/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/txfm_common.h" #include "aom_ports/mem.h" #include "av1/common/blockd.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/intra_mode_search.h" #include "av1/encoder/model_rd.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/nonrd_opt.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/var_based_part.h" #define CALC_BIASED_RDCOST(rdcost) (7 * (rdcost) >> 3) extern int g_pick_inter_mode_cnt; /*!\cond */ typedef struct { uint8_t *data; int stride; int in_use; } PRED_BUFFER; typedef struct { PRED_BUFFER *best_pred; PREDICTION_MODE best_mode; TX_SIZE best_tx_size; TX_TYPE tx_type; MV_REFERENCE_FRAME best_ref_frame; MV_REFERENCE_FRAME best_second_ref_frame; uint8_t best_mode_skip_txfm; uint8_t best_mode_initial_skip_flag; int_interpfilters best_pred_filter; MOTION_MODE best_motion_mode; WarpedMotionParams wm_params; int num_proj_ref; uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE / 4]; PALETTE_MODE_INFO pmi; int64_t best_sse; } BEST_PICKMODE; typedef struct { MV_REFERENCE_FRAME ref_frame; PREDICTION_MODE pred_mode; } REF_MODE; typedef struct { MV_REFERENCE_FRAME ref_frame[2]; PREDICTION_MODE pred_mode; } COMP_REF_MODE; typedef struct { InterpFilter filter_x; InterpFilter filter_y; } INTER_FILTER; /*!\brief Structure to store parameters and statistics used in non-rd inter mode * evaluation. */ typedef struct { BEST_PICKMODE best_pickmode; RD_STATS this_rdc; RD_STATS best_rdc; int64_t uv_dist[RTC_INTER_MODES][REF_FRAMES]; struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; unsigned int vars[RTC_INTER_MODES][REF_FRAMES]; unsigned int ref_costs_single[REF_FRAMES]; int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES]; int single_inter_mode_costs[RTC_INTER_MODES][REF_FRAMES]; int use_ref_frame_mask[REF_FRAMES]; uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES]; } InterModeSearchStateNonrd; /*!\endcond */ #define NUM_COMP_INTER_MODES_RT (6) #define NUM_INTER_MODES 12 // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT // mode static const REF_MODE ref_mode_set[NUM_INTER_MODES] = { { LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV }, { LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, GLOBALMV }, { GOLDEN_FRAME, NEWMV }, { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, GLOBALMV }, { ALTREF_FRAME, NEWMV }, }; static const COMP_REF_MODE comp_ref_mode_set[NUM_COMP_INTER_MODES_RT] = { { { LAST_FRAME, GOLDEN_FRAME }, GLOBAL_GLOBALMV }, { { LAST_FRAME, GOLDEN_FRAME }, NEAREST_NEARESTMV }, { { LAST_FRAME, LAST2_FRAME }, GLOBAL_GLOBALMV }, { { LAST_FRAME, LAST2_FRAME }, NEAREST_NEARESTMV }, { { LAST_FRAME, ALTREF_FRAME }, GLOBAL_GLOBALMV }, { { LAST_FRAME, ALTREF_FRAME }, NEAREST_NEARESTMV }, }; static const INTER_FILTER filters_ref_set[9] = { { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH }, { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR }, { MULTITAP_SHARP, MULTITAP_SHARP }, { EIGHTTAP_REGULAR, MULTITAP_SHARP }, { MULTITAP_SHARP, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, MULTITAP_SHARP }, { MULTITAP_SHARP, EIGHTTAP_SMOOTH } }; enum { // INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV), INTER_NEAREST = (1 << NEARESTMV), INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV), INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), }; // The original scan order (default_scan_8x8) is modified according to the extra // transpose in hadamard c implementation, i.e., aom_hadamard_lp_8x8_c and // aom_hadamard_8x8_c. DECLARE_ALIGNED(16, static const int16_t, default_scan_8x8_transpose[64]) = { 0, 8, 1, 2, 9, 16, 24, 17, 10, 3, 4, 11, 18, 25, 32, 40, 33, 26, 19, 12, 5, 6, 13, 20, 27, 34, 41, 48, 56, 49, 42, 35, 28, 21, 14, 7, 15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30, 23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63 }; // The original scan order (av1_default_iscan_8x8) is modified to match // hadamard AVX2 implementation, i.e., aom_hadamard_lp_8x8_avx2 and // aom_hadamard_8x8_avx2. Since hadamard AVX2 implementation will modify the // order of coefficients, such that the normal scan order is no longer // guaranteed to scan low coefficients first, therefore we modify the scan order // accordingly. // Note that this one has to be used together with default_scan_8x8_transpose. DECLARE_ALIGNED(16, static const int16_t, av1_default_iscan_8x8_transpose[64]) = { 0, 2, 3, 9, 10, 20, 21, 35, 1, 4, 8, 11, 19, 22, 34, 36, 5, 7, 12, 18, 23, 33, 37, 48, 6, 13, 17, 24, 32, 38, 47, 49, 14, 16, 25, 31, 39, 46, 50, 57, 15, 26, 30, 40, 45, 51, 56, 58, 27, 29, 41, 44, 52, 55, 59, 62, 28, 42, 43, 53, 54, 60, 61, 63 }; // The original scan order (default_scan_16x16) is modified according to the // extra transpose in hadamard c implementation in lp case, i.e., // aom_hadamard_lp_16x16_c. DECLARE_ALIGNED(16, static const int16_t, default_scan_lp_16x16_transpose[256]) = { 0, 8, 2, 4, 10, 16, 24, 18, 12, 6, 64, 14, 20, 26, 32, 40, 34, 28, 22, 72, 66, 68, 74, 80, 30, 36, 42, 48, 56, 50, 44, 38, 88, 82, 76, 70, 128, 78, 84, 90, 96, 46, 52, 58, 1, 9, 3, 60, 54, 104, 98, 92, 86, 136, 130, 132, 138, 144, 94, 100, 106, 112, 62, 5, 11, 17, 25, 19, 13, 7, 120, 114, 108, 102, 152, 146, 140, 134, 192, 142, 148, 154, 160, 110, 116, 122, 65, 15, 21, 27, 33, 41, 35, 29, 23, 73, 67, 124, 118, 168, 162, 156, 150, 200, 194, 196, 202, 208, 158, 164, 170, 176, 126, 69, 75, 81, 31, 37, 43, 49, 57, 51, 45, 39, 89, 83, 77, 71, 184, 178, 172, 166, 216, 210, 204, 198, 206, 212, 218, 224, 174, 180, 186, 129, 79, 85, 91, 97, 47, 53, 59, 61, 55, 105, 99, 93, 87, 137, 131, 188, 182, 232, 226, 220, 214, 222, 228, 234, 240, 190, 133, 139, 145, 95, 101, 107, 113, 63, 121, 115, 109, 103, 153, 147, 141, 135, 248, 242, 236, 230, 238, 244, 250, 193, 143, 149, 155, 161, 111, 117, 123, 125, 119, 169, 163, 157, 151, 201, 195, 252, 246, 254, 197, 203, 209, 159, 165, 171, 177, 127, 185, 179, 173, 167, 217, 211, 205, 199, 207, 213, 219, 225, 175, 181, 187, 189, 183, 233, 227, 221, 215, 223, 229, 235, 241, 191, 249, 243, 237, 231, 239, 245, 251, 253, 247, 255 }; #if CONFIG_AV1_HIGHBITDEPTH // The original scan order (default_scan_16x16) is modified according to the // extra shift in hadamard c implementation in fp case, i.e., // aom_hadamard_16x16_c. Note that 16x16 lp and fp hadamard generate different // outputs, so we handle them separately. DECLARE_ALIGNED(16, static const int16_t, default_scan_fp_16x16_transpose[256]) = { 0, 4, 2, 8, 6, 16, 20, 18, 12, 10, 64, 14, 24, 22, 32, 36, 34, 28, 26, 68, 66, 72, 70, 80, 30, 40, 38, 48, 52, 50, 44, 42, 84, 82, 76, 74, 128, 78, 88, 86, 96, 46, 56, 54, 1, 5, 3, 60, 58, 100, 98, 92, 90, 132, 130, 136, 134, 144, 94, 104, 102, 112, 62, 9, 7, 17, 21, 19, 13, 11, 116, 114, 108, 106, 148, 146, 140, 138, 192, 142, 152, 150, 160, 110, 120, 118, 65, 15, 25, 23, 33, 37, 35, 29, 27, 69, 67, 124, 122, 164, 162, 156, 154, 196, 194, 200, 198, 208, 158, 168, 166, 176, 126, 73, 71, 81, 31, 41, 39, 49, 53, 51, 45, 43, 85, 83, 77, 75, 180, 178, 172, 170, 212, 210, 204, 202, 206, 216, 214, 224, 174, 184, 182, 129, 79, 89, 87, 97, 47, 57, 55, 61, 59, 101, 99, 93, 91, 133, 131, 188, 186, 228, 226, 220, 218, 222, 232, 230, 240, 190, 137, 135, 145, 95, 105, 103, 113, 63, 117, 115, 109, 107, 149, 147, 141, 139, 244, 242, 236, 234, 238, 248, 246, 193, 143, 153, 151, 161, 111, 121, 119, 125, 123, 165, 163, 157, 155, 197, 195, 252, 250, 254, 201, 199, 209, 159, 169, 167, 177, 127, 181, 179, 173, 171, 213, 211, 205, 203, 207, 217, 215, 225, 175, 185, 183, 189, 187, 229, 227, 221, 219, 223, 233, 231, 241, 191, 245, 243, 237, 235, 239, 249, 247, 253, 251, 255 }; #endif // The original scan order (av1_default_iscan_16x16) is modified to match // hadamard AVX2 implementation, i.e., aom_hadamard_lp_16x16_avx2. // Since hadamard AVX2 implementation will modify the order of coefficients, // such that the normal scan order is no longer guaranteed to scan low // coefficients first, therefore we modify the scan order accordingly. Note that // this one has to be used together with default_scan_lp_16x16_transpose. DECLARE_ALIGNED(16, static const int16_t, av1_default_iscan_lp_16x16_transpose[256]) = { 0, 44, 2, 46, 3, 63, 9, 69, 1, 45, 4, 64, 8, 68, 11, 87, 5, 65, 7, 67, 12, 88, 18, 94, 6, 66, 13, 89, 17, 93, 24, 116, 14, 90, 16, 92, 25, 117, 31, 123, 15, 91, 26, 118, 30, 122, 41, 148, 27, 119, 29, 121, 42, 149, 48, 152, 28, 120, 43, 150, 47, 151, 62, 177, 10, 86, 20, 96, 21, 113, 35, 127, 19, 95, 22, 114, 34, 126, 37, 144, 23, 115, 33, 125, 38, 145, 52, 156, 32, 124, 39, 146, 51, 155, 58, 173, 40, 147, 50, 154, 59, 174, 73, 181, 49, 153, 60, 175, 72, 180, 83, 198, 61, 176, 71, 179, 84, 199, 98, 202, 70, 178, 85, 200, 97, 201, 112, 219, 36, 143, 54, 158, 55, 170, 77, 185, 53, 157, 56, 171, 76, 184, 79, 194, 57, 172, 75, 183, 80, 195, 102, 206, 74, 182, 81, 196, 101, 205, 108, 215, 82, 197, 100, 204, 109, 216, 131, 223, 99, 203, 110, 217, 130, 222, 140, 232, 111, 218, 129, 221, 141, 233, 160, 236, 128, 220, 142, 234, 159, 235, 169, 245, 78, 193, 104, 208, 105, 212, 135, 227, 103, 207, 106, 213, 134, 226, 136, 228, 107, 214, 133, 225, 137, 229, 164, 240, 132, 224, 138, 230, 163, 239, 165, 241, 139, 231, 162, 238, 166, 242, 189, 249, 161, 237, 167, 243, 188, 248, 190, 250, 168, 244, 187, 247, 191, 251, 210, 254, 186, 246, 192, 252, 209, 253, 211, 255 }; #if CONFIG_AV1_HIGHBITDEPTH // The original scan order (av1_default_iscan_16x16) is modified to match // hadamard AVX2 implementation, i.e., aom_hadamard_16x16_avx2. // Since hadamard AVX2 implementation will modify the order of coefficients, // such that the normal scan order is no longer guaranteed to scan low // coefficients first, therefore we modify the scan order accordingly. Note that // this one has to be used together with default_scan_fp_16x16_transpose. DECLARE_ALIGNED(16, static const int16_t, av1_default_iscan_fp_16x16_transpose[256]) = { 0, 44, 2, 46, 1, 45, 4, 64, 3, 63, 9, 69, 8, 68, 11, 87, 5, 65, 7, 67, 6, 66, 13, 89, 12, 88, 18, 94, 17, 93, 24, 116, 14, 90, 16, 92, 15, 91, 26, 118, 25, 117, 31, 123, 30, 122, 41, 148, 27, 119, 29, 121, 28, 120, 43, 150, 42, 149, 48, 152, 47, 151, 62, 177, 10, 86, 20, 96, 19, 95, 22, 114, 21, 113, 35, 127, 34, 126, 37, 144, 23, 115, 33, 125, 32, 124, 39, 146, 38, 145, 52, 156, 51, 155, 58, 173, 40, 147, 50, 154, 49, 153, 60, 175, 59, 174, 73, 181, 72, 180, 83, 198, 61, 176, 71, 179, 70, 178, 85, 200, 84, 199, 98, 202, 97, 201, 112, 219, 36, 143, 54, 158, 53, 157, 56, 171, 55, 170, 77, 185, 76, 184, 79, 194, 57, 172, 75, 183, 74, 182, 81, 196, 80, 195, 102, 206, 101, 205, 108, 215, 82, 197, 100, 204, 99, 203, 110, 217, 109, 216, 131, 223, 130, 222, 140, 232, 111, 218, 129, 221, 128, 220, 142, 234, 141, 233, 160, 236, 159, 235, 169, 245, 78, 193, 104, 208, 103, 207, 106, 213, 105, 212, 135, 227, 134, 226, 136, 228, 107, 214, 133, 225, 132, 224, 138, 230, 137, 229, 164, 240, 163, 239, 165, 241, 139, 231, 162, 238, 161, 237, 167, 243, 166, 242, 189, 249, 188, 248, 190, 250, 168, 244, 187, 247, 186, 246, 192, 252, 191, 251, 210, 254, 209, 253, 211, 255 }; #endif static INLINE int early_term_inter_search_with_sse(int early_term_idx, BLOCK_SIZE bsize, int64_t this_sse, int64_t best_sse, PREDICTION_MODE this_mode) { // Aggressiveness to terminate inter mode search early is adjusted based on // speed and block size. static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 }, { 0.6, 0.65, 0.85, 0.9 }, { 0.5, 0.5, 0.55, 0.6 }, { 0.6, 0.75, 0.85, 0.85 } }; static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3, 0.3 }; const int size_group = size_group_lookup[bsize]; assert(size_group < 4); assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES)); const double threshold = ((early_term_idx == EARLY_TERM_IDX_4) && (this_mode == NEWMV || this_mode == NEARESTMV)) ? early_term_thresh_newmv_nearestmv[size_group] : early_term_thresh[early_term_idx - 1][size_group]; // Terminate inter mode search early based on best sse so far. if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) { return 1; } return 0; } static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { bp->best_sse = INT64_MAX; bp->best_mode = NEARESTMV; bp->best_ref_frame = LAST_FRAME; bp->best_second_ref_frame = NONE_FRAME; bp->best_tx_size = TX_8X8; bp->tx_type = DCT_DCT; bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); bp->best_mode_skip_txfm = 0; bp->best_mode_initial_skip_flag = 0; bp->best_pred = NULL; bp->best_motion_mode = SIMPLE_TRANSLATION; bp->num_proj_ref = 0; memset(&bp->wm_params, 0, sizeof(bp->wm_params)); memset(&bp->blk_skip, 0, sizeof(bp->blk_skip)); memset(&bp->pmi, 0, sizeof(bp->pmi)); } static INLINE int subpel_select(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *mv, MV ref_mv, FULLPEL_MV start_mv, bool fullpel_performed_well) { const int frame_lowmotion = cpi->rc.avg_frame_low_motion; // Reduce MV precision for higher int MV value & frame-level motion if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 3) { int mv_thresh = 4; const int is_low_resoln = (cpi->common.width * cpi->common.height <= 320 * 240); mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6; if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12; mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh; if (abs(mv->as_fullmv.row) >= mv_thresh || abs(mv->as_fullmv.col) >= mv_thresh) return HALF_PEL; } else if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 1) { int mv_thresh; const int th_vals[2][3] = { { 4, 8, 10 }, { 4, 6, 8 } }; const int th_idx = cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion - 1; assert(th_idx >= 0 && th_idx < 2); if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12; else mv_thresh = (bsize >= BLOCK_32X32) ? th_vals[th_idx][0] : (bsize >= BLOCK_16X16) ? th_vals[th_idx][1] : th_vals[th_idx][2]; if (abs(mv->as_fullmv.row) >= (mv_thresh << 1) || abs(mv->as_fullmv.col) >= (mv_thresh << 1)) return FULL_PEL; else if (abs(mv->as_fullmv.row) >= mv_thresh || abs(mv->as_fullmv.col) >= mv_thresh) return HALF_PEL; } // Reduce MV precision for relatively static (e.g. background), low-complex // large areas if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 2) { const int qband = x->qindex >> (QINDEX_BITS - 2); assert(qband < 4); if (x->content_state_sb.source_sad_nonrd <= kVeryLowSad && bsize > BLOCK_16X16 && qband != 0) { if (x->source_variance < 500) return FULL_PEL; else if (x->source_variance < 5000) return HALF_PEL; } } else if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 1) { if (fullpel_performed_well && ref_mv.row == 0 && ref_mv.col == 0 && start_mv.row == 0 && start_mv.col == 0) return HALF_PEL; } return cpi->sf.mv_sf.subpel_force_stop; } static bool use_aggressive_subpel_search_method( MACROBLOCK *x, bool use_adaptive_subpel_search, const bool fullpel_performed_well) { if (!use_adaptive_subpel_search) return false; const int qband = x->qindex >> (QINDEX_BITS - 2); assert(qband < 4); if ((qband > 0) && (fullpel_performed_well || (x->content_state_sb.source_sad_nonrd <= kLowSad) || (x->source_variance < 100))) return true; return false; } /*!\brief Runs Motion Estimation for a specific block and specific ref frame. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Finds the best Motion Vector by running Motion Estimation for a specific * block and a specific reference frame. Exits early if RDCost of Full Pel part * exceeds best RD Cost fund so far * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] bsize Current block size * \param[in] mi_row Row index in 4x4 units * \param[in] mi_col Column index in 4x4 units * \param[in] tmp_mv Pointer to best found New MV * \param[in] rate_mv Pointer to Rate of the best new MV * \param[in] best_rd_sofar RD Cost of the best mode found so far * \param[in] use_base_mv Flag, indicating that tmp_mv holds * specific MV to start the search with * * \return Returns 0 if ME was terminated after Full Pel Search because too * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv. * Rate estimation for this vector is placed to \c rate_mv */ static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int64_t best_rd_sofar, int use_base_mv) { MACROBLOCKD *xd = &x->e_mbd; const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); const SPEED_FEATURES *sf = &cpi->sf; MB_MODE_INFO *mi = xd->mi[0]; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int step_param = (sf->rt_sf.fullpel_search_step_param) ? sf->rt_sf.fullpel_search_step_param : cpi->mv_search_params.mv_step_param; FULLPEL_MV start_mv; const int ref = mi->ref_frame[0]; const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv; MV center_mv; int dis; int rv = 0; int cost_list[5]; int search_subpel = 1; const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, num_planes); } start_mv = get_fullmv_from_mv(&ref_mv); if (!use_base_mv) center_mv = ref_mv; else center_mv = tmp_mv->as_mv; const SEARCH_METHODS search_method = sf->mv_sf.search_method; const search_site_config *src_search_sites = av1_get_search_site_config(cpi, x, search_method); FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv, src_search_sites, /*fine_search_interval=*/0); const unsigned int full_var_rd = av1_full_pixel_search( start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), &tmp_mv->as_fullmv, NULL); // calculate the bit cost on motion vector MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv); *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); // TODO(kyslov) Account for Rate Mode! rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar); if (rv && search_subpel) { SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, cost_list); const bool fullpel_performed_well = (bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) || (bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) || (bsize == BLOCK_16X16 && full_var_rd * 8 < 10127); if (sf->rt_sf.reduce_mv_pel_precision_highmotion || sf->rt_sf.reduce_mv_pel_precision_lowcomplex) ms_params.forced_stop = subpel_select(cpi, x, bsize, tmp_mv, ref_mv, start_mv, fullpel_performed_well); MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv); // adaptively downgrade subpel search method based on block properties if (use_aggressive_subpel_search_method( x, sf->rt_sf.use_adaptive_subpel_search, fullpel_performed_well)) av1_find_best_sub_pixel_tree_pruned_more(xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis, &x->pred_sse[ref], NULL); else cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis, &x->pred_sse[ref], NULL); *rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); } if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } // The final MV can not be equal to the reference MV as this will trigger an // assert later. This can happen if both NEAREST and NEAR modes were skipped. rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row); return rv; } /*!\brief Searches for the best New Motion Vector. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Finds the best Motion Vector by doing Motion Estimation. Uses reduced * complexity ME for non-LAST frames or calls \c combined_motion_search * for LAST reference frame * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] frame_mv Array that holds MVs for all modes * and ref frames * \param[in] ref_frame Reference frame for which to find * the best New MVs * \param[in] gf_temporal_ref Flag, indicating temporal reference * for GOLDEN frame * \param[in] bsize Current block size * \param[in] mi_row Row index in 4x4 units * \param[in] mi_col Column index in 4x4 units * \param[in] rate_mv Pointer to Rate of the best new MV * \param[in] best_rdc Pointer to the RD Cost for the best * mode found so far * * \return Returns -1 if the search was not done, otherwise returns 0. * Best New MV is placed into \c frame_mv array, Rate estimation for this * vector is placed to \c rate_mv */ static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x, int_mv frame_mv[][REF_FRAMES], MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv, RD_STATS *best_rdc) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; AV1_COMMON *cm = &cpi->common; if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR && gf_temporal_ref) { int tmp_sad; int dis; if (bsize < BLOCK_16X16) return -1; tmp_sad = av1_int_pro_motion_estimation( cpi, x, bsize, mi_row, mi_col, &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv); if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; int_mv best_mv = mi->mv[0]; best_mv.as_mv.row >>= 3; best_mv.as_mv.col >>= 3; MV ref_mv = av1_get_ref_mv(x, 0).as_mv; frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL); if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion || cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex) { FULLPEL_MV start_mv = { .row = 0, .col = 0 }; ms_params.forced_stop = subpel_select(cpi, x, bsize, &best_mv, ref_mv, start_mv, false); } MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, &x->pred_sse[ref_frame], NULL); frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int; // When NEWMV is same as ref_mv from the drl, it is preferred to code the // MV as NEARESTMV or NEARMV. In this case, NEWMV needs to be skipped to // avoid an assert failure at a later stage. The scenario can occur if // NEARESTMV was not evaluated for ALTREF. if (frame_mv[NEWMV][ref_frame].as_mv.col == ref_mv.col && frame_mv[NEWMV][ref_frame].as_mv.row == ref_mv.row) return -1; *rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, &frame_mv[NEWMV][ref_frame], rate_mv, best_rdc->rdcost, 0)) { return -1; } return 0; } static void estimate_single_ref_frame_costs(const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs, int segment_id, BLOCK_SIZE bsize, unsigned int *ref_costs_single) { int seg_ref_active = segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); } else { int intra_inter_ctx = av1_get_intra_inter_context(xd); ref_costs_single[INTRA_FRAME] = mode_costs->intra_inter_cost[intra_inter_ctx][0]; unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && is_comp_ref_allowed(bsize)) { const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); base_cost += mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1]; } ref_costs_single[LAST_FRAME] = base_cost; ref_costs_single[GOLDEN_FRAME] = base_cost; ref_costs_single[ALTREF_FRAME] = base_cost; // add cost for last, golden, altref ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0]; ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1]; ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0]; ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1]; ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0]; } } static INLINE void set_force_skip_flag(const AV1_COMP *const cpi, MACROBLOCK *const x, unsigned int sse, int *force_skip) { if (x->txfm_search_params.tx_mode_search_type == TX_MODE_SELECT && cpi->sf.rt_sf.tx_size_level_based_on_qstep && cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { const int qstep = x->plane[0].dequant_QTX[1] >> (x->e_mbd.bd - 5); const unsigned int qstep_sq = qstep * qstep; // If the sse is low for low source variance blocks, mark those as // transform skip. // Note: Though qstep_sq is based on ac qstep, the threshold is kept // low so that reliable early estimate of tx skip can be obtained // through its comparison with sse. if (sse < qstep_sq && x->source_variance < qstep_sq && x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) *force_skip = 1; } } #define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \ (((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false) #define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16) static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *const x, unsigned int var, unsigned int sse, int *force_skip) { MACROBLOCKD *const xd = &x->e_mbd; TX_SIZE tx_size; const TxfmSearchParams *txfm_params = &x->txfm_search_params; if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) { int multiplier = 8; unsigned int var_thresh = 0; unsigned int is_high_var = 1; // Use quantizer based thresholds to determine transform size. if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) { const int qband = x->qindex >> (QINDEX_BITS - 2); const int mult[4] = { 8, 7, 6, 5 }; assert(qband < 4); multiplier = mult[qband]; const int qstep = x->plane[0].dequant_QTX[1] >> (xd->bd - 5); const unsigned int qstep_sq = qstep * qstep; var_thresh = qstep_sq * 2; if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { // If the sse is low for low source variance blocks, mark those as // transform skip. // Note: Though qstep_sq is based on ac qstep, the threshold is kept // low so that reliable early estimate of tx skip can be obtained // through its comparison with sse. if (sse < qstep_sq && x->source_variance < qstep_sq && x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) *force_skip = 1; // Further lower transform size based on aq mode only if residual // variance is high. is_high_var = (var >= var_thresh); } } // Choose larger transform size for blocks where dc component is dominant or // the ac component is low. if (sse > ((var * multiplier) >> 2) || (var < var_thresh)) tx_size = AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); else tx_size = TX_8X8; if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var) tx_size = TX_8X8; else if (tx_size > TX_16X16) tx_size = TX_16X16; } else { tx_size = AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); } if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) tx_size = TX_SIZE_FOR_BSIZE_GT32; return AOMMIN(tx_size, TX_16X16); } static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5 }; static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5 }; static void block_variance(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, unsigned int *sse, int *sum, int block_size, uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { int k = 0; *sse = 0; *sum = 0; // This function is called for block sizes >= BLOCK_32x32. As per the design // the aom_get_var_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32) // per call. Hence the width and height of the block need to be at least 8 and // 32 samples respectively. assert(w >= 32); assert(h >= 8); for (int i = 0; i < h; i += block_size) { for (int j = 0; j < w; j += 32) { aom_get_var_sse_sum_8x8_quad( src + src_stride * i + j, src_stride, ref + ref_stride * i + j, ref_stride, &sse8x8[k], &sum8x8[k], sse, sum, &var8x8[k]); k += 4; } } } static void block_variance_16x16_dual(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, unsigned int *sse, int *sum, int block_size, uint32_t *sse16x16, uint32_t *var16x16) { int k = 0; *sse = 0; *sum = 0; // This function is called for block sizes >= BLOCK_32x32. As per the design // the aom_get_var_sse_sum_16x16_dual() processes four 16x16 blocks (in a // 16x32) per call. Hence the width and height of the block need to be at // least 16 and 32 samples respectively. assert(w >= 32); assert(h >= 16); for (int i = 0; i < h; i += block_size) { for (int j = 0; j < w; j += 32) { aom_get_var_sse_sum_16x16_dual(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, ref_stride, &sse16x16[k], sse, sum, &var16x16[k]); k += 2; } } } static void calculate_variance(int bw, int bh, TX_SIZE tx_size, unsigned int *sse_i, int *sum_i, unsigned int *var_o, unsigned int *sse_o, int *sum_o) { const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); int i, j, k = 0; for (i = 0; i < nh; i += 2) { for (j = 0; j < nw; j += 2) { sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> (b_width_log2_lookup[unit_size] + b_height_log2_lookup[unit_size] + 6)); k++; } } } // Adjust the ac_thr according to speed, width, height and normalized sum static int ac_thr_factor(const int speed, const int width, const int height, const int norm_sum) { if (speed >= 8 && norm_sum < 5) { if (width <= 640 && height <= 480) return 4; else return 2; } return 1; } // Sets early_term flag based on chroma planes prediction static INLINE void set_early_term_based_on_uv_plane( AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MACROBLOCKD *xd, int mi_row, int mi_col, int *early_term, int num_blk, const unsigned int *sse_tx, const unsigned int *var_tx, int sum, unsigned int var, unsigned int sse) { AV1_COMMON *const cm = &cpi->common; struct macroblock_plane *const p = &x->plane[0]; const uint32_t dc_quant = p->dequant_QTX[0]; const uint32_t ac_quant = p->dequant_QTX[1]; const int64_t dc_thr = dc_quant * dc_quant >> 6; int64_t ac_thr = ac_quant * ac_quant >> 6; const int bw = b_width_log2_lookup[bsize]; const int bh = b_height_log2_lookup[bsize]; int ac_test = 1; int dc_test = 1; const int norm_sum = abs(sum) >> (bw + bh); #if CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && cpi->oxcf.speed > 5) ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, norm_sum, cpi->svc.temporal_layer_id); else ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); #else ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); #endif for (int k = 0; k < num_blk; k++) { // Check if all ac coefficients can be quantized to zero. if (!(var_tx[k] < ac_thr || var == 0)) { ac_test = 0; break; } // Check if dc coefficient can be quantized to zero. if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { dc_test = 0; break; } } // Check if chroma can be skipped based on ac and dc test flags. if (ac_test && dc_test) { int skip_uv[2] = { 0 }; unsigned int var_uv[2]; unsigned int sse_uv[2]; // Transform skipping test in UV planes. for (int i = 1; i <= 2; i++) { int j = i - 1; skip_uv[j] = 1; if (x->color_sensitivity[j]) { skip_uv[j] = 0; struct macroblock_plane *const puv = &x->plane[i]; struct macroblockd_plane *const puvd = &xd->plane[i]; const BLOCK_SIZE uv_bsize = get_plane_block_size( bsize, puvd->subsampling_x, puvd->subsampling_y); // Adjust these thresholds for UV. const int64_t uv_dc_thr = (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3; const int64_t uv_ac_thr = (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i, i); var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride, puvd->dst.buf, puvd->dst.stride, &sse_uv[j]); if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) skip_uv[j] = 1; else break; } } if (skip_uv[0] & skip_uv[1]) { *early_term = 1; } } } static INLINE void calc_rate_dist_block_param(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats, int calculate_rd, int *early_term, BLOCK_SIZE bsize, unsigned int sse) { if (calculate_rd) { if (!*early_term) { const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, rd_stats->sse, bw * bh, &rd_stats->rate, &rd_stats->dist); } if (*early_term) { rd_stats->rate = 0; rd_stats->dist = sse << 4; } } } static void model_skip_for_sb_y_large_64(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, MACROBLOCK *x, MACROBLOCKD *xd, RD_STATS *rd_stats, int *early_term, int calculate_rd, int64_t best_sse, unsigned int *var_output, unsigned int var_prune_threshold) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; int test_skip = 1; unsigned int var; int sum; const int bw = b_width_log2_lookup[bsize]; const int bh = b_height_log2_lookup[bsize]; unsigned int sse16x16[64] = { 0 }; unsigned int var16x16[64] = { 0 }; assert(xd->mi[0]->tx_size == TX_16X16); assert(bsize > BLOCK_32X32); // Calculate variance for whole partition, and also save 16x16 blocks' // variance to be used in following transform skipping test. block_variance_16x16_dual(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 16, sse16x16, var16x16); var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); if (var_output) { *var_output = var; if (*var_output > var_prune_threshold) { return; } } rd_stats->sse = sse; // Skipping test *early_term = 0; set_force_skip_flag(cpi, x, sse, early_term); // The code below for setting skip flag assumes transform size of at least // 8x8, so force this lower limit on transform. MB_MODE_INFO *const mi = xd->mi[0]; if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && early_term_inter_search_with_sse( cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, mi->mode)) test_skip = 0; if (*early_term) test_skip = 0; // Evaluate if the partition block is a skippable block in Y plane. if (test_skip) { const unsigned int *sse_tx = sse16x16; const unsigned int *var_tx = var16x16; const unsigned int num_block = (1 << (bw + bh - 2)) >> 2; set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, early_term, num_block, sse_tx, var_tx, sum, var, sse); } calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, sse); } static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, MACROBLOCK *x, MACROBLOCKD *xd, RD_STATS *rd_stats, int *early_term, int calculate_rd, int64_t best_sse, unsigned int *var_output, unsigned int var_prune_threshold) { if (x->force_zeromv_skip_for_blk) { *early_term = 1; rd_stats->rate = 0; rd_stats->dist = 0; rd_stats->sse = 0; return; } // For block sizes greater than 32x32, the transform size is always 16x16. // This function avoids calling calculate_variance() for tx_size 16x16 cases // by directly populating variance at tx_size level from // block_variance_16x16_dual() function. const TxfmSearchParams *txfm_params = &x->txfm_search_params; if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) { xd->mi[0]->tx_size = TX_SIZE_FOR_BSIZE_GT32; model_skip_for_sb_y_large_64(cpi, bsize, mi_row, mi_col, x, xd, rd_stats, early_term, calculate_rd, best_sse, var_output, var_prune_threshold); return; } // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; int test_skip = 1; unsigned int var; int sum; const int bw = b_width_log2_lookup[bsize]; const int bh = b_height_log2_lookup[bsize]; unsigned int sse8x8[256] = { 0 }; int sum8x8[256] = { 0 }; unsigned int var8x8[256] = { 0 }; TX_SIZE tx_size; // Calculate variance for whole partition, and also save 8x8 blocks' variance // to be used in following transform skipping test. block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); if (var_output) { *var_output = var; if (*var_output > var_prune_threshold) { return; } } rd_stats->sse = sse; // Skipping test *early_term = 0; tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term); assert(tx_size <= TX_16X16); // The code below for setting skip flag assumes transform size of at least // 8x8, so force this lower limit on transform. if (tx_size < TX_8X8) tx_size = TX_8X8; xd->mi[0]->tx_size = tx_size; MB_MODE_INFO *const mi = xd->mi[0]; if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && early_term_inter_search_with_sse( cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, mi->mode)) test_skip = 0; if (*early_term) test_skip = 0; // Evaluate if the partition block is a skippable block in Y plane. if (test_skip) { unsigned int sse16x16[64] = { 0 }; int sum16x16[64] = { 0 }; unsigned int var16x16[64] = { 0 }; const unsigned int *sse_tx = sse8x8; const unsigned int *var_tx = var8x8; unsigned int num_blks = 1 << (bw + bh - 2); if (tx_size >= TX_16X16) { calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, sum16x16); sse_tx = sse16x16; var_tx = var16x16; num_blks = num_blks >> 2; } set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, early_term, num_blks, sse_tx, var_tx, sum, var, sse); } calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, sse); } static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, RD_STATS *rd_stats, unsigned int *var_out, int calculate_rd, int *early_term) { if (x->force_zeromv_skip_for_blk && early_term != NULL) { *early_term = 1; rd_stats->rate = 0; rd_stats->dist = 0; rd_stats->sse = 0; } // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. const int ref = xd->mi[0]->ref_frame[0]; assert(bsize < BLOCK_SIZES_ALL); struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; unsigned int sse; int rate; int64_t dist; unsigned int var = cpi->ppi->fn_ptr[bsize].vf( p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); int force_skip = 0; xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip); if (var_out) { *var_out = var; } if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) { const int bwide = block_size_wide[bsize]; const int bhigh = block_size_high[bsize]; model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate, &dist); } else { rate = INT_MAX; // this will be overwritten later with block_yrd dist = INT_MAX; } rd_stats->sse = sse; x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); if (force_skip && ref > INTRA_FRAME) { rate = 0; dist = (int64_t)sse << 4; } assert(rate >= 0); rd_stats->skip_txfm = (rate == 0); rate = AOMMIN(rate, INT_MAX); rd_stats->rate = rate; rd_stats->dist = dist; } static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x, int max_blocks_high, int max_blocks_wide, int num_4x4_w, int step, int block_step) { struct macroblock_plane *const p = &x->plane[0]; const int bw = 4 * num_4x4_w; const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide); int block = 0; for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0; c < num_4x4; c += 2 * block_step) { const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2]; int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block); aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff); block += 2 * step; } } } #define DECLARE_BLOCK_YRD_BUFFERS() \ DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \ DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \ DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \ uint16_t eob[1]; #define DECLARE_BLOCK_YRD_VARS() \ /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \ * entire bsize and write macroblock_plane::coeff. So low_coeff is kept \ * as a non-const so we can reassign it to macroblock_plane::coeff. */ \ int16_t *low_coeff = (int16_t *)coeff_buf; \ int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \ int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \ const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; \ const int diff_stride = bw; #define DECLARE_LOOP_VARS_BLOCK_YRD() \ const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2]; #if CONFIG_AV1_HIGHBITDEPTH #define DECLARE_BLOCK_YRD_HBD_VARS() \ tran_low_t *const coeff = coeff_buf; \ tran_low_t *const qcoeff = qcoeff_buf; \ tran_low_t *const dqcoeff = dqcoeff_buf; static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd( MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, tran_low_t *const coeff, tran_low_t *const qcoeff, tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost, const int tx_blk_id) { const int is_txfm_skip = (ncoeffs == 0); *skippable &= is_txfm_skip; x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; *eob_cost += get_msb(ncoeffs + 1); int64_t dummy; if (ncoeffs == 1) this_rdc->rate += (int)abs(qcoeff[0]); else if (ncoeffs > 1) this_rdc->rate += aom_satd(qcoeff, step << 4); this_rdc->dist += av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2; } #endif static AOM_FORCE_INLINE void update_yrd_loop_vars( MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, int16_t *const low_coeff, int16_t *const low_qcoeff, int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost, const int tx_blk_id) { const int is_txfm_skip = (ncoeffs == 0); *skippable &= is_txfm_skip; x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; *eob_cost += get_msb(ncoeffs + 1); if (ncoeffs == 1) this_rdc->rate += (int)abs(low_qcoeff[0]); else if (ncoeffs > 1) this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4); this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2; } /*!\brief Calculates RD Cost using Hadamard transform. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost using Hadamard transform. For low bit depth this function * uses low-precision set of functions (16-bit) and 32 bit for high bit depth * \param[in] x Pointer to structure holding all the data for the current macroblock * \param[in] this_rdc Pointer to calculated RD Cost * \param[in] skippable Pointer to a flag indicating possible tx skip * \param[in] bsize Current block size * \param[in] tx_size Transform size * \param[in] is_inter_mode Flag to indicate inter mode * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c this_rdc. \c skippable flag is set if there is no non-zero quantized * coefficients for Hadamard transform */ static void block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, const BLOCK_SIZE bsize, const TX_SIZE tx_size, const int is_inter_mode) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblockd_plane *pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; assert(bsize < BLOCK_SIZES_ALL); const int num_4x4_w = mi_size_wide[bsize]; const int num_4x4_h = mi_size_high[bsize]; const int step = 1 << (tx_size << 1); const int block_step = (1 << tx_size); const int row_step = step * num_4x4_w >> tx_size; int block = 0; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); int eob_cost = 0; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; const int use_hbd = is_cur_buf_hbd(xd); int num_blk_skip_w = num_4x4_w; int sh_blk_skip = 0; if (is_inter_mode) { num_blk_skip_w = num_4x4_w >> 1; sh_blk_skip = 1; } #if CONFIG_AV1_HIGHBITDEPTH if (use_hbd) { aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } else { aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } #else aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); #endif // Keep the intermediate value on the stack here. Writing directly to // skippable causes speed regression due to load-and-store issues in // update_yrd_loop_vars. int temp_skippable = 1; this_rdc->dist = 0; this_rdc->rate = 0; // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks // can be done per function call. Hence the call of Hadamard txfm is // abstracted here for the specified cases. int is_tx_8x8_dual_applicable = (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 && block_size_high[bsize] >= 8); #if CONFIG_AV1_HIGHBITDEPTH // As of now, dual implementation of hadamard txfm is available for low // bitdepth. if (use_hbd) is_tx_8x8_dual_applicable = 0; #endif if (is_tx_8x8_dual_applicable) { aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w, step, block_step); } DECLARE_BLOCK_YRD_BUFFERS() DECLARE_BLOCK_YRD_VARS() #if CONFIG_AV1_HIGHBITDEPTH DECLARE_BLOCK_YRD_HBD_VARS() #else (void)use_hbd; #endif // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { DECLARE_LOOP_VARS_BLOCK_YRD() switch (tx_size) { #if CONFIG_AV1_HIGHBITDEPTH case TX_16X16: if (use_hbd) { aom_hadamard_16x16(src_diff, diff_stride, coeff); av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, // default_scan_fp_16x16_transpose and // av1_default_iscan_fp_16x16_transpose have to be // used together. default_scan_fp_16x16_transpose, av1_default_iscan_fp_16x16_transpose); } else { aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, // default_scan_lp_16x16_transpose and // av1_default_iscan_lp_16x16_transpose have to be // used together. default_scan_lp_16x16_transpose, av1_default_iscan_lp_16x16_transpose); } break; case TX_8X8: if (use_hbd) { aom_hadamard_8x8(src_diff, diff_stride, coeff); av1_quantize_fp( coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); } else { if (is_tx_8x8_dual_applicable) { // The coeffs are pre-computed for the whole block, so re-assign // low_coeff to the appropriate location. const int block_offset = BLOCK_OFFSET(block + s); low_coeff = (int16_t *)p->coeff + block_offset; } else { aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); } av1_quantize_lp( low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, // default_scan_8x8_transpose and // av1_default_iscan_8x8_transpose have to be used together. default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); } break; default: assert(tx_size == TX_4X4); // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate // normal coefficients order, so we don't need to change the scan // order here. if (use_hbd) { aom_fdct4x4(src_diff, coeff, diff_stride); av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); } else { aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); } break; #else case TX_16X16: aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, default_scan_lp_16x16_transpose, av1_default_iscan_lp_16x16_transpose); break; case TX_8X8: if (is_tx_8x8_dual_applicable) { // The coeffs are pre-computed for the whole block, so re-assign // low_coeff to the appropriate location. const int block_offset = BLOCK_OFFSET(block + s); low_coeff = (int16_t *)p->coeff + block_offset; } else { aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); } av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); break; default: aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); break; #endif } assert(*eob <= 1024); #if CONFIG_AV1_HIGHBITDEPTH if (use_hbd) update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff, dqcoeff, this_rdc, &eob_cost, (r * num_blk_skip_w + c) >> sh_blk_skip); else #endif update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, (r * num_blk_skip_w + c) >> sh_blk_skip); } block += row_step; } this_rdc->skip_txfm = *skippable = temp_skippable; if (this_rdc->sse < INT64_MAX) { this_rdc->sse = (this_rdc->sse << 6) >> 2; if (temp_skippable) { this_rdc->dist = 0; this_rdc->dist = this_rdc->sse; return; } } // If skippable is set, rate gets clobbered later. this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); } // Explicitly enumerate the cases so the compiler can generate SIMD for the // function. According to the disassembler, gcc generates SSE codes for each of // the possible block sizes. The hottest case is tx_width 16, which takes up // about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since // av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the // potential room of improvement for writing AVX2 optimization is only 3% * 8% = // 0.24% of total encoding time. static AOM_INLINE void scale_square_buf_vals(int16_t *dst, const int tx_width, const int16_t *src, const int src_stride) { #define DO_SCALING \ do { \ for (int idy = 0; idy < tx_width; ++idy) { \ for (int idx = 0; idx < tx_width; ++idx) { \ dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \ } \ } \ } while (0) if (tx_width == 4) { DO_SCALING; } else if (tx_width == 8) { DO_SCALING; } else if (tx_width == 16) { DO_SCALING; } else { assert(0); } #undef DO_SCALING } /*!\brief Calculates RD Cost when the block uses Identity transform. * Note that thie function is only for low bit depth encoding, since it * is called in real-time mode for now, which sets high bit depth to 0: * -DCONFIG_AV1_HIGHBITDEPTH=0 * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost. For low bit depth this function * uses low-precision set of functions (16-bit) and 32 bit for high bit depth * \param[in] x Pointer to structure holding all the data for the current macroblock * \param[in] this_rdc Pointer to calculated RD Cost * \param[in] skippable Pointer to a flag indicating possible tx skip * \param[in] bsize Current block size * \param[in] tx_size Transform size * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c this_rdc. \c skippable flag is set if all coefficients are zero. */ static void block_yrd_idtx(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, const BLOCK_SIZE bsize, const TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblockd_plane *pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; assert(bsize < BLOCK_SIZES_ALL); const int num_4x4_w = mi_size_wide[bsize]; const int num_4x4_h = mi_size_high[bsize]; const int step = 1 << (tx_size << 1); const int block_step = (1 << tx_size); const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); int eob_cost = 0; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; const int num_blk_skip_w = num_4x4_w >> 1; const int sh_blk_skip = 1; // Keep the intermediate value on the stack here. Writing directly to // skippable causes speed regression due to load-and-store issues in // update_yrd_loop_vars. int temp_skippable = 1; int tx_wd = 0; switch (tx_size) { case TX_64X64: assert(0); // Not implemented break; case TX_32X32: assert(0); // Not used break; case TX_16X16: tx_wd = 16; break; case TX_8X8: tx_wd = 8; break; default: assert(tx_size == TX_4X4); tx_wd = 4; break; } this_rdc->dist = 0; this_rdc->rate = 0; aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. DECLARE_BLOCK_YRD_BUFFERS() DECLARE_BLOCK_YRD_VARS() for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { DECLARE_LOOP_VARS_BLOCK_YRD() scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride); av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); assert(*eob <= 1024); update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, (r * num_blk_skip_w + c) >> sh_blk_skip); } } this_rdc->skip_txfm = *skippable = temp_skippable; if (this_rdc->sse < INT64_MAX) { this_rdc->sse = (this_rdc->sse << 6) >> 2; if (temp_skippable) { this_rdc->dist = 0; this_rdc->dist = this_rdc->sse; return; } } // If skippable is set, rate gets clobbered later. this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); } static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode, MV_REFERENCE_FRAME ref_frame0, MV_REFERENCE_FRAME ref_frame1, const AV1_COMMON *cm) { PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; mbmi->ref_mv_idx = 0; mbmi->mode = pred_mode; mbmi->uv_mode = UV_DC_PRED; mbmi->ref_frame[0] = ref_frame0; mbmi->ref_frame[1] = ref_frame1; pmi->palette_size[0] = 0; pmi->palette_size[1] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->num_proj_ref = 1; mbmi->interintra_mode = 0; set_default_interp_filters(mbmi, cm->features.interp_filter); } #if CONFIG_INTERNAL_STATS static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index) { #else static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { #endif // CONFIG_INTERNAL_STATS MACROBLOCKD *const xd = &x->e_mbd; TxfmSearchInfo *txfm_info = &x->txfm_search_info; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way ctx->rd_stats.skip_txfm = txfm_info->skip_txfm; ctx->skippable = txfm_info->skip_txfm; #if CONFIG_INTERNAL_STATS ctx->best_mode_index = mode_index; #endif // CONFIG_INTERNAL_STATS ctx->mic = *xd->mi[0]; ctx->skippable = txfm_info->skip_txfm; av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, av1_ref_frame_type(xd->mi[0]->ref_frame)); } static int get_pred_buffer(PRED_BUFFER *p, int len) { for (int i = 0; i < len; i++) { if (!p[i].in_use) { p[i].in_use = 1; return i; } } return -1; } static void free_pred_buffer(PRED_BUFFER *p) { if (p != NULL) p->in_use = 0; } static INLINE int get_drl_cost(const PREDICTION_MODE this_mode, const int ref_mv_idx, const MB_MODE_INFO_EXT *mbmi_ext, const int (*const drl_mode_cost0)[2], int8_t ref_frame_type) { int cost = 0; if (this_mode == NEWMV || this_mode == NEW_NEWMV) { for (int idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); cost += drl_mode_cost0[drl_ctx][ref_mv_idx != idx]; if (ref_mv_idx == idx) return cost; } } return cost; } if (have_nearmv_in_inter_mode(this_mode)) { for (int idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); cost += drl_mode_cost0[drl_ctx][ref_mv_idx != (idx - 1)]; if (ref_mv_idx == (idx - 1)) return cost; } } return cost; } return cost; } static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, int16_t mode_context) { if (is_inter_compound_mode(mode)) { return mode_costs ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; } int mode_cost = 0; int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; assert(is_inter_mode(mode)); if (mode == NEWMV) { mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; return mode_cost; } else { mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mode == GLOBALMV) { mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; return mode_cost; } else { mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; return mode_cost; } } } static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode, RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row, int mv_col, int speed, uint32_t spatial_variance, CONTENT_STATE_SB content_state_sb) { // Bias against MVs associated with NEWMV mode that are very different from // top/left neighbors. if (this_mode == NEWMV) { int al_mv_average_row; int al_mv_average_col; int row_diff, col_diff; int above_mv_valid = 0; int left_mv_valid = 0; int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL; int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL; if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad && spatial_variance < 300 && (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) { this_rdc->rdcost = this_rdc->rdcost << 2; return; } if (xd->above_mbmi) { above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV; above_row = xd->above_mbmi->mv[0].as_mv.row; above_col = xd->above_mbmi->mv[0].as_mv.col; } if (xd->left_mbmi) { left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV; left_row = xd->left_mbmi->mv[0].as_mv.row; left_col = xd->left_mbmi->mv[0].as_mv.col; } if (above_mv_valid && left_mv_valid) { al_mv_average_row = (above_row + left_row + 1) >> 1; al_mv_average_col = (above_col + left_col + 1) >> 1; } else if (above_mv_valid) { al_mv_average_row = above_row; al_mv_average_col = above_col; } else if (left_mv_valid) { al_mv_average_row = left_row; al_mv_average_col = left_col; } else { al_mv_average_row = al_mv_average_col = 0; } row_diff = al_mv_average_row - mv_row; col_diff = al_mv_average_col - mv_col; if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) { if (bsize >= BLOCK_32X32) this_rdc->rdcost = this_rdc->rdcost << 1; else this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; } } else { // Bias for speed >= 8 for low spatial variance. if (speed >= 8 && spatial_variance < 150 && (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64)) this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; } } static int64_t model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, MACROBLOCK *x, MACROBLOCKD *xd, RD_STATS *this_rdc, int start_plane, int stop_plane) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; int rate; int64_t dist; int i; int64_t tot_sse = 0; this_rdc->rate = 0; this_rdc->dist = 0; this_rdc->skip_txfm = 0; for (i = start_plane; i <= stop_plane; ++i) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &xd->plane[i]; const uint32_t dc_quant = p->dequant_QTX[0]; const uint32_t ac_quant = p->dequant_QTX[1]; const BLOCK_SIZE bs = plane_bsize; unsigned int var; if (!x->color_sensitivity[i - 1]) continue; var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); assert(sse >= var); tot_sse += sse; av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], dc_quant >> 3, &rate, &dist); this_rdc->rate += rate >> 1; this_rdc->dist += dist << 3; av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, &rate, &dist); this_rdc->rate += rate; this_rdc->dist += dist << 4; } if (this_rdc->rate == 0) { this_rdc->skip_txfm = 1; } if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >= RDCOST(x->rdmult, 0, tot_sse << 4)) { this_rdc->rate = 0; this_rdc->dist = tot_sse << 4; this_rdc->skip_txfm = 1; } return tot_sse; } /*!\cond */ struct estimate_block_intra_args { AV1_COMP *cpi; MACROBLOCK *x; PREDICTION_MODE mode; int skippable; RD_STATS *rdc; }; /*!\endcond */ /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost for an intra mode for a single TX block using Hadamard * transform. * \param[in] plane Color plane * \param[in] block Index of a TX block in a prediction block * \param[in] row Row of a current TX block * \param[in] col Column of a current TX block * \param[in] plane_bsize Block size of a current prediction block * \param[in] tx_size Transform size * \param[in] arg Pointer to a structure that holds parameters * for intra mode search * * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode * are set in \c args->rdc and \c args->mode */ static void estimate_block_intra(int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct estimate_block_intra_args *const args = arg; AV1_COMP *const cpi = args->cpi; AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; uint8_t *const src_buf_base = p->src.buf; uint8_t *const dst_buf_base = pd->dst.buf; const int64_t src_stride = p->src.stride; const int64_t dst_stride = pd->dst.stride; RD_STATS this_rdc; (void)block; (void)plane_bsize; av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); av1_invalid_rd_stats(&this_rdc); p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; if (plane == 0) { block_yrd(x, &this_rdc, &args->skippable, bsize_tx, AOMMIN(tx_size, TX_16X16), 0); } else { model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane); } p->src.buf = src_buf_base; pd->dst.buf = dst_buf_base; args->rdc->rate += this_rdc.rate; args->rdc->dist += this_rdc.dist; } static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx, PREDICTION_MODE mode) { const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4); const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128); for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) { int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx]; if (thr_mode_idx == best_mode_idx) { *freq_fact -= (*freq_fact >> 4); } else { *freq_fact = AOMMIN(*freq_fact + RD_THRESH_INC, cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); } } } #if CONFIG_AV1_TEMPORAL_DENOISING static void av1_pickmode_ctx_den_update( AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, unsigned int ref_frame_cost[REF_FRAMES], int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred, BEST_PICKMODE *bp) { ctx_den->zero_last_cost_orig = zero_last_cost_orig; ctx_den->ref_frame_cost = ref_frame_cost; ctx_den->frame_mv = frame_mv; ctx_den->reuse_inter_pred = reuse_inter_pred; ctx_den->best_tx_size = bp->best_tx_size; ctx_den->best_mode = bp->best_mode; ctx_den->best_ref_frame = bp->best_ref_frame; ctx_den->best_pred_filter = bp->best_pred_filter; ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm; } static void recheck_zeromv_after_denoising( AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den, struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc, BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) { // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on // denoised result. Only do this under noise conditions, and if rdcost of // ZEROMV on original source is not significantly higher than rdcost of best // mode. if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || (ctx_den->best_ref_frame == GOLDEN_FRAME && cpi->svc.number_spatial_layers == 1 && decision == FILTER_ZEROMV_BLOCK))) { // Check if we should pick ZEROMV on denoised signal. AV1_COMMON *const cm = &cpi->common; RD_STATS this_rdc; const ModeCosts *mode_costs = &x->mode_costs; TxfmSearchInfo *txfm_info = &x->txfm_search_info; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; mi->mode = GLOBALMV; mi->ref_frame[0] = LAST_FRAME; mi->ref_frame[1] = NONE_FRAME; set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); mi->mv[0].as_int = 0; mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); unsigned int var; model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, &var, 1, NULL); const int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx); this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME]; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); txfm_info->skip_txfm = this_rdc.skip_txfm; // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source // is higher than best_ref mode (on original source). if (this_rdc.rdcost > best_rdc->rdcost) { this_rdc = *best_rdc; mi->mode = best_pickmode->best_mode; mi->ref_frame[0] = best_pickmode->best_ref_frame; set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); mi->interp_filters = best_pickmode->best_pred_filter; if (best_pickmode->best_ref_frame == INTRA_FRAME) { mi->mv[0].as_int = INVALID_MV; } else { mi->mv[0].as_int = ctx_den ->frame_mv[best_pickmode->best_mode] [best_pickmode->best_ref_frame] .as_int; if (ctx_den->reuse_inter_pred) { xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); } } mi->tx_size = best_pickmode->best_tx_size; txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm; } else { ctx_den->best_ref_frame = LAST_FRAME; *best_rdc = this_rdc; } } } #endif // CONFIG_AV1_TEMPORAL_DENOISING #define FILTER_SEARCH_SIZE 2 /*!\brief Searches for the best interpolation filter * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR, * EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects * the one that gives lowest RD cost. RD cost is calculated using curvfit model. * Support for dual filters (different filters in the x & y directions) is * allowed if sf.interp_sf.disable_dual_filter = 0. * * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] this_rdc Pointer to calculated RD Cost * \param[in] inter_pred_params_sr Pointer to structure holding parameters of inter prediction for single reference * \param[in] mi_row Row index in 4x4 units * \param[in] mi_col Column index in 4x4 units * \param[in] tmp_buffer Pointer to a temporary buffer for * prediction re-use * \param[in] bsize Current block size * \param[in] reuse_inter_pred Flag, indicating prediction re-use * \param[out] this_mode_pred Pointer to store prediction buffer * for prediction re-use * \param[out] this_early_term Flag, indicating that transform can be * skipped * \param[out] var The residue variance of the current * predictor. * \param[in] use_model_yrd_large Flag, indicating special logic to handle * large blocks * \param[in] best_sse Best sse so far. * \param[in] comp_pred Flag, indicating compound mode. * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c this_rdc and best filter is placed to \c mi->interp_filters. In case * \c reuse_inter_pred flag is set, this function also outputs * \c this_mode_pred. Also \c this_early_temp is set if transform can be * skipped */ static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, InterPredParams *inter_pred_params_sr, int mi_row, int mi_col, PRED_BUFFER *tmp_buffer, BLOCK_SIZE bsize, int reuse_inter_pred, PRED_BUFFER **this_mode_pred, int *this_early_term, unsigned int *var, int use_model_yrd_large, int64_t best_sse, int comp_pred) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[0]; MB_MODE_INFO *const mi = xd->mi[0]; const int bw = block_size_wide[bsize]; int dim_factor = (cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1; RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; PRED_BUFFER *current_pred = *this_mode_pred; int best_skip = 0; int best_early_term = 0; int64_t best_cost = INT64_MAX; int best_filter_index = -1; SubpelParams subpel_params; // Initialize inter prediction params at mode level for single reference // mode. if (!comp_pred) init_inter_mode_params(&mi->mv[0].as_mv, inter_pred_params_sr, &subpel_params, xd->block_ref_scale_factors[0], pd->pre->width, pd->pre->height); for (int i = 0; i < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; ++i) { int64_t cost; if (cpi->sf.interp_sf.disable_dual_filter && filters_ref_set[i].filter_x != filters_ref_set[i].filter_y) continue; mi->interp_filters.as_filters.x_filter = filters_ref_set[i].filter_x; mi->interp_filters.as_filters.y_filter = filters_ref_set[i].filter_y; if (!comp_pred) av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, &subpel_params); else av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); unsigned int curr_var = UINT_MAX; if (use_model_yrd_large) model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &pf_rd_stats[i], this_early_term, 1, best_sse, &curr_var, UINT_MAX); else model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], &curr_var, 1, NULL); pf_rd_stats[i].rate += av1_get_switchable_rate( x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); pf_tx_size[i] = mi->tx_size; if (cost < best_cost) { *var = curr_var; best_filter_index = i; best_cost = cost; best_skip = pf_rd_stats[i].skip_txfm; best_early_term = *this_early_term; if (reuse_inter_pred) { if (*this_mode_pred != current_pred) { free_pred_buffer(*this_mode_pred); *this_mode_pred = current_pred; } current_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; pd->dst.buf = current_pred->data; pd->dst.stride = bw; } } } assert(best_filter_index >= 0 && best_filter_index < dim_factor * FILTER_SEARCH_SIZE); if (reuse_inter_pred && *this_mode_pred != current_pred) free_pred_buffer(current_pred); mi->interp_filters.as_filters.x_filter = filters_ref_set[best_filter_index].filter_x; mi->interp_filters.as_filters.y_filter = filters_ref_set[best_filter_index].filter_y; mi->tx_size = pf_tx_size[best_filter_index]; this_rdc->rate = pf_rd_stats[best_filter_index].rate; this_rdc->dist = pf_rd_stats[best_filter_index].dist; this_rdc->sse = pf_rd_stats[best_filter_index].sse; this_rdc->skip_txfm = (best_skip || best_early_term); *this_early_term = best_early_term; if (reuse_inter_pred) { pd->dst.buf = (*this_mode_pred)->data; pd->dst.stride = (*this_mode_pred)->stride; } else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) { if (!comp_pred) av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, &subpel_params); else av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); } } #if !CONFIG_REALTIME_ONLY #define MOTION_MODE_SEARCH_SIZE 2 static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi, MACROBLOCK *const x, const MB_MODE_INFO *mbmi) { const FeatureFlags *const features = &cpi->common.features; const MACROBLOCKD *xd = &x->e_mbd; if (cpi->sf.inter_sf.extra_prune_warped) return 0; if (has_second_ref(mbmi)) return 0; MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; if (features->switchable_motion_mode) { // Determine which motion modes to search if more than SIMPLE_TRANSLATION // is allowed. last_motion_mode_allowed = motion_mode_allowed( xd->global_motion, xd, mbmi, features->allow_warped_motion); } if (last_motion_mode_allowed == WARPED_CAUSAL) { return 1; } return 0; } static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const FeatureFlags *const features = &cm->features; mi->num_proj_ref = 1; WARP_SAMPLE_INFO *const warp_sample_info = &x->warp_sample_info[mi->ref_frame[0]]; int *pts0 = warp_sample_info->pts; int *pts_inref0 = warp_sample_info->pts_inref; MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; if (features->switchable_motion_mode) { // Determine which motion modes to search if more than SIMPLE_TRANSLATION // is allowed. last_motion_mode_allowed = motion_mode_allowed( xd->global_motion, xd, mi, features->allow_warped_motion); } if (last_motion_mode_allowed == WARPED_CAUSAL) { if (warp_sample_info->num < 0) { warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); } mi->num_proj_ref = warp_sample_info->num; } } static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, int mi_row, int mi_col, BLOCK_SIZE bsize, int *this_early_term, int use_model_yrd_large, int *rate_mv, int64_t best_sse) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const FeatureFlags *const features = &cm->features; MB_MODE_INFO *const mi = xd->mi[0]; RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 }; int best_skip = 0; int best_early_term = 0; int64_t best_cost = INT64_MAX; int best_mode_index = -1; const int interp_filter = features->interp_filter; const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = { SIMPLE_TRANSLATION, WARPED_CAUSAL }; int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1; WARP_SAMPLE_INFO *const warp_sample_info = &x->warp_sample_info[mi->ref_frame[0]]; int *pts0 = warp_sample_info->pts; int *pts_inref0 = warp_sample_info->pts_inref; const int total_samples = mi->num_proj_ref; if (total_samples == 0) { // Do not search WARPED_CAUSAL if there are no samples to use to determine // warped parameters. mode_search_size = 1; } const MB_MODE_INFO base_mbmi = *mi; MB_MODE_INFO best_mbmi; for (int i = 0; i < mode_search_size; ++i) { int64_t cost = INT64_MAX; MOTION_MODE motion_mode = motion_modes[i]; *mi = base_mbmi; mi->motion_mode = motion_mode; if (motion_mode == SIMPLE_TRANSLATION) { mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); if (use_model_yrd_large) model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &pf_rd_stats[i], this_early_term, 1, best_sse, NULL, UINT_MAX); else model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL); pf_rd_stats[i].rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); } else if (motion_mode == WARPED_CAUSAL) { int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; const ModeCosts *mode_costs = &x->mode_costs; mi->wm_params.wmtype = DEFAULT_WMTYPE; mi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); // Select the samples according to motion vector difference if (mi->num_proj_ref > 1) { mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref, mi->num_proj_ref, bsize); } // Compute the warped motion parameters with a least squares fit // using the collected samples if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize, mi->mv[0].as_mv.row, mi->mv[0].as_mv.col, &mi->wm_params, mi_row, mi_col)) { if (mi->mode == NEWMV) { const int_mv mv0 = mi->mv[0]; const WarpedMotionParams wm_params0 = mi->wm_params; const int num_proj_ref0 = mi->num_proj_ref; const int_mv ref_mv = av1_get_ref_mv(x, 0); SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv.as_mv, NULL); // Refine MV in a small range. av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, total_samples); if (mi->mv[0].as_int == ref_mv.as_int) { continue; } if (mv0.as_int != mi->mv[0].as_int) { // Keep the refined MV and WM parameters. int tmp_rate_mv = av1_mv_bit_cost( &mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); *rate_mv = tmp_rate_mv; } else { // Restore the old MV and WM parameters. mi->mv[0] = mv0; mi->wm_params = wm_params0; mi->num_proj_ref = num_proj_ref0; } } // Build the warped predictor av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, av1_num_planes(cm) - 1); if (use_model_yrd_large) model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &pf_rd_stats[i], this_early_term, 1, best_sse, NULL, UINT_MAX); else model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL); pf_rd_stats[i].rate += mode_costs->motion_mode_cost[bsize][mi->motion_mode]; cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); } else { cost = INT64_MAX; } } if (cost < best_cost) { best_mode_index = i; best_cost = cost; best_skip = pf_rd_stats[i].skip_txfm; best_early_term = *this_early_term; best_mbmi = *mi; } } assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE); *mi = best_mbmi; this_rdc->rate = pf_rd_stats[best_mode_index].rate; this_rdc->dist = pf_rd_stats[best_mode_index].dist; this_rdc->sse = pf_rd_stats[best_mode_index].sse; this_rdc->skip_txfm = (best_skip || best_early_term); *this_early_term = best_early_term; if (best_mode_index < FILTER_SEARCH_SIZE - 1) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); } } #endif // !CONFIG_REALTIME_ONLY #define COLLECT_PICK_MODE_STAT 0 #define COLLECT_NON_SQR_STAT 0 #if COLLECT_PICK_MODE_STAT #include "aom_ports/aom_timer.h" typedef struct _mode_search_stat { int32_t num_blocks[BLOCK_SIZES]; int64_t total_block_times[BLOCK_SIZES]; int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT]; int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT]; int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT]; int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT]; int64_t ms_time[BLOCK_SIZES][MB_MODE_COUNT]; int64_t ifs_time[BLOCK_SIZES][MB_MODE_COUNT]; int64_t model_rd_time[BLOCK_SIZES][MB_MODE_COUNT]; int64_t txfm_time[BLOCK_SIZES][MB_MODE_COUNT]; struct aom_usec_timer timer1; struct aom_usec_timer timer2; struct aom_usec_timer bsize_timer; } mode_search_stat; static mode_search_stat ms_stat; static AOM_INLINE void print_stage_time(const char *stage_name, int64_t stage_time, int64_t total_time) { printf(" %s: %ld (%f%%)\n", stage_name, stage_time, 100 * stage_time / (float)total_time); } static void print_time(const mode_search_stat *const ms_stat, const BLOCK_SIZE bsize, const int mi_rows, const int mi_cols, const int mi_row, const int mi_col) { if ((mi_row + mi_size_high[bsize] >= mi_rows) && (mi_col + mi_size_wide[bsize] >= mi_cols)) { int64_t total_time = 0l; int32_t total_blocks = 0; for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { total_time += ms_stat->total_block_times[bs]; total_blocks += ms_stat->num_blocks[bs]; } printf("\n"); for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { if (ms_stat->num_blocks[bs] == 0) { continue; } if (!COLLECT_NON_SQR_STAT && block_size_wide[bs] != block_size_high[bs]) { continue; } printf("BLOCK_%dX%d Num %d, Time: %ld (%f%%), Avg_time %f:\n", block_size_wide[bs], block_size_high[bs], ms_stat->num_blocks[bs], ms_stat->total_block_times[bs], 100 * ms_stat->total_block_times[bs] / (float)total_time, (float)ms_stat->total_block_times[bs] / ms_stat->num_blocks[bs]); for (int j = 0; j < MB_MODE_COUNT; j++) { if (ms_stat->nonskipped_search_times[bs][j] == 0) { continue; } int64_t total_mode_time = ms_stat->nonskipped_search_times[bs][j]; printf(" Mode %d, %d/%d tps %f\n", j, ms_stat->num_nonskipped_searches[bs][j], ms_stat->num_searches[bs][j], ms_stat->num_nonskipped_searches[bs][j] > 0 ? (float)ms_stat->nonskipped_search_times[bs][j] / ms_stat->num_nonskipped_searches[bs][j] : 0l); if (j >= INTER_MODE_START) { total_mode_time = ms_stat->ms_time[bs][j] + ms_stat->ifs_time[bs][j] + ms_stat->model_rd_time[bs][j] + ms_stat->txfm_time[bs][j]; print_stage_time("Motion Search Time", ms_stat->ms_time[bs][j], total_time); print_stage_time("Filter Search Time", ms_stat->ifs_time[bs][j], total_time); print_stage_time("Model RD Time", ms_stat->model_rd_time[bs][j], total_time); print_stage_time("Tranfm Search Time", ms_stat->txfm_time[bs][j], total_time); } print_stage_time("Total Mode Time", total_mode_time, total_time); } printf("\n"); } printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks); } } #endif // COLLECT_PICK_MODE_STAT static void compute_intra_yprediction(const AV1_COMMON *cm, PREDICTION_MODE mode, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd) { const SequenceHeader *seq_params = cm->seq_params; struct macroblockd_plane *const pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; uint8_t *const src_buf_base = p->src.buf; uint8_t *const dst_buf_base = pd->dst.buf; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; int plane = 0; int row, col; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = max_txsize_lookup[bsize]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { // Skip visiting the sub blocks that are wholly within the UMV. for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride, 0, 0, plane); } } p->src.buf = src_buf_base; pd->dst.buf = dst_buf_base; } void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; RD_STATS this_rdc, best_rdc; struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; const TxfmSearchParams *txfm_params = &x->txfm_search_params; const TX_SIZE intra_tx_size = AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); int *bmode_costs; PREDICTION_MODE best_mode = DC_PRED; const MB_MODE_INFO *above_mi = xd->above_mbmi; const MB_MODE_INFO *left_mi = xd->left_mbmi; const PREDICTION_MODE A = av1_above_block_mode(above_mi); const PREDICTION_MODE L = av1_left_block_mode(left_mi); const int above_ctx = intra_mode_context[A]; const int left_ctx = intra_mode_context[L]; bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; av1_invalid_rd_stats(&best_rdc); av1_invalid_rd_stats(&this_rdc); init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm); mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV; // Change the limit of this loop to add other intra prediction // mode tests. for (int i = 0; i < 4; ++i) { PREDICTION_MODE this_mode = intra_mode_list[i]; // As per the statistics generated for intra mode evaluation in the nonrd // path, it is found that the probability of H_PRED mode being the winner is // very less when the best mode so far is V_PRED (out of DC_PRED and // V_PRED). If V_PRED is the winner mode out of DC_PRED and V_PRED, it could // imply the presence of a vertically dominant pattern. Hence, H_PRED mode // is not evaluated. if (cpi->sf.rt_sf.prune_h_pred_using_best_mode_so_far && this_mode == H_PRED && best_mode == V_PRED) continue; this_rdc.dist = this_rdc.rate = 0; args.mode = this_mode; args.skippable = 1; args.rdc = &this_rdc; mi->tx_size = intra_tx_size; mi->mode = this_mode; av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, &args); const int skip_ctx = av1_get_skip_txfm_context(xd); if (args.skippable) { this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; } else { this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0]; } this_rdc.rate += bmode_costs[this_mode]; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < best_rdc.rdcost) { best_rdc = this_rdc; best_mode = this_mode; if (!this_rdc.skip_txfm) { memset(ctx->blk_skip, 0, sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); } } } mi->mode = best_mode; // Keep DC for UV since mode test is based on Y channel only. mi->uv_mode = UV_DC_PRED; *rd_cost = best_rdc; #if CONFIG_INTERNAL_STATS store_coding_context(x, ctx, mi->mode); #else store_coding_context(x, ctx); #endif // CONFIG_INTERNAL_STATS } static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) { struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME); struct scale_factors *const sf_golden = get_ref_scale_factors(cm, GOLDEN_FRAME); return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) && (sf_last->y_scale_fp == sf_golden->y_scale_fp)); } static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi, int mi_row, int mi_col, int bsize, int gf_temporal_ref, int use_ref_frame[], int *force_skip_low_temp_var) { AV1_COMMON *const cm = &cpi->common; const struct segmentation *const seg = &cm->seg; const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); // When the ref_frame_config is used to set the reference frame structure // then the usage of alt_ref is determined by the ref_frame_flags // (and not the speed feature use_nonrd_altref_frame). int use_alt_ref_frame = cpi->ppi->rtc_ref.set_ref_frame_config || cpi->sf.rt_sf.use_nonrd_altref_frame; int use_golden_ref_frame = 1; int use_last_ref_frame = 1; // When the ref_frame_config is used to set the reference frame structure: // check if LAST is used as a reference. And only remove golden and altref // references below if last is used as a reference. if (cpi->ppi->rtc_ref.set_ref_frame_config) use_last_ref_frame = cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0; // frame_since_golden is not used when user sets the referene structure. if (!cpi->ppi->rtc_ref.set_ref_frame_config && use_last_ref_frame && cpi->rc.frames_since_golden == 0 && gf_temporal_ref) { use_golden_ref_frame = 0; } if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var && x->nonrd_prune_ref_frame_search) { if (is_small_sb) *force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb( &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); else *force_skip_low_temp_var = av1_get_force_skip_low_temp_var( &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); // If force_skip_low_temp_var is set, skip golden reference. if (*force_skip_low_temp_var) { use_golden_ref_frame = 0; use_alt_ref_frame = 0; } } if (use_last_ref_frame && (x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip_for_blk || (x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) { use_golden_ref_frame = 0; use_alt_ref_frame = 0; } if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { use_golden_ref_frame = 1; use_alt_ref_frame = 0; } // Skip golden reference if color is set, on flat blocks with motion. // For screen: always skip golden (if color_sensitivity_sb_g is set) // except when x->nonrd_prune_ref_frame_search = 0. This latter flag // may be set in the variance partition when golden is a much better // reference than last, in which case it may not be worth skipping // golden completely. if (((cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && x->nonrd_prune_ref_frame_search != 0) || (x->source_variance < 500 && x->content_state_sb.source_sad_nonrd > kLowSad)) && (x->color_sensitivity_sb_g[0] == 1 || x->color_sensitivity_sb_g[1] == 1)) use_golden_ref_frame = 0; // For non-screen: if golden and altref are not being selected as references // (use_golden_ref_frame/use_alt_ref_frame = 0) check to allow golden back // based on the sad of nearest/nearmv of LAST ref. If this block sad is large, // keep golden as reference. Only do this for the agrressive pruning mode and // avoid it when color is set for golden reference. if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && (cpi->ref_frame_flags & AOM_LAST_FLAG) && !use_golden_ref_frame && !use_alt_ref_frame && x->pred_mv_sad[LAST_FRAME] != INT_MAX && x->nonrd_prune_ref_frame_search > 2 && x->color_sensitivity_sb_g[0] == 0 && x->color_sensitivity_sb_g[1] == 0) { int thr = (cm->width * cm->height >= 640 * 360) ? 100 : 150; int pred = x->pred_mv_sad[LAST_FRAME] >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); if (pred > thr) use_golden_ref_frame = 1; } use_alt_ref_frame = cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0; use_golden_ref_frame = cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0; // For spatial layers: enable golden ref if it is set by user and // corresponds to the lower spatial layer. if (cpi->svc.spatial_layer_id > 0 && (cpi->ref_frame_flags & AOM_GOLD_FLAG) && x->content_state_sb.source_sad_nonrd < kHighSad) { const int buffslot_golden = cpi->ppi->rtc_ref.ref_idx[GOLDEN_FRAME - LAST_FRAME]; if (cpi->svc.buffer_time_index[buffslot_golden] == cpi->svc.current_superframe) use_golden_ref_frame = 1; } use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame; use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame; use_ref_frame[LAST_FRAME] = use_last_ref_frame; // For now keep this assert on, but we should remove it for svc mode, // as the user may want to generate an intra-only frame (no inter-modes). // Remove this assert in subsequent CL when nonrd_pickmode is tested for the // case of intra-only frame (no references enabled). assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame); } // Checks whether Intra mode needs to be pruned based on // 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad' // speed features. static INLINE bool is_prune_intra_mode(AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize, uint8_t segment_id, SOURCE_SAD source_sad_nonrd, uint8_t color_sensitivity[2]) { const PREDICTION_MODE this_mode = intra_mode_list[mode_index]; if (mode_index > 2 || force_intra_check == 0) { if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize])) return true; if (this_mode == DC_PRED) return false; if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false; const bool has_color_sensitivity = color_sensitivity[0] && color_sensitivity[1]; if (has_color_sensitivity && (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad || cyclic_refresh_segment_id_boosted(segment_id) || source_sad_nonrd > kMedSad)) return false; return true; } return false; } /*!\brief Estimates best intra mode for inter mode search * * \ingroup nonrd_mode_search * \callgraph * \callergraph * * Using heuristics based on best inter mode, block size, and other decides * whether to check intra modes. If so, estimates and selects best intra mode * from the reduced set of intra modes (max 4 intra modes checked) * * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] bsize Current block size * \param[in] best_early_term Flag, indicating that TX for the * best inter mode was skipped * \param[in] ref_cost_intra Cost of signalling intra mode * \param[in] reuse_prediction Flag, indicating prediction re-use * \param[in] orig_dst Original destination buffer * \param[in] tmp_buffers Pointer to a temporary buffers for * prediction re-use * \param[out] this_mode_pred Pointer to store prediction buffer * for prediction re-use * \param[in] best_rdc Pointer to RD cost for the best * selected intra mode * \param[in] best_pickmode Pointer to a structure containing * best mode picked so far * \param[in] ctx Pointer to structure holding coding * contexts and modes for the block * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c best_rdc and best selected mode is placed to \c best_pickmode */ static void estimate_intra_mode( AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int best_early_term, unsigned int ref_cost_intra, int reuse_prediction, struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers, PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, BEST_PICKMODE *best_pickmode, PICK_MODE_CONTEXT *ctx) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; const TxfmSearchParams *txfm_params = &x->txfm_search_params; const unsigned char segment_id = mi->segment_id; const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; const bool is_screen_content = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; struct macroblockd_plane *const pd = &xd->plane[0]; const CommonQuantParams *quant_params = &cm->quant_params; RD_STATS this_rdc; int intra_cost_penalty = av1_get_intra_cost_penalty( quant_params->base_qindex, quant_params->y_dc_delta_q, cm->seq_params->bit_depth); int64_t inter_mode_thresh = RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd; int force_intra_check = 0; // For spatial enhancement layer: turn off intra prediction if the // previous spatial layer as golden ref is not chosen as best reference. // only do this for temporal enhancement layer and on non-key frames. if (cpi->svc.spatial_layer_id > 0 && best_pickmode->best_ref_frame != GOLDEN_FRAME && cpi->svc.temporal_layer_id > 0 && !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) perform_intra_pred = 0; int do_early_exit_rdthresh = 1; uint32_t spatial_var_thresh = 50; int motion_thresh = 32; // Adjust thresholds to make intra mode likely tested if the other // references (golden, alt) are skipped/not checked. For now always // adjust for svc mode. if (cpi->ppi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 && cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) { spatial_var_thresh = 150; motion_thresh = 0; } // Some adjustments to checking intra mode based on source variance. if (x->source_variance < spatial_var_thresh) { // If the best inter mode is large motion or non-LAST ref reduce intra cost // penalty, so intra mode is more likely tested. if (best_rdc->rdcost != INT64_MAX && (best_pickmode->best_ref_frame != LAST_FRAME || abs(mi->mv[0].as_mv.row) >= motion_thresh || abs(mi->mv[0].as_mv.col) >= motion_thresh)) { intra_cost_penalty = intra_cost_penalty >> 2; inter_mode_thresh = RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); do_early_exit_rdthresh = 0; } if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) && x->content_state_sb.source_sad_nonrd >= kHighSad) || (is_screen_content && x->source_variance < 50 && ((bsize >= BLOCK_32X32 && x->content_state_sb.source_sad_nonrd != kZeroSad) || x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1))) force_intra_check = 1; // For big blocks worth checking intra (since only DC will be checked), // even if best_early_term is set. if (bsize >= BLOCK_32X32) best_early_term = 0; } else if (cpi->sf.rt_sf.source_metrics_sb_nonrd && x->content_state_sb.source_sad_nonrd <= kLowSad) { perform_intra_pred = 0; } if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) { if (cpi->sf.rt_sf.skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV) perform_intra_pred = 0; else if (cpi->sf.rt_sf.skip_intra_pred == 2) perform_intra_pred = 0; } if (!(best_rdc->rdcost == INT64_MAX || force_intra_check || (perform_intra_pred && !best_early_term && bsize <= cpi->sf.part_sf.max_intra_bsize))) { return; } // Early exit based on RD cost calculated using known rate. When // is_screen_content is true, more bias is given to intra modes. Hence, // considered conservative threshold in early exit for the same. const int64_t known_rd = is_screen_content ? CALC_BIASED_RDCOST(inter_mode_thresh) : inter_mode_thresh; if (known_rd > best_rdc->rdcost) return; struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; TX_SIZE intra_tx_size = AOMMIN( AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), TX_16X16); if (is_screen_content && cpi->rc.high_source_sad && x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16) intra_tx_size = TX_4X4; PRED_BUFFER *const best_pred = best_pickmode->best_pred; if (reuse_prediction && best_pred != NULL) { const int bh = block_size_high[bsize]; const int bw = block_size_wide[bsize]; if (best_pred->data == orig_dst->buf) { *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)]; aom_convolve_copy(best_pred->data, best_pred->stride, (*this_mode_pred)->data, (*this_mode_pred)->stride, bw, bh); best_pickmode->best_pred = *this_mode_pred; } } pd->dst = *orig_dst; for (int i = 0; i < 4; ++i) { const PREDICTION_MODE this_mode = intra_mode_list[i]; const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; const int64_t mode_rd_thresh = rd_threshes[mode_index]; if (is_prune_intra_mode(cpi, i, force_intra_check, bsize, segment_id, x->content_state_sb.source_sad_nonrd, x->color_sensitivity)) continue; if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) { // For spatially flat blocks with zero motion only check // DC mode. if (x->content_state_sb.source_sad_nonrd == kZeroSad && x->source_variance == 0 && this_mode != DC_PRED) continue; // Only test Intra for big blocks if spatial_variance is small. else if (bsize > BLOCK_32X32 && x->source_variance > 50) continue; } if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh, rd_thresh_freq_fact[mode_index]) && (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) { continue; } const BLOCK_SIZE uv_bsize = get_plane_block_size( bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); mi->mode = this_mode; mi->ref_frame[0] = INTRA_FRAME; mi->ref_frame[1] = NONE_FRAME; av1_invalid_rd_stats(&this_rdc); args.mode = this_mode; args.skippable = 1; args.rdc = &this_rdc; mi->tx_size = intra_tx_size; compute_intra_yprediction(cm, this_mode, bsize, x, xd); // Look into selecting tx_size here, based on prediction residual. block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size, 0); // TODO(kyslov@) Need to account for skippable if (x->color_sensitivity[0]) { av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1, estimate_block_intra, &args); } if (x->color_sensitivity[1]) { av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2, estimate_block_intra, &args); } int mode_cost = 0; if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { mode_cost += x->mode_costs.angle_delta_cost[this_mode - V_PRED] [MAX_ANGLE_DELTA + mi->angle_delta[PLANE_TYPE_Y]]; } if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { mode_cost += x->mode_costs.filter_intra_cost[bsize][0]; } this_rdc.rate += ref_cost_intra; this_rdc.rate += intra_cost_penalty; this_rdc.rate += mode_cost; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) { // For blocks with low spatial variance and color sad, // favor the intra-modes, only on scene/slide change. if (cpi->rc.high_source_sad && x->source_variance < 800 && (x->color_sensitivity[0] || x->color_sensitivity[1])) this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost); // Otherwise bias against intra for blocks with zero // motion and no color, on non-scene/slide changes. else if (!cpi->rc.high_source_sad && x->source_variance > 0 && x->content_state_sb.source_sad_nonrd == kZeroSad && x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1; } if (this_rdc.rdcost < best_rdc->rdcost) { *best_rdc = this_rdc; best_pickmode->best_mode = this_mode; best_pickmode->best_tx_size = mi->tx_size; best_pickmode->best_ref_frame = INTRA_FRAME; best_pickmode->best_second_ref_frame = NONE; best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm; if (!this_rdc.skip_txfm) { memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); } mi->uv_mode = this_mode; mi->mv[0].as_int = INVALID_MV; mi->mv[1].as_int = INVALID_MV; } } mi->tx_size = best_pickmode->best_tx_size; } static AOM_INLINE int is_filter_search_enabled_blk( AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, int segment_id, int cb_pred_filter_search, InterpFilter *filt_select) { const AV1_COMMON *const cm = &cpi->common; // filt search disabled if (!cpi->sf.rt_sf.use_nonrd_filter_search) return 0; // filt search purely based on mode properties if (!cb_pred_filter_search) return 1; MACROBLOCKD *const xd = &x->e_mbd; int enable_interp_search = 0; if (!(xd->left_mbmi && xd->above_mbmi)) { // neighbors info unavailable enable_interp_search = 2; } else if (!(is_inter_block(xd->left_mbmi) && is_inter_block(xd->above_mbmi))) { // neighbor is INTRA enable_interp_search = 2; } else if (xd->left_mbmi->interp_filters.as_int != xd->above_mbmi->interp_filters.as_int) { // filters are different enable_interp_search = 2; } else if ((cb_pred_filter_search == 1) && (xd->left_mbmi->interp_filters.as_filters.x_filter != EIGHTTAP_REGULAR)) { // not regular enable_interp_search = 2; } else { // enable prediction based on chessboard pattern if (xd->left_mbmi->interp_filters.as_filters.x_filter == EIGHTTAP_SMOOTH) *filt_select = EIGHTTAP_SMOOTH; const int bsl = mi_size_wide_log2[bsize]; enable_interp_search = (bool)((((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_frame.frame_number)) & 0x1); if (cyclic_refresh_segment_id_boosted(segment_id)) enable_interp_search = 1; } return enable_interp_search; } static AOM_INLINE int skip_mode_by_threshold( PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv, int frames_since_golden, const int *const rd_threshes, const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip, int extra_shift) { int skip_this_mode = 0; const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)]; int64_t mode_rd_thresh = best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1) : ((int64_t)rd_threshes[mode_index]) << extra_shift; // Increase mode_rd_thresh value for non-LAST for improved encoding // speed if (ref_frame != LAST_FRAME) { mode_rd_thresh = mode_rd_thresh << 1; if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4) mode_rd_thresh = mode_rd_thresh << (extra_shift + 1); } if (rd_less_than_thresh(best_cost, mode_rd_thresh, rd_thresh_freq_fact[mode_index])) if (mv.as_int != 0) skip_this_mode = 1; return skip_this_mode; } static AOM_INLINE int skip_mode_by_low_temp( PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) { // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped // later. if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) { return 1; } if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 && force_skip_low_temp_var && mode == NEWMV) { return 1; } return 0; } static AOM_INLINE int skip_mode_by_bsize_and_ref_frame( PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, int extra_prune, unsigned int sse_zeromv_norm, int more_prune) { const unsigned int thresh_skip_golden = 500; if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden && mode == NEWMV) return 1; if (bsize == BLOCK_128X128 && mode == NEWMV) return 1; // Skip testing non-LAST if this flag is set. if (extra_prune) { if (extra_prune > 1 && ref_frame != LAST_FRAME && (bsize > BLOCK_16X16 && mode == NEWMV)) return 1; if (ref_frame != LAST_FRAME && mode == NEARMV) return 1; if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1; } return 0; } static void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int y_sad, unsigned int source_variance, struct buf_2d yv12_mb[MAX_MB_PLANE]) { const int subsampling_x = cpi->common.seq_params->subsampling_x; const int subsampling_y = cpi->common.seq_params->subsampling_y; int factor = (bsize >= BLOCK_32X32) ? 2 : 3; int shift = 3; if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && cpi->rc.high_source_sad) { factor = 1; shift = 6; } NOISE_LEVEL noise_level = kLow; int norm_sad = y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000; // If the spatial source variance is high and the normalized y_sad // is low, then y-channel is likely good for mode estimation, so keep // color_sensitivity off. For low noise content for now, since there is // some bdrate regression for noisy color clip. if (cpi->noise_estimate.enabled) noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); if (noise_level == kLow && source_variance > thresh_spatial && cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && norm_sad < 50) { x->color_sensitivity[0] = 0; x->color_sensitivity[1] = 0; return; } const int num_planes = av1_num_planes(&cpi->common); for (int i = 1; i < num_planes; ++i) { if (x->color_sensitivity[i - 1] == 2 || source_variance < 50) { struct macroblock_plane *const p = &x->plane[i]; const BLOCK_SIZE bs = get_plane_block_size(bsize, subsampling_x, subsampling_y); const int uv_sad = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, yv12_mb[i].buf, yv12_mb[i].stride); const int norm_uv_sad = uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]); x->color_sensitivity[i - 1] = uv_sad > (factor * (y_sad >> shift)) && norm_uv_sad > 40; if (source_variance < 50 && norm_uv_sad > 100) x->color_sensitivity[i - 1] = 1; } } } static void setup_compound_prediction(const AV1_COMMON *cm, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE], const int *use_ref_frame_mask, const MV_REFERENCE_FRAME *rf, int *ref_mv_idx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; MV_REFERENCE_FRAME ref_frame_comp; if (!use_ref_frame_mask[rf[1]]) { // Need to setup pred_block, if it hasn't been done in find_predictors. const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]); const int num_planes = av1_num_planes(cm); if (yv12 != NULL) { const struct scale_factors *const sf = get_ref_scale_factors_const(cm, rf[1]); av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes); } } ref_frame_comp = av1_ref_frame_type(rf); mbmi_ext->mode_context[ref_frame_comp] = 0; mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX; av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp); *ref_mv_idx = mbmi->ref_mv_idx + 1; } static void set_compound_mode(MACROBLOCK *x, int ref_frame, int ref_frame2, int ref_mv_idx, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], PREDICTION_MODE this_mode) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; mi->ref_frame[0] = ref_frame; mi->ref_frame[1] = ref_frame2; mi->compound_idx = 1; mi->comp_group_idx = 0; mi->interinter_comp.type = COMPOUND_AVERAGE; MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame); if (this_mode == GLOBAL_GLOBALMV) { frame_mv[this_mode][ref_frame].as_int = 0; frame_mv[this_mode][ref_frame2].as_int = 0; } else if (this_mode == NEAREST_NEARESTMV) { frame_mv[this_mode][ref_frame].as_int = xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int; frame_mv[this_mode][ref_frame2].as_int = xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int; } else if (this_mode == NEAR_NEARMV) { frame_mv[this_mode][ref_frame].as_int = xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int; frame_mv[this_mode][ref_frame2].as_int = xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int; } } // Prune compound mode if the single mode variance is lower than a fixed // percentage of the median value. static bool skip_comp_based_on_var( const unsigned int (*single_vars)[REF_FRAMES], BLOCK_SIZE bsize) { unsigned int best_var = UINT_MAX; for (int cur_mode_idx = 0; cur_mode_idx < RTC_INTER_MODES; cur_mode_idx++) { for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { best_var = AOMMIN(best_var, single_vars[cur_mode_idx][ref_idx]); } } const unsigned int thresh_64 = (unsigned int)(0.57356805f * 8659); const unsigned int thresh_32 = (unsigned int)(0.23964763f * 4281); // Currently, the thresh for 128 and 16 are not well-tuned. We are using the // results from 64 and 32 as an heuristic. switch (bsize) { case BLOCK_128X128: return best_var < 4 * thresh_64; case BLOCK_64X64: return best_var < thresh_64; case BLOCK_32X32: return best_var < thresh_32; case BLOCK_16X16: return best_var < thresh_32 / 4; default: return false; } } static AOM_FORCE_INLINE void fill_single_inter_mode_costs( int (*single_inter_mode_costs)[REF_FRAMES], const int num_inter_modes, const REF_MODE *reference_mode_set, const ModeCosts *mode_costs, const int16_t *mode_context) { bool ref_frame_used[REF_FRAMES] = { false }; for (int idx = 0; idx < num_inter_modes; idx++) { ref_frame_used[reference_mode_set[idx].ref_frame] = true; } for (int this_ref_frame = LAST_FRAME; this_ref_frame < REF_FRAMES; this_ref_frame++) { if (!ref_frame_used[this_ref_frame]) { continue; } const MV_REFERENCE_FRAME rf[2] = { this_ref_frame, NONE_FRAME }; const int16_t mode_ctx = av1_mode_context_analyzer(mode_context, rf); for (PREDICTION_MODE this_mode = NEARESTMV; this_mode <= NEWMV; this_mode++) { single_inter_mode_costs[INTER_OFFSET(this_mode)][this_ref_frame] = cost_mv_ref(mode_costs, this_mode, mode_ctx); } } } static AOM_INLINE bool is_globalmv_better( PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, int rate_mv, const ModeCosts *mode_costs, const int (*single_inter_mode_costs)[REF_FRAMES], const MB_MODE_INFO_EXT *mbmi_ext) { const int globalmv_mode_cost = single_inter_mode_costs[INTER_OFFSET(GLOBALMV)][ref_frame]; int this_mode_cost = rate_mv + single_inter_mode_costs[INTER_OFFSET(this_mode)][ref_frame]; if (this_mode == NEWMV || this_mode == NEARMV) { const MV_REFERENCE_FRAME rf[2] = { ref_frame, NONE_FRAME }; this_mode_cost += get_drl_cost( NEWMV, 0, mbmi_ext, mode_costs->drl_mode_cost0, av1_ref_frame_type(rf)); } return this_mode_cost > globalmv_mode_cost; } // Set up the mv/ref_frames etc based on the comp_index. Returns 1 if it // succeeds, 0 if it fails. static AOM_INLINE int setup_compound_params_from_comp_idx( const AV1_COMP *cpi, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE], PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], const int *use_ref_frame_mask, int comp_index, bool comp_use_zero_zeromv_only, MV_REFERENCE_FRAME *last_comp_ref_frame) { const MV_REFERENCE_FRAME *rf = comp_ref_mode_set[comp_index].ref_frame; *this_mode = comp_ref_mode_set[comp_index].pred_mode; *ref_frame = rf[0]; *ref_frame2 = rf[1]; assert(*ref_frame == LAST_FRAME); assert(*this_mode == GLOBAL_GLOBALMV || *this_mode == NEAREST_NEARESTMV); if (comp_use_zero_zeromv_only && *this_mode != GLOBAL_GLOBALMV) { return 0; } if (*ref_frame2 == GOLDEN_FRAME && (cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 || !(cpi->ref_frame_flags & AOM_GOLD_FLAG))) { return 0; } else if (*ref_frame2 == LAST2_FRAME && (cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 || !(cpi->ref_frame_flags & AOM_LAST2_FLAG))) { return 0; } else if (*ref_frame2 == ALTREF_FRAME && (cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 || !(cpi->ref_frame_flags & AOM_ALT_FLAG))) { return 0; } int ref_mv_idx = 0; if (*last_comp_ref_frame != rf[1]) { // Only needs to be done once per reference pair. setup_compound_prediction(&cpi->common, x, yv12_mb, use_ref_frame_mask, rf, &ref_mv_idx); *last_comp_ref_frame = rf[1]; } set_compound_mode(x, *ref_frame, *ref_frame2, ref_mv_idx, frame_mv, *this_mode); if (*this_mode != GLOBAL_GLOBALMV && frame_mv[*this_mode][*ref_frame].as_int == 0 && frame_mv[*this_mode][*ref_frame2].as_int == 0) { return 0; } return 1; } static AOM_INLINE bool previous_mode_performed_poorly( PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, const unsigned int (*vars)[REF_FRAMES], const int64_t (*uv_dist)[REF_FRAMES]) { unsigned int best_var = UINT_MAX; int64_t best_uv_dist = INT64_MAX; for (int midx = 0; midx < RTC_INTER_MODES; midx++) { best_var = AOMMIN(best_var, vars[midx][ref_frame]); best_uv_dist = AOMMIN(best_uv_dist, uv_dist[midx][ref_frame]); } assert(best_var != UINT_MAX && "Invalid variance data."); const float mult = 1.125f; bool var_bad = mult * best_var < vars[INTER_OFFSET(mode)][ref_frame]; if (uv_dist[INTER_OFFSET(mode)][ref_frame] < INT64_MAX && best_uv_dist != uv_dist[INTER_OFFSET(mode)][ref_frame]) { // If we have chroma info, then take it into account var_bad &= mult * best_uv_dist < uv_dist[INTER_OFFSET(mode)][ref_frame]; } return var_bad; } static AOM_INLINE bool prune_compoundmode_with_singlemode_var( PREDICTION_MODE compound_mode, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME ref_frame2, const int_mv (*frame_mv)[REF_FRAMES], const uint8_t (*mode_checked)[REF_FRAMES], const unsigned int (*vars)[REF_FRAMES], const int64_t (*uv_dist)[REF_FRAMES]) { const PREDICTION_MODE single_mode0 = compound_ref0_mode(compound_mode); const PREDICTION_MODE single_mode1 = compound_ref1_mode(compound_mode); bool first_ref_valid = false, second_ref_valid = false; bool first_ref_bad = false, second_ref_bad = false; if (mode_checked[single_mode0][ref_frame] && frame_mv[single_mode0][ref_frame].as_int == frame_mv[compound_mode][ref_frame].as_int && vars[INTER_OFFSET(single_mode0)][ref_frame] < UINT_MAX) { first_ref_valid = true; first_ref_bad = previous_mode_performed_poorly(single_mode0, ref_frame, vars, uv_dist); } if (mode_checked[single_mode1][ref_frame2] && frame_mv[single_mode1][ref_frame2].as_int == frame_mv[compound_mode][ref_frame2].as_int && vars[INTER_OFFSET(single_mode1)][ref_frame2] < UINT_MAX) { second_ref_valid = true; second_ref_bad = previous_mode_performed_poorly(single_mode1, ref_frame2, vars, uv_dist); } if (first_ref_valid && second_ref_valid) { return first_ref_bad && second_ref_bad; } else if (first_ref_valid || second_ref_valid) { return first_ref_bad || second_ref_bad; } return false; } // Function to setup parameters used for inter mode evaluation. static AOM_FORCE_INLINE void set_params_nonrd_pick_inter_mode( AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, TileDataEnc *tile_data, PICK_MODE_CONTEXT *ctx, RD_STATS *rd_cost, int *force_skip_low_temp_var, int *skip_pred_mv, const int mi_row, const int mi_col, const int gf_temporal_ref, const unsigned char segment_id, BLOCK_SIZE bsize #if CONFIG_AV1_TEMPORAL_DENOISING , int denoise_svc_pickmode #endif ) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TxfmSearchInfo *txfm_info = &x->txfm_search_info; MB_MODE_INFO *const mi = xd->mi[0]; const ModeCosts *mode_costs = &x->mode_costs; (void)ctx; for (int idx = 0; idx < RTC_INTER_MODES; idx++) { for (int ref = 0; ref < REF_FRAMES; ref++) { search_state->vars[idx][ref] = UINT_MAX; search_state->uv_dist[idx][ref] = INT64_MAX; } } x->color_sensitivity[0] = x->color_sensitivity_sb[0]; x->color_sensitivity[1] = x->color_sensitivity_sb[1]; init_best_pickmode(&search_state->best_pickmode); estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, bsize, search_state->ref_costs_single); memset(&search_state->mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES); txfm_info->skip_txfm = 0; // initialize mode decisions av1_invalid_rd_stats(&search_state->best_rdc); av1_invalid_rd_stats(&search_state->this_rdc); av1_invalid_rd_stats(rd_cost); for (int i = 0; i < REF_FRAMES; ++i) { x->warp_sample_info[i].num = -1; } mi->bsize = bsize; mi->ref_frame[0] = NONE_FRAME; mi->ref_frame[1] = NONE_FRAME; #if CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { // if (cpi->ppi->use_svc) denoise_svc_pickmode = // av1_denoise_svc_non_key(cpi); if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) av1_denoiser_reset_frame_stats(ctx); } #endif if (cpi->ref_frame_flags & AOM_LAST_FLAG) find_predictors(cpi, x, LAST_FRAME, search_state->frame_mv, tile_data, search_state->yv12_mb, bsize, *force_skip_low_temp_var, x->force_zeromv_skip_for_blk); get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref, search_state->use_ref_frame_mask, force_skip_low_temp_var); *skip_pred_mv = x->force_zeromv_skip_for_blk || (x->nonrd_prune_ref_frame_search > 2 && x->color_sensitivity[0] != 2 && x->color_sensitivity[1] != 2); // Start at LAST_FRAME + 1. for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME + 1; ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) { if (search_state->use_ref_frame_mask[ref_frame_iter]) { find_predictors(cpi, x, ref_frame_iter, search_state->frame_mv, tile_data, search_state->yv12_mb, bsize, *force_skip_low_temp_var, *skip_pred_mv); } } } // Function to check the inter mode can be skipped based on mode statistics and // speed features settings. static AOM_FORCE_INLINE bool skip_inter_mode_nonrd( AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, int64_t *thresh_sad_pred, int *force_mv_inter_layer, int *comp_pred, PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *last_comp_ref_frame, MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int idx, int svc_mv_col, int svc_mv_row, int force_skip_low_temp_var, unsigned int sse_zeromv_norm, const int num_inter_modes, const unsigned char segment_id, BLOCK_SIZE bsize, bool comp_use_zero_zeromv_only, bool check_globalmv) { AV1_COMMON *const cm = &cpi->common; const struct segmentation *const seg = &cm->seg; const SVC *const svc = &cpi->svc; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; if (idx >= num_inter_modes) { const int comp_index = idx - num_inter_modes; if (!setup_compound_params_from_comp_idx( cpi, x, search_state->yv12_mb, this_mode, ref_frame, ref_frame2, search_state->frame_mv, search_state->use_ref_frame_mask, comp_index, comp_use_zero_zeromv_only, last_comp_ref_frame)) { return true; } *comp_pred = 1; } else { *this_mode = ref_mode_set[idx].pred_mode; *ref_frame = ref_mode_set[idx].ref_frame; *ref_frame2 = NONE_FRAME; } if (!*comp_pred && search_state->mode_checked[*this_mode][*ref_frame]) { return true; } if (!check_globalmv && *this_mode == GLOBALMV) { return true; } #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer1); ms_stat.num_searches[bsize][*this_mode]++; #endif mi->mode = *this_mode; mi->ref_frame[0] = *ref_frame; mi->ref_frame[1] = *ref_frame2; if (!search_state->use_ref_frame_mask[*ref_frame]) return true; if (x->force_zeromv_skip_for_blk && ((!(*this_mode == NEARESTMV && search_state->frame_mv[*this_mode][*ref_frame].as_int == 0) && *this_mode != GLOBALMV) || *ref_frame != LAST_FRAME)) return true; if (cpi->sf.rt_sf.prune_compoundmode_with_singlemode_var && *comp_pred && prune_compoundmode_with_singlemode_var( *this_mode, *ref_frame, *ref_frame2, search_state->frame_mv, search_state->mode_checked, search_state->vars, search_state->uv_dist)) { return true; } *force_mv_inter_layer = 0; if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && ((*ref_frame == LAST_FRAME && svc->skip_mvsearch_last) || (*ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) || (*ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) { // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row), // otherwise set NEWMV to (svc_mv_col, svc_mv_row). // Skip newmv and filter search. *force_mv_inter_layer = 1; if (*this_mode == NEWMV) { search_state->frame_mv[*this_mode][*ref_frame].as_mv.col = svc_mv_col; search_state->frame_mv[*this_mode][*ref_frame].as_mv.row = svc_mv_row; } else if (search_state->frame_mv[*this_mode][*ref_frame].as_mv.col != svc_mv_col || search_state->frame_mv[*this_mode][*ref_frame].as_mv.row != svc_mv_row) { return true; } } // If the segment reference frame feature is enabled then do nothing if the // current ref frame is not allowed. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)(*ref_frame)) return true; // For screen content: for base spatial layer only for now. if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && cpi->svc.spatial_layer_id == 0) { // If source_sad is computed: skip non-zero motion // check for stationary (super)blocks. Otherwise if superblock // has motion skip the modes with zero motion for flat blocks, // and color is not set. // For the latter condition: the same condition should apply // to newmv if (0, 0), so this latter condition is repeated // below after search_new_mv. if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { if ((search_state->frame_mv[*this_mode][*ref_frame].as_int != 0 && x->content_state_sb.source_sad_nonrd == kZeroSad) || (search_state->frame_mv[*this_mode][*ref_frame].as_int == 0 && x->content_state_sb.source_sad_nonrd != kZeroSad && ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || cpi->rc.high_source_sad) && x->source_variance == 0)) return true; } // Skip NEWMV search for flat blocks. if (*this_mode == NEWMV && x->source_variance < 100) return true; // Skip non-LAST for color on flat blocks. if (*ref_frame > LAST_FRAME && x->source_variance == 0 && (x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1)) return true; } if (skip_mode_by_bsize_and_ref_frame( *this_mode, *ref_frame, bsize, x->nonrd_prune_ref_frame_search, sse_zeromv_norm, cpi->sf.rt_sf.nonrd_aggressive_skip)) return true; if (skip_mode_by_low_temp(*this_mode, *ref_frame, bsize, x->content_state_sb, search_state->frame_mv[*this_mode][*ref_frame], force_skip_low_temp_var)) return true; // Disable this drop out case if the ref frame segment level feature is // enabled for this segment. This is to prevent the possibility that we // end up unable to pick any mode. if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Check for skipping GOLDEN and ALTREF based pred_mv_sad. if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 && x->pred_mv_sad[*ref_frame] != INT_MAX && *ref_frame != LAST_FRAME) { if ((int64_t)(x->pred_mv_sad[*ref_frame]) > *thresh_sad_pred) return true; } } // Check for skipping NEARMV based on pred_mv_sad. if (*this_mode == NEARMV && x->pred_mv1_sad[*ref_frame] != INT_MAX && x->pred_mv1_sad[*ref_frame] > (x->pred_mv0_sad[*ref_frame] << 1)) return true; if (!*comp_pred) { if (skip_mode_by_threshold( *this_mode, *ref_frame, search_state->frame_mv[*this_mode][*ref_frame], cpi->rc.frames_since_golden, cpi->rd.threshes[segment_id][bsize], x->thresh_freq_fact[bsize], search_state->best_rdc.rdcost, search_state->best_pickmode.best_mode_skip_txfm, (cpi->sf.rt_sf.nonrd_aggressive_skip ? 1 : 0))) return true; } return false; } void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { AV1_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const InterpFilter filter_ref = cm->features.interp_filter; const InterpFilter default_interp_filter = EIGHTTAP_REGULAR; MV_REFERENCE_FRAME ref_frame, ref_frame2; const unsigned char segment_id = mi->segment_id; int best_early_term = 0; int force_skip_low_temp_var = 0; unsigned int sse_zeromv_norm = UINT_MAX; int skip_pred_mv = 0; const int num_inter_modes = NUM_INTER_MODES; bool check_globalmv = cpi->sf.rt_sf.check_globalmv_on_single_ref; PRED_BUFFER tmp_buffer[4]; DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]); PRED_BUFFER *this_mode_pred = NULL; const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd && cm->seq_params->bit_depth == AOM_BITS_8; InterModeSearchStateNonrd search_state; av1_zero(search_state.use_ref_frame_mask); const int bh = block_size_high[bsize]; const int bw = block_size_wide[bsize]; const int pixels_in_block = bh * bw; const int num_8x8_blocks = ctx->num_4x4_blk / 4; struct buf_2d orig_dst = pd->dst; const TxfmSearchParams *txfm_params = &x->txfm_search_params; TxfmSearchInfo *txfm_info = &x->txfm_search_info; #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.bsize_timer); #endif int64_t thresh_sad_pred = INT64_MAX; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int svc_mv_col = 0; int svc_mv_row = 0; int force_mv_inter_layer = 0; bool comp_use_zero_zeromv_only = 0; int tot_num_comp_modes = NUM_COMP_INTER_MODES_RT; #if CONFIG_AV1_TEMPORAL_DENOISING const int denoise_recheck_zeromv = 1; AV1_PICKMODE_CTX_DEN ctx_den; int64_t zero_last_cost_orig = INT64_MAX; int denoise_svc_pickmode = 1; const int resize_pending = is_frame_resize_pending(cpi); #endif const ModeCosts *mode_costs = &x->mode_costs; if (reuse_inter_pred) { for (int i = 0; i < 3; i++) { tmp_buffer[i].data = &pred_buf[pixels_in_block * i]; tmp_buffer[i].stride = bw; tmp_buffer[i].in_use = 0; } tmp_buffer[3].data = pd->dst.buf; tmp_buffer[3].stride = pd->dst.stride; tmp_buffer[3].in_use = 0; } const int gf_temporal_ref = is_same_gf_and_last_scale(cm); // If the lower spatial layer uses an averaging filter for downsampling // (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative // to source, so use subpel motion vector to compensate. The nonzero motion // is half pixel shifted to left and top, so (-4, -4). This has more effect // on higher resolutions, so condition it on that for now. if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 && cm->width * cm->height > 640 * 480) { svc_mv_col = -4; svc_mv_row = -4; } // Setup parameters used for inter mode evaluation. set_params_nonrd_pick_inter_mode( cpi, x, &search_state, tile_data, ctx, rd_cost, &force_skip_low_temp_var, &skip_pred_mv, mi_row, mi_col, gf_temporal_ref, segment_id, bsize #if CONFIG_AV1_TEMPORAL_DENOISING , denoise_svc_pickmode #endif ); if (cpi->sf.rt_sf.use_comp_ref_nonrd && is_comp_ref_allowed(bsize)) { // Only search compound if bsize \gt BLOCK_16X16. if (bsize > BLOCK_16X16) { comp_use_zero_zeromv_only = cpi->sf.rt_sf.check_only_zero_zeromv_on_large_blocks; } else { tot_num_comp_modes = 0; } } else { tot_num_comp_modes = 0; } if (x->pred_mv_sad[LAST_FRAME] != INT_MAX) { thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1; // Increase threshold for less aggressive pruning. if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1) thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2); } const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize); // decide block-level interp filter search flags: // filter_search_enabled_blk: // 0: disabled // 1: filter search depends on mode properties // 2: filter search forced since prediction is unreliable // cb_pred_filter_search 0: disabled cb prediction InterpFilter filt_select = EIGHTTAP_REGULAR; const int cb_pred_filter_search = x->content_state_sb.source_sad_nonrd > kVeryLowSad ? cpi->sf.interp_sf.cb_pred_filter_search : 0; const int filter_search_enabled_blk = is_filter_search_enabled_blk(cpi, x, mi_row, mi_col, bsize, segment_id, cb_pred_filter_search, &filt_select); #if COLLECT_PICK_MODE_STAT ms_stat.num_blocks[bsize]++; #endif init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm); mi->tx_size = AOMMIN( AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), TX_16X16); fill_single_inter_mode_costs(search_state.single_inter_mode_costs, num_inter_modes, ref_mode_set, mode_costs, mbmi_ext->mode_context); MV_REFERENCE_FRAME last_comp_ref_frame = NONE_FRAME; // Initialize inter prediction params at block level for single reference // mode. InterPredParams inter_pred_params_sr; init_inter_block_params(&inter_pred_params_sr, pd->width, pd->height, mi_row * MI_SIZE, mi_col * MI_SIZE, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), /*is_intrabc=*/0); inter_pred_params_sr.conv_params = get_conv_params(/*do_average=*/0, AOM_PLANE_Y, xd->bd); for (int idx = 0; idx < num_inter_modes + tot_num_comp_modes; ++idx) { // If we are at the first compound mode, and the single modes already // perform well, then end the search. if (cpi->sf.rt_sf.skip_compound_based_on_var && idx == num_inter_modes && skip_comp_based_on_var(search_state.vars, bsize)) { break; } int rate_mv = 0; int is_skippable; int this_early_term = 0; int skip_this_mv = 0; int comp_pred = 0; unsigned int var = UINT_MAX; PREDICTION_MODE this_mode; RD_STATS nonskip_rdc; av1_invalid_rd_stats(&nonskip_rdc); memset(txfm_info->blk_skip, 0, sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); // Check the inter mode can be skipped based on mode statistics and speed // features settings. if (skip_inter_mode_nonrd( cpi, x, &search_state, &thresh_sad_pred, &force_mv_inter_layer, &comp_pred, &this_mode, &last_comp_ref_frame, &ref_frame, &ref_frame2, idx, svc_mv_col, svc_mv_row, force_skip_low_temp_var, sse_zeromv_norm, num_inter_modes, segment_id, bsize, comp_use_zero_zeromv_only, check_globalmv)) continue; // Select prediction reference frames. for (int i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = search_state.yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = search_state.yv12_mb[ref_frame2][i]; } mi->ref_frame[0] = ref_frame; mi->ref_frame[1] = ref_frame2; set_ref_ptrs(cm, xd, ref_frame, ref_frame2); if (this_mode == NEWMV && !force_mv_inter_layer) { #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer2); #endif const bool skip_newmv = search_new_mv( cpi, x, search_state.frame_mv, ref_frame, gf_temporal_ref, bsize, mi_row, mi_col, &rate_mv, &search_state.best_rdc); #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer2); ms_stat.ms_time[bsize][this_mode] += aom_usec_timer_elapsed(&ms_stat.timer2); #endif if (skip_newmv) { continue; } } for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; inter_mv_mode++) { if (inter_mv_mode == this_mode) continue; if (!comp_pred && search_state.mode_checked[inter_mv_mode][ref_frame] && search_state.frame_mv[this_mode][ref_frame].as_int == search_state.frame_mv[inter_mv_mode][ref_frame].as_int) { skip_this_mv = 1; break; } } if (skip_this_mv && !comp_pred) continue; // For screen: for spatially flat blocks with non-zero motion, // skip newmv if the motion vector is (0, 0), and color is not set. if (this_mode == NEWMV && cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && cpi->svc.spatial_layer_id == 0 && cpi->sf.rt_sf.source_metrics_sb_nonrd) { if (search_state.frame_mv[this_mode][ref_frame].as_int == 0 && x->content_state_sb.source_sad_nonrd != kZeroSad && ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || cpi->rc.high_source_sad) && x->source_variance == 0) continue; } mi->mode = this_mode; mi->mv[0].as_int = search_state.frame_mv[this_mode][ref_frame].as_int; mi->mv[1].as_int = 0; if (comp_pred) mi->mv[1].as_int = search_state.frame_mv[this_mode][ref_frame2].as_int; if (reuse_inter_pred) { if (!this_mode_pred) { this_mode_pred = &tmp_buffer[3]; } else { this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; pd->dst.buf = this_mode_pred->data; pd->dst.stride = bw; } } if (idx == 0 && !skip_pred_mv) { // Set color sensitivity on first tested mode only. // Use y-sad already computed in find_predictors: take the sad with motion // vector closest to 0; the uv-sad computed below in set_color_sensitivity // is for zeromv. // For screen: first check if golden reference is being used, if so, // force color_sensitivity on if the color sensitivity for sb_g is on. if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && search_state.use_ref_frame_mask[GOLDEN_FRAME]) { if (x->color_sensitivity_sb_g[0] == 1) x->color_sensitivity[0] = 1; if (x->color_sensitivity_sb_g[1] == 1) x->color_sensitivity[1] = 1; } else { int y_sad = x->pred_mv0_sad[LAST_FRAME]; if (x->pred_mv1_sad[LAST_FRAME] != INT_MAX && (abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.col) + abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.row)) < (abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.col) + abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.row))) y_sad = x->pred_mv1_sad[LAST_FRAME]; set_color_sensitivity(cpi, x, bsize, y_sad, x->source_variance, search_state.yv12_mb[LAST_FRAME]); } } mi->motion_mode = SIMPLE_TRANSLATION; #if !CONFIG_REALTIME_ONLY if (cpi->oxcf.motion_mode_cfg.allow_warped_motion) { calc_num_proj_ref(cpi, x, mi); } #endif // set variance threshold for compound more pruning unsigned int var_threshold = UINT_MAX; if (cpi->sf.rt_sf.prune_compoundmode_with_singlecompound_var && comp_pred && use_model_yrd_large) { const PREDICTION_MODE single_mode0 = compound_ref0_mode(this_mode); const PREDICTION_MODE single_mode1 = compound_ref1_mode(this_mode); var_threshold = AOMMIN(var_threshold, search_state.vars[INTER_OFFSET(single_mode0)][ref_frame]); var_threshold = AOMMIN(var_threshold, search_state.vars[INTER_OFFSET(single_mode1)][ref_frame2]); } // decide interpolation filter, build prediction signal, get sse const bool is_mv_subpel = (mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07); const bool enable_filt_search_this_mode = (filter_search_enabled_blk == 2) ? true : (filter_search_enabled_blk && !force_mv_inter_layer && !comp_pred && (ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)); if (is_mv_subpel && enable_filt_search_this_mode) { #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer2); #endif search_filter_ref(cpi, x, &search_state.this_rdc, &inter_pred_params_sr, mi_row, mi_col, tmp_buffer, bsize, reuse_inter_pred, &this_mode_pred, &this_early_term, &var, use_model_yrd_large, search_state.best_pickmode.best_sse, comp_pred); #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer2); ms_stat.ifs_time[bsize][this_mode] += aom_usec_timer_elapsed(&ms_stat.timer2); #endif #if !CONFIG_REALTIME_ONLY } else if (cpi->oxcf.motion_mode_cfg.allow_warped_motion && this_mode == NEWMV) { search_motion_mode(cpi, x, &search_state.this_rdc, mi_row, mi_col, bsize, &this_early_term, use_model_yrd_large, &rate_mv, search_state.best_pickmode.best_sse); if (this_mode == NEWMV) { search_state.frame_mv[this_mode][ref_frame] = mi->mv[0]; } #endif } else { mi->interp_filters = (filter_ref == SWITCHABLE) ? av1_broadcast_interp_filter(default_interp_filter) : av1_broadcast_interp_filter(filter_ref); if (force_mv_inter_layer) mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); // If it is sub-pel motion and cb_pred_filter_search is enabled, select // the pre-decided filter if (is_mv_subpel && cb_pred_filter_search) mi->interp_filters = av1_broadcast_interp_filter(filt_select); #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer2); #endif if (!comp_pred) { SubpelParams subpel_params; // Initialize inter mode level params for single reference mode. init_inter_mode_params(&mi->mv[0].as_mv, &inter_pred_params_sr, &subpel_params, xd->block_ref_scale_factors[0], pd->pre->width, pd->pre->height); av1_enc_build_inter_predictor_y_nonrd(xd, &inter_pred_params_sr, &subpel_params); } else { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); } if (use_model_yrd_large) { model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &search_state.this_rdc, &this_early_term, 0, search_state.best_pickmode.best_sse, &var, var_threshold); } else { model_rd_for_sb_y(cpi, bsize, x, xd, &search_state.this_rdc, &var, 0, &this_early_term); } #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer2); ms_stat.model_rd_time[bsize][this_mode] += aom_usec_timer_elapsed(&ms_stat.timer2); #endif } // update variance for single mode if (!comp_pred) { search_state.vars[INTER_OFFSET(this_mode)][ref_frame] = var; if (search_state.frame_mv[this_mode][ref_frame].as_int == 0) { search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var; } } // prune compound mode based on single mode var threshold if (comp_pred && var > var_threshold) { if (reuse_inter_pred) free_pred_buffer(this_mode_pred); continue; } if (ref_frame == LAST_FRAME && search_state.frame_mv[this_mode][ref_frame].as_int == 0) { sse_zeromv_norm = (unsigned int)(search_state.this_rdc.sse >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize])); } if (cpi->sf.rt_sf.sse_early_term_inter_search && early_term_inter_search_with_sse( cpi->sf.rt_sf.sse_early_term_inter_search, bsize, search_state.this_rdc.sse, search_state.best_pickmode.best_sse, this_mode)) { if (reuse_inter_pred) free_pred_buffer(this_mode_pred); continue; } #if COLLECT_PICK_MODE_STAT ms_stat.num_nonskipped_searches[bsize][this_mode]++; #endif const int skip_ctx = av1_get_skip_txfm_context(xd); const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1]; const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0]; const int64_t sse_y = search_state.this_rdc.sse; if (this_early_term) { search_state.this_rdc.skip_txfm = 1; search_state.this_rdc.rate = skip_txfm_cost; search_state.this_rdc.dist = search_state.this_rdc.sse << 4; } else { #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer2); #endif block_yrd(x, &search_state.this_rdc, &is_skippable, bsize, mi->tx_size, 1); if (search_state.this_rdc.skip_txfm || RDCOST(x->rdmult, search_state.this_rdc.rate, search_state.this_rdc.dist) >= RDCOST(x->rdmult, 0, search_state.this_rdc.sse)) { if (!search_state.this_rdc.skip_txfm) { // Need to store "real" rdc for possible future use if UV rdc // disallows tx skip nonskip_rdc = search_state.this_rdc; nonskip_rdc.rate += no_skip_txfm_cost; } search_state.this_rdc.rate = skip_txfm_cost; search_state.this_rdc.skip_txfm = 1; search_state.this_rdc.dist = search_state.this_rdc.sse; } else { search_state.this_rdc.rate += no_skip_txfm_cost; } if ((x->color_sensitivity[0] || x->color_sensitivity[1])) { RD_STATS rdc_uv; const BLOCK_SIZE uv_bsize = get_plane_block_size( bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); if (x->color_sensitivity[0]) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, AOM_PLANE_U, AOM_PLANE_U); } if (x->color_sensitivity[1]) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, AOM_PLANE_V, AOM_PLANE_V); } const int64_t sse_uv = model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, 1, 2); search_state.this_rdc.sse += sse_uv; // Restore Y rdc if UV rdc disallows txfm skip if (search_state.this_rdc.skip_txfm && !rdc_uv.skip_txfm && nonskip_rdc.rate != INT_MAX) search_state.this_rdc = nonskip_rdc; if (!comp_pred) { search_state.uv_dist[INTER_OFFSET(this_mode)][ref_frame] = rdc_uv.dist; } search_state.this_rdc.rate += rdc_uv.rate; search_state.this_rdc.dist += rdc_uv.dist; search_state.this_rdc.skip_txfm = search_state.this_rdc.skip_txfm && rdc_uv.skip_txfm; } #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer2); ms_stat.txfm_time[bsize][this_mode] += aom_usec_timer_elapsed(&ms_stat.timer2); #endif } PREDICTION_MODE this_best_mode = this_mode; // TODO(kyslov) account for UV prediction cost search_state.this_rdc.rate += rate_mv; if (comp_pred) { const int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); search_state.this_rdc.rate += cost_mv_ref(mode_costs, this_mode, mode_ctx); } else { // If the current mode has zeromv but is not GLOBALMV, compare the rate // cost. If GLOBALMV is cheaper, use GLOBALMV instead. if (this_mode != GLOBALMV && search_state.frame_mv[this_mode][ref_frame].as_int == search_state.frame_mv[GLOBALMV][ref_frame].as_int) { if (is_globalmv_better(this_mode, ref_frame, rate_mv, mode_costs, search_state.single_inter_mode_costs, mbmi_ext)) { this_best_mode = GLOBALMV; } } search_state.this_rdc.rate += search_state .single_inter_mode_costs[INTER_OFFSET(this_best_mode)][ref_frame]; } if (!comp_pred && search_state.frame_mv[this_mode][ref_frame].as_int == 0 && var < UINT_MAX) { search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var; } search_state.this_rdc.rate += search_state.ref_costs_single[ref_frame]; search_state.this_rdc.rdcost = RDCOST(x->rdmult, search_state.this_rdc.rate, search_state.this_rdc.dist); if (cpi->oxcf.rc_cfg.mode == AOM_CBR && !comp_pred) { newmv_diff_bias( xd, this_best_mode, &search_state.this_rdc, bsize, search_state.frame_mv[this_best_mode][ref_frame].as_mv.row, search_state.frame_mv[this_best_mode][ref_frame].as_mv.col, cpi->speed, x->source_variance, x->content_state_sb); } #if CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow) { av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx); // Keep track of zero_last cost. if (ref_frame == LAST_FRAME && search_state.frame_mv[this_mode][ref_frame].as_int == 0) zero_last_cost_orig = search_state.this_rdc.rdcost; } #else (void)sse_y; #endif search_state.mode_checked[this_mode][ref_frame] = 1; search_state.mode_checked[this_best_mode][ref_frame] = 1; if (check_globalmv) { int32_t abs_mv = abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.row) + abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.col); // Early exit check: if the magnitude of this_best_mode's mv is small // enough, we skip GLOBALMV check in the next loop iteration. if (abs_mv < 2) { check_globalmv = false; } } #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer1); ms_stat.nonskipped_search_times[bsize][this_mode] += aom_usec_timer_elapsed(&ms_stat.timer1); #endif if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) { search_state.best_rdc = search_state.this_rdc; best_early_term = this_early_term; search_state.best_pickmode.best_sse = sse_y; search_state.best_pickmode.best_mode = this_best_mode; search_state.best_pickmode.best_motion_mode = mi->motion_mode; search_state.best_pickmode.wm_params = mi->wm_params; search_state.best_pickmode.num_proj_ref = mi->num_proj_ref; search_state.best_pickmode.best_pred_filter = mi->interp_filters; search_state.best_pickmode.best_tx_size = mi->tx_size; search_state.best_pickmode.best_ref_frame = ref_frame; search_state.best_pickmode.best_second_ref_frame = ref_frame2; search_state.best_pickmode.best_mode_skip_txfm = search_state.this_rdc.skip_txfm; search_state.best_pickmode.best_mode_initial_skip_flag = (nonskip_rdc.rate == INT_MAX && search_state.this_rdc.skip_txfm); if (!search_state.best_pickmode.best_mode_skip_txfm) { memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); } // This is needed for the compound modes. search_state.frame_mv_best[this_best_mode][ref_frame].as_int = search_state.frame_mv[this_best_mode][ref_frame].as_int; if (ref_frame2 > NONE_FRAME) { search_state.frame_mv_best[this_best_mode][ref_frame2].as_int = search_state.frame_mv[this_best_mode][ref_frame2].as_int; } if (reuse_inter_pred) { free_pred_buffer(search_state.best_pickmode.best_pred); search_state.best_pickmode.best_pred = this_mode_pred; } } else { if (reuse_inter_pred) free_pred_buffer(this_mode_pred); } if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_aggressive_skip)) { txfm_info->skip_txfm = 1; break; } } mi->mode = search_state.best_pickmode.best_mode; mi->motion_mode = search_state.best_pickmode.best_motion_mode; mi->wm_params = search_state.best_pickmode.wm_params; mi->num_proj_ref = search_state.best_pickmode.num_proj_ref; mi->interp_filters = search_state.best_pickmode.best_pred_filter; mi->tx_size = search_state.best_pickmode.best_tx_size; memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size)); mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame; mi->mv[0].as_int = search_state .frame_mv_best[search_state.best_pickmode.best_mode] [search_state.best_pickmode.best_ref_frame] .as_int; mi->mv[1].as_int = 0; if (search_state.best_pickmode.best_second_ref_frame > INTRA_FRAME) { mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame; mi->mv[1].as_int = search_state .frame_mv_best[search_state.best_pickmode.best_mode] [search_state.best_pickmode.best_second_ref_frame] .as_int; } // Perform intra prediction search, if the best SAD is above a certain // threshold. mi->angle_delta[PLANE_TYPE_Y] = 0; mi->angle_delta[PLANE_TYPE_UV] = 0; mi->filter_intra_mode_info.use_filter_intra = 0; #if COLLECT_PICK_MODE_STAT aom_usec_timer_start(&ms_stat.timer1); ms_stat.num_searches[bsize][DC_PRED]++; ms_stat.num_nonskipped_searches[bsize][DC_PRED]++; #endif if (!x->force_zeromv_skip_for_blk) estimate_intra_mode(cpi, x, bsize, best_early_term, search_state.ref_costs_single[INTRA_FRAME], reuse_inter_pred, &orig_dst, tmp_buffer, &this_mode_pred, &search_state.best_rdc, &search_state.best_pickmode, ctx); int skip_idtx_palette = (x->color_sensitivity[0] || x->color_sensitivity[1]) && x->content_state_sb.source_sad_nonrd != kZeroSad && !cpi->rc.high_source_sad; // Check for IDTX: based only on Y channel, so avoid when color_sensitivity // is set. if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && !skip_idtx_palette && !cpi->oxcf.txfm_cfg.use_inter_dct_only && !x->force_zeromv_skip_for_blk && is_inter_mode(search_state.best_pickmode.best_mode) && (!cpi->sf.rt_sf.prune_idtx_nonrd || (cpi->sf.rt_sf.prune_idtx_nonrd && bsize <= BLOCK_32X32 && search_state.best_pickmode.best_mode_skip_txfm != 1 && x->source_variance > 200))) { RD_STATS idtx_rdc; av1_init_rd_stats(&idtx_rdc); int is_skippable; this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; pd->dst.buf = this_mode_pred->data; pd->dst.stride = bw; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); block_yrd_idtx(x, &idtx_rdc, &is_skippable, bsize, mi->tx_size); int64_t idx_rdcost = RDCOST(x->rdmult, idtx_rdc.rate, idtx_rdc.dist); if (idx_rdcost < search_state.best_rdc.rdcost) { // Keep the skip_txfm off if the color_sensitivity is set. if (x->color_sensitivity[0] || x->color_sensitivity[1]) idtx_rdc.skip_txfm = 0; search_state.best_pickmode.tx_type = IDTX; search_state.best_rdc.rdcost = idx_rdcost; search_state.best_pickmode.best_mode_skip_txfm = idtx_rdc.skip_txfm; if (!idtx_rdc.skip_txfm) { memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); } xd->tx_type_map[0] = search_state.best_pickmode.tx_type; memset(ctx->tx_type_map, search_state.best_pickmode.tx_type, ctx->num_4x4_blk); memset(xd->tx_type_map, search_state.best_pickmode.tx_type, ctx->num_4x4_blk); } pd->dst = orig_dst; } int try_palette = !skip_idtx_palette && cpi->oxcf.tool_cfg.enable_palette && av1_allow_palette(cpi->common.features.allow_screen_content_tools, mi->bsize); try_palette = try_palette && is_mode_intra(search_state.best_pickmode.best_mode) && x->source_variance > 0 && !x->force_zeromv_skip_for_blk && (cpi->rc.high_source_sad || x->source_variance > 500); if (try_palette) { const unsigned int intra_ref_frame_cost = search_state.ref_costs_single[INTRA_FRAME]; av1_search_palette_mode_luma(cpi, x, bsize, intra_ref_frame_cost, ctx, &search_state.this_rdc, search_state.best_rdc.rdcost); if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) { search_state.best_pickmode.pmi = mi->palette_mode_info; search_state.best_pickmode.best_mode = DC_PRED; mi->mv[0].as_int = 0; search_state.best_rdc.rate = search_state.this_rdc.rate; search_state.best_rdc.dist = search_state.this_rdc.dist; search_state.best_rdc.rdcost = search_state.this_rdc.rdcost; search_state.best_pickmode.best_mode_skip_txfm = search_state.this_rdc.skip_txfm; // Keep the skip_txfm off if the color_sensitivity is set. if (x->color_sensitivity[0] || x->color_sensitivity[1]) search_state.this_rdc.skip_txfm = 0; if (!search_state.this_rdc.skip_txfm) { memcpy(ctx->blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); } if (xd->tx_type_map[0] != DCT_DCT) av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); } } #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.timer1); ms_stat.nonskipped_search_times[bsize][DC_PRED] += aom_usec_timer_elapsed(&ms_stat.timer1); #endif pd->dst = orig_dst; if (try_palette) mi->palette_mode_info = search_state.best_pickmode.pmi; mi->mode = search_state.best_pickmode.best_mode; mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame; mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame; txfm_info->skip_txfm = search_state.best_pickmode.best_mode_skip_txfm; if (!txfm_info->skip_txfm) { // For inter modes: copy blk_skip from best_pickmode, which is // defined for 8x8 blocks. If palette or intra mode was selected // as best then blk_skip is already copied into the ctx. if (search_state.best_pickmode.best_mode >= INTRA_MODE_END) memcpy(ctx->blk_skip, search_state.best_pickmode.blk_skip, sizeof(search_state.best_pickmode.blk_skip[0]) * num_8x8_blocks); } if (has_second_ref(mi)) { mi->comp_group_idx = 0; mi->compound_idx = 1; mi->interinter_comp.type = COMPOUND_AVERAGE; } if (!is_inter_block(mi)) { mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS); } if (reuse_inter_pred && search_state.best_pickmode.best_pred != NULL) { PRED_BUFFER *const best_pred = search_state.best_pickmode.best_pred; if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, pd->dst.stride, bw, bh); } } #if CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 && denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow && cpi->denoiser.reset == 0) { AV1_DENOISER_DECISION decision = COPY_BLOCK; ctx->sb_skip_denoising = 0; av1_pickmode_ctx_den_update( &ctx_den, zero_last_cost_orig, search_state.ref_costs_single, search_state.frame_mv, reuse_inter_pred, &search_state.best_pickmode); av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision, gf_temporal_ref); if (denoise_recheck_zeromv) recheck_zeromv_after_denoising( cpi, mi, x, xd, decision, &ctx_den, search_state.yv12_mb, &search_state.best_rdc, &search_state.best_pickmode, bsize, mi_row, mi_col); search_state.best_pickmode.best_ref_frame = ctx_den.best_ref_frame; } #endif if (cpi->sf.inter_sf.adaptive_rd_thresh && !has_second_ref(mi)) { THR_MODES best_mode_idx = mode_idx[search_state.best_pickmode.best_ref_frame] [mode_offset(mi->mode)]; if (search_state.best_pickmode.best_ref_frame == INTRA_FRAME) { // Only consider the modes that are included in the intra_mode_list. int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE); for (int i = 0; i < intra_modes; i++) { update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx, intra_mode_list[i]); } } else { PREDICTION_MODE this_mode; for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { update_thresh_freq_fact(cpi, x, bsize, search_state.best_pickmode.best_ref_frame, best_mode_idx, this_mode); } } } #if CONFIG_INTERNAL_STATS store_coding_context(x, ctx, mi->mode); #else store_coding_context(x, ctx); #endif // CONFIG_INTERNAL_STATS #if COLLECT_PICK_MODE_STAT aom_usec_timer_mark(&ms_stat.bsize_timer); ms_stat.total_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.bsize_timer); print_time(&ms_stat, bsize, cm->mi_params.mi_rows, cm->mi_params.mi_cols, mi_row, mi_col); #endif // COLLECT_PICK_MODE_STAT *rd_cost = search_state.best_rdc; }