA }, }; // Indicates the blocks for which RD model should be based on special logic static INLINE int get_model_rd_flag(const AV1_COMP *cpi, const MACROBLOCKD *xd, BLOCK_SIZE bsize) { const int large_block = bsize >= BLOCK_32X32; const AV1_COMMON *const cm = &cpi->common; return cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block && !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && cm->quant_params.base_qindex && cm->seq_params->bit_depth == AOM_BITS_8; } /*!\brief Finds predicted motion vectors for a block. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Finds predicted motion vectors for a block from a certain reference frame. * First, it fills reference MV stack, then picks the test from the stack and * predicts the final MV for a block for each mode. * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] ref_frame Reference frame for which to find * ref MVs * \param[in] frame_mv Predicted MVs for a block * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile * during encoding * \param[in] yv12_mb Buffer to hold predicted block * \param[in] bsize Current block size * \param[in] force_skip_low_temp_var Flag indicating possible mode search * prune for low temporal variance block * \param[in] skip_pred_mv Flag indicating to skip av1_mv_pred * * \remark Nothing is returned. Instead, predicted MVs are placed into * \c frame_mv array */ static INLINE void find_predictors( AV1_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], TileDataEnc *tile_data, struct buf_2d yv12_mb[8][MAX_MB_PLANE], BLOCK_SIZE bsize, int force_skip_low_temp_var, int skip_pred_mv) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); const int num_planes = av1_num_planes(cm); (void)tile_data; x->pred_mv_sad[ref_frame] = INT_MAX; x->pred_mv0_sad[ref_frame] = INT_MAX; x->pred_mv1_sad[ref_frame] = INT_MAX; frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; // TODO(kyslov) this needs various further optimizations. to be continued.. assert(yv12 != NULL); if (yv12 != NULL) { const struct scale_factors *const sf = get_ref_scale_factors_const(cm, ref_frame); av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); av1_find_best_ref_mvs_from_stack( cm->features.allow_high_precision_mv, mbmi_ext, ref_frame, &frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0); frame_mv[GLOBALMV][ref_frame] = mbmi_ext->global_mvs[ref_frame]; // Early exit for non-LAST frame if force_skip_low_temp_var is set. if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 && !skip_pred_mv && !(force_skip_low_temp_var && ref_frame != LAST_FRAME)) { av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, bsize); } } if (cm->features.switchable_motion_mode) { av1_count_overlappable_neighbors(cm, xd); } mbmi->num_proj_ref = 1; } #endif // AOM_AV1_ENCODER_NONRD_OPT_H_