// Copyright 2021 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/convolve.h" #include #include #include #include #include #include #include #include #include #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "gtest/gtest.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/utils/common.h" #include "src/utils/compiler_attributes.h" #include "src/utils/constants.h" #include "src/utils/cpu.h" #include "src/utils/memory.h" #include "tests/block_utils.h" #include "tests/third_party/libvpx/acm_random.h" #include "tests/third_party/libvpx/md5_helper.h" #include "tests/utils.h" namespace libgav1 { namespace dsp { namespace { // The convolve function will access at most (block_height + 7) rows/columns // from the beginning. constexpr int kMaxBlockWidth = kMaxSuperBlockSizeInPixels + kSubPixelTaps; constexpr int kMaxBlockHeight = kMaxSuperBlockSizeInPixels + kSubPixelTaps; // Test all the filters in |kSubPixelFilters|. There are 6 different filters but // filters [4] and [5] are only reached through GetFilterIndex(). constexpr int kMinimumViableRuns = 4 * 16; struct ConvolveTestParam { enum BlockSize { kBlockSize2x2, kBlockSize2x4, kBlockSize4x2, kBlockSize4x4, kBlockSize4x8, kBlockSize8x2, kBlockSize8x4, kBlockSize8x8, kBlockSize8x16, kBlockSize16x8, kBlockSize16x16, kBlockSize16x32, kBlockSize32x16, kBlockSize32x32, kBlockSize32x64, kBlockSize64x32, kBlockSize64x64, kBlockSize64x128, kBlockSize128x64, kBlockSize128x128, kNumBlockSizes }; static constexpr int kBlockWidth[kNumBlockSizes] = { 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64, 64, 128, 128}; static constexpr int kBlockHeight[kNumBlockSizes] = { 2, 4, 2, 4, 8, 2, 4, 8, 16, 8, 16, 32, 16, 32, 64, 32, 64, 128, 64, 128}; explicit ConvolveTestParam(BlockSize block_size) : block_size(block_size), width(kBlockWidth[block_size]), height(kBlockHeight[block_size]) {} BlockSize block_size; int width; int height; }; #if !LIBGAV1_CXX17 constexpr int ConvolveTestParam::kBlockWidth[kNumBlockSizes]; // static. constexpr int ConvolveTestParam::kBlockHeight[kNumBlockSizes]; // static. #endif const char* GetConvolveDigest8bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 16] = { "ae5977a4ceffbac0cde72a04a43a9d57", "6cf5f791fe0d8dcd3526be3c6b814035", "d905dfcad930aded7718587c05b48aaf", "6baf153feff04cc5b7e87c0bb60a905d", "871ed5a69ca31e6444faa720895949bf", "c9cf1deba08dac5972b3b0a43eff8f98", "68e2f90eaa0ab5da7e6f5776993f7eea", "f1f8282fb33c30eb68c0c315b7a4bc01", "9412064b0eebf8123f23d74147d04dff", "cc08936effe309ab9a4fa1bf7e28e24e", "36cbef36fa21b98df03536c918bf752a", "9d0da6321cf5311ea0bdd41271763030", "55a10165ee8a660d7dddacf7de558cdd", "ac7fc9f9ea7213743fae5a023faaaf08", "077e1b7b355c7ab3ca40230ee8efd8ea", "7a3e8de2a1caae206cf3e51a86dfd15a", "1ddf9020f18fa7883355cf8c0881186a", "2377dd167ef2707978bed6f10ffd4e76", "f918e0e4422967c6a7e47298135c7ae9", "b2264e129636368b5496760b39e64b7a", "1168251e6261e2ff1fa69a93226dbd76", "4821befdf63f8c6da6440afeb57f320f", "c30fc44d83821141e84cc4793e127301", "a8293b933d9f2e5d7f922ea40111d643", "354a54861a94e8b027afd9931e61f997", "b384e9e3d81f9f4f9024028fbe451d8b", "eeeb8589c1b31cbb565154736ca939ec", "f49dab626ddd977ed171f79295c24935", "78d2f27e0d4708cb16856d7d40dc16fb", "9d2393ea156a1c2083f5b4207793064b", "a9c62745b95c66fa497a524886af57e2", "2c614ec4463386ec075a0f1dbb587933", "7a8856480d752153370240b066b90f6a", "beaef1dbffadc701fccb7c18a03e3a41", "72b1e700c949d06eaf62d664dafdb5b6", "684f5c3a25a080edaf79add6e9137a8e", "3be970f49e4288988818b087201d54da", "d2b9dba2968894a414756bb510ac389a", "9a3215eb97aedbbddd76c7440837d040", "4e317feac6da46addf0e8b9d8d54304b", "d2f5ca2b7958c332a3fb771f66da01f0", "7aec92c3b65e456b64ae285c12b03b0d", "f72a99ad63f6a88c23724e898b705d21", "07a1f07f114c4a38ba08d2f44e1e1132", "26b9de95edb45b31ac5aa19825831c7a", "4e4677a0623d44237eb8d6a622cdc526", "c1b836a6ce023663b90db0e320389414", "5befcf222152ebc8d779fcc10b95320a", "62adf407fc27d8682ced4dd7b55af14e", "35be0786a072bf2f1286989261bf6580", "90562fc42dc5d879ae74c4909c1dec30", "a1427352f9e413975a0949e2b300c657", "bcbc418bc2beb243e463851cd95335a9", "cb8fedcbecee3947358dc61f95e56530", "0d0154a7d573685285a83a4cf201ac57", "b14bd8068f108905682b83cc15778065", "c96c867d998473197dde9b587be14e3a", "f596c63c7b14cada0174e17124c83942", "eb2822ad8204ed4ecbf0f30fcb210498", "538ce869ffd23b6963e61badfab7712b", "6bbcc075f8b768a02cdc9149f150326d", "4ae70d9db2ec36885394db7d59bdd4f7", "5fee162fe52c11c823db4d5ede370654", "9365186c59ef66d9def40f437022ad93", "0f95fb0276c9c7910937fbdf75f2811d", "356d4003477283e157c8d2b5a79d913c", "b355dab2dbb6f5869018563eece22862", "cf6ff8c43d8059cea6090a23ab66a0ef", "a336f8b7bcf188840ca65c0d0e66518a", "de953f03895923359c6a719e6a537b89", "8463ade9347ed602663e2cec5c4c3fe6", "392de11ffcd5c2ecf3db3480ee135340", "bddd31e3e852712e6244b616622af83d", "30a36245c40d978fc8976b442a8600c3", "93aa662b988b8502e5ea95659eafde59", "70440ba9ee7f9d16d297dbb49e54a56e", "1eb2be4c05b50e427e29c72fa566bff5", "52c0980bae63e8459e82eee7d8af2334", "75e57104d6058cd2bce1d3d8142d273d", "b4c735269ade44419169adbd852d5ddc", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "a7305087fae23de53d21a6909009ff69", "8dcce009395264379c1a51239f4bb22c", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "8dcce009395264379c1a51239f4bb22c", "d90a69e7bae8aa46ed0e1e5f911d7a07", "6ab4dc87be03be1dcc5d956ca819d938", "6ab4dc87be03be1dcc5d956ca819d938", "8f2afdb2f03cd04ffacd421b958caaa0", "710ccecc103033088d898a2b924551fb", "710ccecc103033088d898a2b924551fb", "a4093e3e5902dd659407ce6471635a4e", "375d7f5358d7a088a498b8b3aaecc0d5", "375d7f5358d7a088a498b8b3aaecc0d5", "08867ea5cc38c705ec52af821bc4736a", "2afb540e8063f58d1b03896486c5e89b", "2afb540e8063f58d1b03896486c5e89b", "6ce47b11d2e60c5d183c84ce9f2e46cc", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "a5a1ac658d7ce4a846a32b9fcfaa3475", "2370f4e4a83edf91b7f504bbe4b00e90", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "ae5464066a049622a7a264cdf9394b55", "45368b6db3d1fee739a64b0bc823ea9c", "8dff0f28192d9f8c0bf7fb5405719dd8", "632738ef3ff3021cff45045c41978849", "f7ec43384037e8d6c618e0df826ec029", "a6bc648197781a2dc99c487e66464320", "1112ebd509007154c72c5a485b220b62", "9714c4ce636b6fb0ad05cba246d48c76", "2c93dde8884f09fb5bb5ad6d95cde86d", "a49e6160b5d1b56bc2046963101cd606", "7f084953976111e9f65b57876e7552b1", "0846ec82555b66197c5c45b08240fbcc", "ca7471c126ccd22189e874f0a6e41960", "0802b6318fbd0969a33de8fdfcd07f10", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "3b1ceebf0579fcbbfd6136938c595b91", "ecafabcad1045f15d31ce2f3b13132f2", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "5f211eba020e256a5781b203c5aa1d2e", "3b04497634364dd2cd3f2482b5d4b32f", "a8ac7b5dc65ffb758b0643508a0e744e", "561ed8be43c221a561f8885a0d74c7ef", "8159619fc234598c8c75154d80021fd4", "8f43645dce92cf7594aa4822aa53b17d", "b6ccddb7dfa4eddc87b4eff08b5a3195", "b4e605327b28db573d88844a1a09db8d", "15b00a15d1cc6cc96ca85d00b167e4dd", "7bf911888c11a9fefd604b8b9c82e9a1", "bfb69b4d7d4aed73cfa75a0f55b66440", "034d1d62581bd0d840c4cf1e28227931", "8cba849640e9e2859d509bc81ca94acd", "bc79acf2a0fe419194cdb4529bc7dcc8", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "3bfad931bce82335219e0e29c15f2b21", "68a701313d2247d2b32636ebc1f2a008", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "05afe1f40d37a45a97a5e0aadd5066fb", "9e1f0e0bddb58d15d0925eeaede9b84c", "03313cdaa593a1a7b4869010dcc7b241", "88a50d2b4107ee5b5074b2520183f8ac", "ac50ea9f7306da95a5092709442989cf", "739b17591437edffd36799237b962658", "b8a7eb7dd9c216e240517edfc6489397", "75b755f199dbf4a0e5ebbb86c2bd871d", "31b0017ba1110e3d70b020901bc15564", "0a1aa8f5ecfd11ddba080af0051c576a", "536181ee90de883cc383787aec089221", "29f82b0f3e4113944bd28aacd9b8489a", "ee3e76371240d1f1ff811cea6a7d4f63", "17a20dbbf09feae557d40aa5818fbe76", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "6baf153feff04cc5b7e87c0bb60a905d", "871ed5a69ca31e6444faa720895949bf", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "68e2f90eaa0ab5da7e6f5776993f7eea", "f1f8282fb33c30eb68c0c315b7a4bc01", "9412064b0eebf8123f23d74147d04dff", "cc08936effe309ab9a4fa1bf7e28e24e", "36cbef36fa21b98df03536c918bf752a", "9d0da6321cf5311ea0bdd41271763030", "55a10165ee8a660d7dddacf7de558cdd", "ac7fc9f9ea7213743fae5a023faaaf08", "077e1b7b355c7ab3ca40230ee8efd8ea", "7a3e8de2a1caae206cf3e51a86dfd15a", "1ddf9020f18fa7883355cf8c0881186a", "2377dd167ef2707978bed6f10ffd4e76", "f918e0e4422967c6a7e47298135c7ae9", "b2264e129636368b5496760b39e64b7a", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "4cfad2c437084a93ea76913e21c2dd89", "d372f0c17bce98855d6d59fbee814c3d", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "d99ffd2579eb781c30bc0df7b76ad61e", "4e139e57cbb049a0f4ef816adc48d026", "be53b2507048e7ff50226d15c0b28865", "b73f3c1a10405de89d1f9e812ff73b5a", "c7d51b1f2df49ab83962257e8a5934e5", "159e443d79cc59b11ca4a80aa7aa09be", "6ef14b14882e1465b0482b0e0b16d8ce", "22a8d287b425c870f40c64a50f91ce54", "f1d96db5a2e0a2160df38bd96d28d19b", "637d1e5221422dfe9a6dbcfd7f62ebdd", "f275af4f1f350ffaaf650310cb5dddec", "f81c4d6b001a14584528880fa6988a87", "a5a2f9c2e7759d8a3dec1bc4b56be587", "2317c57ab69a36eb3bf278cf8a8795a3", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "1a0bdfc96a3b9fd904e658f238ab1076", "56d16e54afe205e97527902770e71c71", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "1f7b5b8282ff3cf4d8e8c52d80ef5b4d", "79e9e260a2028c5fe320005c272064b9", "2418ebcdf85551b9ae6e3725f04aae6d", "98bdf907ebacacb734c9eef1ee727c6e", "4dd5672d53c8f359e8f80badaa843dfc", "a1bef519bbf07138e2eec5a91694de46", "df1cb51fe1a937cd7834e973dc5cb814", "317fe65abf81ef3ea07976ef8667baeb", "2da29da97806ae0ee300c5e69c35a4aa", "555475f5d1685638169ab904447e4f13", "b3e3a6234e8045e6182cf90a09f767b2", "849dfeca59074525dea59681a7f88ab4", "39a68af80be11e1682b6f3c4ede33530", "b22d765af176d87e7d3048b4b89b86ad", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "b8a710baa6a9fc784909671d450ecd99", "f9e6a56382d8d12da676d6631bb6ef75", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "3bf8e11e18527b16f0d7c0361d74a52d", "b9ff54c6f1e3b41fc7fc0f3fa0e75cf2", "06ef1504f31af5f173d3317866ca57cb", "635e8ee11cf04d73598549234ad732a0", "fab693410d59ee88aa2895527efc31ac", "3041eb26c23a63a587fbec623919e2d2", "c61d99d5daf575664fb7ad64976f4b03", "822f6c4eb5db760468d822b21f48d94d", "3f6fcb9fae3666e085b9e29002a802fc", "d9b9fecd195736a6049c528d4cb886b5", "fed17fc391e6c3db4aa14ea1d6596c87", "d0d3482d981989e117cbb32fc4550267", "39561688bf6680054edbfae6035316ce", "087c5992ca6f829e1ba4ba5332d67947", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } const char* GetConvolveScaleDigest8bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 2] = { "0291a23f2ac4c40b5d8e957e63769904", "1d48447857472d6455af10d5526f6827", "409b2278d6d372248f1891ca0dd12760", "9e416606a3f82fe5bb3f7182e4f42c2d", "e126563f859ddd5c5ffde6f641168fad", "9bad4f1b7e1865f814b6fd5620816ebd", "50e5e5a57185477cb2af83490c33b47c", "3d2fb301c61d7fbd0e21ac263f7ac552", "5920032c6432c80c6e5e61b684018d13", "07ada64d24339488cdce492e6e0c6b0d", "aaf1589aff6d062a87c627ab9ba20e3e", "91adf91bb24d2c4ea3f882bdf7396e33", "1d17a932a68bb1f199f709e7725fe44b", "07716c63afda034cb386511ea25a63b5", "cca17ef3324c41d189e674a059ef1255", "37d17e70619823a606c0b5f74bf2e33b", "ba8ed5474c187c8e8d7f82a6a29ee860", "27663f037973ebe82ec10252a4d91299", "24c27e187e8d5a2bbfa0fef9046d3eb0", "9854fdc91a48e3bd4639edcc940e5c09", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "a71907c60a9f1f81972a2859ae54a805", "817bc3bf0c77abc4186eac39f2320184", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "4e7182a8b226982e2678abcf5f83325d", "50cef7c6e57544135f102226bb95bed9", "225e054dbcfff05b1c8b0792c731449e", "16eb63f03839159f3af0e08be857170f", "c8e5d111a2e3f4487330a8bd893cb894", "4fd99eaf9c160442aab35b9bdc5d275b", "8b0f61bfb30747d4c9215618ac42557c", "1df78022da202cefb9a8100b114152d9", "378466e1eda63dbc03565b78af8e723f", "28ea721411fbf5fc805035be9a384140", "4fed5d4163a3bfcc6726a42f20410b0a", "55abfca0c820771bd926e4b94f66a499", "6c8b8ef0a78859c768e629e1decc0019", "d0ead286b5ba3841d24dd114efbfef0a", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } #if LIBGAV1_MAX_BITDEPTH >= 10 const char* GetConvolveDigest10bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 16] = { "b1b6903d60501c7bc11e5285beb26a52", "a7855ed75772d7fa815978a202bbcd9f", "bde291a4e8087c085fe8b3632f4d7351", "238980eebc9e63ae3eea2771c7a70f12", "0eac13431bd7d8a573318408a72246d5", "d05a237ed7a9ca877256b71555b1b8e4", "73438155feb62595e3e406921102d748", "5871e0e88a776840d619670fbf107858", "1c6376ce55c9ee9e35d432edb1ffb3b7", "d675e0195c9feca956e637f3f1959f40", "b5681673903ade13d69e295f82fdd009", "3c43020105ae93a301404b4cd6238654", "dd2c5880a94ed3758bfea0b0e8c78286", "4ebb1a7b25a39d8b9868ec8a1243103f", "d34ec07845cd8523651e5f5112984a14", "2ce55308d873f4cd244f16da2b06e06e", "a4bb5d5ff4b25f391265b5231049a09a", "c9106e0c820b03bcdde3aa94efc11a3e", "7ec2eae9e118506da8b33440b399511a", "78de867c8ee947ed6d29055747f26949", "a693b4bd0334a3b98d45e67d3985bb63", "156de3172d9acf3c7f251cd7a18ad461", "e545b8a3ff958f8363c7968cbae96732", "7842b2047356c1417d9d88219707f1a1", "1a487c658d684314d91bb6d961a94672", "94b3e5bcd6b849b66a4571ec3d23f9be", "0635a296be01b7e641de98ee27c33cd2", "82dc120bf8c2043bc5eee81007309ebf", "58c826cad3c14cdf26a649265758c58b", "f166254037c0dfb140f54cd7b08bddfe", "74ab206f14ac5f62653cd3dd71a7916d", "5621caef7cc1d6522903290ccc5c2cb8", "78ec6cf42cce4b1feb65e076c78ca241", "42188e2dbb4e02cd353552ea147ad03f", "f9813870fc27941a7c00a0443d7c2fe7", "20b14a6b5af7aa356963bcaaf23d230d", "9c9c41435697f75fa118b6d6464ee7cb", "38816245ed832ba313fefafcbed1e5c8", "5d34137cc8ddba75347b0fa1d0a91791", "465dcb046a0449b9dfb3e0b297aa3863", "3e787534dff83c22b3033750e448865a", "4c91f676a054d582bcae1ca9adb87a31", "eab5894046a99ad0a1a12c91b0f37bd7", "765b4cfbfc1a4988878c412d53bcb597", "bc63b29ec78c1efec5543885a45bb822", "91d6bdbc62d4bb80c9b371d9704e3c9e", "cecd57396a0033456408f3f3554c6912", "5b37f94ef136c1eb9a6181c19491459c", "716ba3a25b454e44b46caa42622c128c", "9076f58c4ab20f2f06d701a6b53b1c4f", "d3212ab3922f147c3cf126c3b1aa17f6", "b55fea77f0e14a8bf8b6562b766fe91f", "59b578268ff26a1e21c5b4273f73f852", "16761e7c8ba2645718153bed83ae78f6", "a9e9805769fe1baf5c7933793ccca0d8", "553a2c24939dff18ec5833c77f556cfb", "5c1ec75a160c444fa90abf106fa1140e", "2266840f11ac4c066d941ec473b1a54f", "9e194755b2a37b615a517d5f8746dfbb", "bbf86f8174334f0b8d869fd8d58bf92d", "fd1da8d197cb385f7917cd296d67afb9", "a984202c527b757337c605443f376915", "c347f4a58fd784c5e88c1a23e4ff15d2", "29cbaadbff9adf4a3d49bd9900a9dd0b", "c5997b802a6ba1cf5ba1057ddc5baa7e", "4f750f6375524311d260306deb233861", "59f33727e5beeb783a057770bec7b4cd", "0654d72f22306b28d9ae42515845240c", "6c9d7d9e6ef81d76e775a85c53abe209", "a35f435ccc67717a49251a07e62ae204", "c5325015cb0b7c42839ac4aa21803fa0", "f81f31f1585c0f70438c09e829416f20", "ab10b22fb8dd8199040745565b28595d", "0d928d6111f86c60ccefc6c6604d5659", "4ed1a6200912995d4f571bdb7822aa83", "92e31a45513582f386dc9c22a57bbbbd", "6dbf310a9c8d85f76306d6a35545f8af", "80fce29dc82d5857c1ed5ef2aea16835", "14f2c5b9d2cd621c178a39f1ec0c38eb", "da54cfb4530841bda29966cfa05f4879", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "7e3fa9c03bc3dfbdeb67f24c5d9a49cd", "f3454ca93cbb0c8c09b0695d90a0df3d", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "f3454ca93cbb0c8c09b0695d90a0df3d", "1a77d2af4d2b6cf8737cfbcacacdc4e4", "89bec831efea2f88129dedcad06bb3fa", "89bec831efea2f88129dedcad06bb3fa", "dead0fe4030085c22e92d16bb110de9d", "306a2f5dfd675df4ed9af44fd5cac8c0", "306a2f5dfd675df4ed9af44fd5cac8c0", "9d01c946a12f5ef9d9cebd9816e06014", "768f63912e43148c13688d7f23281531", "768f63912e43148c13688d7f23281531", "2e7927158e7b8e40e7269fc909fb584b", "123028e18c2bfb334e34adb5a4f67de4", "123028e18c2bfb334e34adb5a4f67de4", "2c979c2bddef79a760e72a802f83cc76", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "da1a6ff2be03ec8acde4cb1cd519a6f0", "a4ca37cb869a0dbd1c4a2dcc449a8f31", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "1b5d1d4c7be8d5ec00a42a49eecf918f", "98b77e88b0784baaea64c98c8707fe46", "8148788044522edc3c497e1017efe2ce", "acf60abeda98bbea161139b915317423", "262c96b1f2c4f85c86c0e9c77fedff1e", "f35a3d13516440f9168076d9b07c9e98", "13782526fc2726100cb3cf375b3150ed", "13c07441b47b0c1ed80f015ac302d220", "02880fde51ac991ad18d8986f4e5145c", "aa25073115bad49432953254e7dce0bc", "69e3361b7199e10e75685b90fb0df623", "2f8ab35f6e7030e82ca922a68b29af4a", "452f91b01833c57db4e909575a029ff6", "1fabf0655bedb671e4d7287fec8119ba", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "d54206c34785cc3d8a06c2ceac46378c", "85a11892ed884e3e74968435f6b16e64", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "16434230d24b9522ae2680e8c37e1b95", "963dea92f3efbb99137d1de9c56728d3", "b72fb6a9a073c2fe65013af1842dc9b0", "86fa0c299737eb499cbcdce94abe2d33", "6b80af04470b83673d98f46925e678a5", "65baca6167fe5249f7a839ce5b2fd591", "e47ded6c0eec1d5baadd02aff172f2b1", "c0950e609f278efb7050d319a9756bb3", "9051290279237f9fb1389989b142d2dd", "34cdc1be291c95981c98812c5c343a15", "5b64a6911cb7c3d60bb8f961ed9782a2", "7133de9d03a4b07716a12226b5e493e8", "3594eff52d5ed875bd9655ddbf106fae", "90d7e13aa2f9a064493ff2b3b5b12109", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "b1f26ee13df2e14a757416ba8a682278", "996b6c166f9ed25bd07ea6acdf7597ff", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "34895d4c69a6c3303693e6f431bcd5d8", "c9497b00cb1bc3363dd126ffdddadc8e", "1e461869bb2ee9b6069c5e52cf817291", "8d7f1d7ea6a0dcc922ad5d2e77bc74dd", "138855d9bf0ccd0c62ac14c7bff4fd37", "64035142864914d05a48ef8e013631d0", "205904fa3c644433b46e01c11dd2fe40", "291425aaf8206b20e88db8ebf3cf7e7f", "cb6238b8eb6b72980958e6fcceb2f2eb", "626321a6dfac542d0fc70321fac13ff3", "1c6fda7501e0f8bdad972f7857cd9354", "4fd485dadcb570e5a0a5addaf9ba84da", "d3f140aea9e8eabf4e1e5190e0148288", "e4938219593bbed5ae638a93f2f4a580", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "238980eebc9e63ae3eea2771c7a70f12", "0eac13431bd7d8a573318408a72246d5", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "73438155feb62595e3e406921102d748", "5871e0e88a776840d619670fbf107858", "1c6376ce55c9ee9e35d432edb1ffb3b7", "d675e0195c9feca956e637f3f1959f40", "b5681673903ade13d69e295f82fdd009", "3c43020105ae93a301404b4cd6238654", "dd2c5880a94ed3758bfea0b0e8c78286", "4ebb1a7b25a39d8b9868ec8a1243103f", "d34ec07845cd8523651e5f5112984a14", "2ce55308d873f4cd244f16da2b06e06e", "a4bb5d5ff4b25f391265b5231049a09a", "c9106e0c820b03bcdde3aa94efc11a3e", "7ec2eae9e118506da8b33440b399511a", "78de867c8ee947ed6d29055747f26949", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "e552466a4e7ff187251b8914b084d404", "981b7c44b6f7b7ac2acf0cc4096e6bf4", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "a4c75372af36162831cb872e24e1088c", "497271227a70a72f9ad25b415d41563f", "c48bd7e11ec44ba7b2bc8b6a04592439", "0960a9af91250e9faa1eaac32227bf6f", "746c2e0f96ae2246d534d67102be068c", "d6f6db079da9b8909a153c07cc9d0e63", "7c8928a0d769f4264d195f39cb68a772", "db645c96fc8be04015e0eb538afec9ae", "946af3a8f5362def5f4e27cb0fd4e754", "7ad78dfe7bbedf696dd58d9ad01bcfba", "f0fd9c09d454e4ce918faa97e9ac10be", "af6ae5c0eb28417bd251184baf2eaba7", "866f8df540dd3b58ab1339314d139cbd", "72803589b453a29501540aeddc23e6f4", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "aba5d5ef5e96fe418e65d20e506ea834", "d70bf16e2a31e90b7b3cdeaef1494cf9", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "6df80bb7f264f4f285d09a4d61533fae", "c8831118d1004a7cca015a4fca140018", "b7f82c140369067c105c7967c75b6f9e", "130f47aae365aabfec4360fa5b5ff554", "92483ed631de21b685ffe6ccadbbec8f", "cbb6ab31547df6b91cfb48630fdffb48", "1eea5e8a24d6aa11778eb3e5e5e9c9f2", "9e193b6b28ce798c44c744efde19eee9", "885c384d90aaa34acd8303958033c252", "8110ed10e7234851dff3c7e4a51108a2", "6fb9383302eb7e7a13387464d2634e03", "864d51fcc737bc73a3f588b67515039a", "2ecb7890f00234bcb28c1d969f489012", "c4793d431dbf2d88826bb440bf027512", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "972aeba65e8a6d20dd0f95279be2aa75", "34165457282e2af2e9b3f5840e4dec5d", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "b8c5582b9bbb789c45471f93be83b41f", "257bf5467db570974d7cf2356bacf116", "5255dded79f56b0078543b5a1814a668", "ef745100f5f34c8ff841b2b0b57eb33f", "edae8ed67286ca6a31573a541b3deb6f", "01adcd8bf15fbf70df47fbf3a953aa14", "ba539808a8501609ce052a1562a62b25", "ac8e6391200cec2abdebb00744a2ba82", "54b17120f7d71ddb4d70590ecd231cc1", "f6e36446a97611a4db4425df926974b2", "a82f4080699300b659bbe1b5c4463147", "ecedb178f7cad3dc1b921eca67f9efb6", "0609ca0ff3ca90069e8b48829b4b0891", "839e86c681e97359f7819c766000dd1c", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } const char* GetConvolveScaleDigest10bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 2] = { "27e21eb31687f9fbd0a66865fa8d7c8a", "9bff726c8e1d0998451a3b9cf2b3d8c8", "661d74cfef36f12ed8d9b4c3ccb7fe0d", "5fc365fd1fcc9599dd97a885ba0c2eec", "acdba2c82a6268e3c0ae8fc32be1b41f", "a5db60bbeaf56ab030ed21c42d553cf3", "1228bb633f9fd63fdb998b775ca79e98", "07812c97f9f43a2a8ae07329dc488699", "903525fb782119c4dfaf61b98a310c9f", "f38b51cef38b929e317861ccbc73ecd8", "b78b05138e1d5fbf089144c42ce03058", "f2e227664cbf2d821b242a34fcbc9835", "cb992dac70591e7d3663588ae13b9adc", "f2292d33657d939fa85ea5bacdfe39a3", "7049dc742d6d8ad6f5d4309968ff281c", "e4beebde1ac335a4d92e4af94653a2ce", "cc77875f98f54b9b26b5f7d9fcbc828d", "fb623f7b9e1ffcf2ae361599728a5589", "c33847e47a7eda214734084640818df9", "ab3e1aec3d720c0c89c46a8d5b161b44", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "efe4de861dcf0f7458b6208cae7e3584", "814751c55fa84f0fed94ff15fc30fc24", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "31a63fe47297102937acbe7a328588b7", "b804a0a24633243f7da48d7a5f51c0bf", "cb492672b005fc378cccc8c03003cd4a", "1d18732bcf2ea487e84579489cc59a22", "457c4b3ec38a8d6c210584ade1a9fae2", "a3afdd468e6a5238a3dbd2cc21c11c9e", "6ff8a16f21d6e8a9741dacf0734ae563", "3ffa29ef7e54e51f6849c9a3d3c79d03", "af89899b083cf269ac1bd988aeb15b15", "3365d8411c11081fb228436238b9a671", "3ba56d30f5f81d7098f356635a58b9af", "b3013776900c6520bd30f868e8c963b6", "81febaa7342692483040f500ba2e5e2b", "4a51ff1d9a4a68687d590b41aa7835a3", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } #endif // LIBGAV1_MAX_BITDEPTH >= 10 #if LIBGAV1_MAX_BITDEPTH == 12 const char* GetConvolveDigest12bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 16] = { "e25031afae184cc4d186cde7e3d51e33", "6fb55dec2506dae6c229469cdf2e7d83", "9df34d27f5bd040d1ed1455b151cd1ff", "7f6829458f00edb88f78851dd1a08739", "a8bbe9b6b9eaf6f681d91c981b994949", "21f74980b36cb246426f4bc3fe7c08c3", "403c2ccced3b5b141a4c7559c0cd841b", "1c3c4c6cd8a3e79cd95d6038531b47e5", "f18d6950d36619086ac0055bab528cb1", "37d9c5babddf24fe8cb061297297b769", "c111000d4021381f3d18ea0e24a1b5f5", "4e1e4f0a592ff028e35f8187627d6e68", "0ca9ad4614d32da05746f8712a46d861", "8a122ab194e2fdb7089b29be50af8c86", "3c21326e22a80982d1b0ffc09be4beae", "f6c8d1fe2c1fb19604c49c6a49bd26a8", "d3eda9d7aa80e4ea1f18bf565b143e57", "fe21bd1cb8e90466dc727f2223ea7aed", "01efe3df83c715325aaddd4d4ce130ad", "ecaa751360121d3746b72932415fb998", "291e67095399651dc5c8a033390f255f", "66b26828e434faf37ddc57d3e0abb6db", "e9cd69e9ba70864e3d0b175ac0a177d6", "64e4db895a843cb05384f5997b1ba978", "f305161c82de999d2c93eac65f609cfe", "4762b2bd27983ad916ec0a930c0eca6b", "1631495ffae43a927267ebd476015ef1", "b0f22de7b10057e07af71f9bce4615ce", "6fa29dc4be1a46d246a41d66a3d35cb4", "734601c2185bdf30ba9ded8b07003a05", "524e4553d92c69e7e4ed934f7b806c6b", "3709c8950bc5fcc4a2b3ec68fc78bf7e", "69c274d9f8e0fd6790495e9695251f1f", "ee30cc1232c27494ef53edd383568f25", "e525dbeb0b4341952a92270dcfc51730", "b3685c9e783d3402497bbd49d28c7dd7", "d1c9f02dc818e6b974794dfb7749aac8", "bdb9e4961f9aa8c25568d3394e968518", "f5f74555adcad85f3ebd3cb85dc7b770", "737e2a0be806dbd701014f2078be7898", "20a18294e3a9422193aa0a219fd80ede", "7106648ecb9ae24a54d1dbabf2a9e318", "20f39cbd6b5ed87a6ae4f818932325c0", "a99666e3157e32a07c87b01e52091a76", "123e4d533d478c3089c975323c85396b", "d2a8021f7683a0cdf2658418fa90a6fc", "1437e192a3349db8702d5b90eb88dbc1", "fe097fc4aeed7cda0b0f405124efb19d", "1988227c51fa589db1307fd890bb5972", "537e25a6c30b240dc1e3bddd1c3a0a03", "aebe5cffaae448db5a08987a3375a428", "7127ae9bdc63df4459590dc02ca95403", "7ad281903a210f2b1f39f7c40c8df272", "d4b97ba21f7b400ba9f9cd8bb1a576df", "0884a824203aaf72c78f73fdaf2b23a2", "63d60388605c92daee55d517de622a9e", "171ec49a779de1efa69510eefbd09bba", "541cf051579c5a10b9debd3bfdcb7f32", "91c14451ad93ed88e96b5d639ce408de", "3b0313ec0e043d19744bf88c90e875a1", "6adcb3cee91fe3a83b36deb11c5ad6dd", "c6d4bfad24616a88222681992a99d782", "515dc0f2a41730d5c434e4f3c81b02c3", "1c69abdee3b9608a6094034badc2bec0", "1785a0f321d7dd90aa8846961737a767", "dd12c5b8c341f2423d0d5db4f285d199", "5741fb69aae1ca8a0fbe4f1478df88ef", "a4390ceb4e4e9f5cf6a47a9b11a97015", "6778eb25df902092b440c3402e7f0f80", "5ad9d6b36f8898bb55e901c1c0c523da", "73969b6c03bb5a7345a8b968b542668e", "f48192947e66d70f116193a4186d0186", "53f60d0e89d7d994ec6d6131fb7e75ae", "c75f6f8813839ae3cf192baa29039265", "9ff0852ebbad56663250f86ac3a3bf9b", "668938580a770ea7ace8bbf7d349e89f", "5b06bb0a15ac465a250d9b209f05289f", "a2128f5c8692fed7e7c1c7af22ce9f72", "f80f1d7a58869ec794258c0f7df14620", "ed1e03a35924c92ed2fc9808dc3f06f3", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "35ef89c35d2e8e46feb856c554c21c9f", "b98ce33a1bf4fab840b7ef261b30dbc4", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "b98ce33a1bf4fab840b7ef261b30dbc4", "42263fb359c4fdf1c7cdb4980b3e97f2", "1e7071b7db3144188bdcf5d199fe5355", "1e7071b7db3144188bdcf5d199fe5355", "30d367304a87bd25f0ad2ff8e4b5eb41", "4abe6dbb3198219015838dbedf07297a", "4abe6dbb3198219015838dbedf07297a", "acec349a95b5bba98bb830372fa15e73", "a73ad8661256ce2fdf5110425eb260b2", "a73ad8661256ce2fdf5110425eb260b2", "8ff2f049d3f972867f14775188fe589b", "87f5f9a07aea75c325e6d7ff6c96c7c2", "87f5f9a07aea75c325e6d7ff6c96c7c2", "325fcde7d415d7aa4929a3ea013fb9cc", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "05aa29814d5ce35389dbcf20368850da", "fbb89f907a040e70953e3364dbe1feda", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "44ac511baf45032078cc0b45e41dba79", "efb98974adc58d88e122293436bb9184", "7eee18c1a16bcb4e7ef7b27f68ba884f", "b0904c9b118dd9a1f9f034c0ff82d1c1", "54436deb5183dd9669dd4f5feadb3850", "4db1c310b7d9a8bd3e2b5d20fa820e3b", "c40abc6b2d67527f48a287cd7e157428", "48ec3fcf509805f484c8e0948c3469be", "cb7d4a76fa7de52ed2fe889785327b38", "f57983346815fa41e969c195c1c03774", "7dba59b0de2c877666ded6bdaefdcc30", "4837f8ba2f67f17f28a38c5e2a434c73", "09e06fe9dc7ef7818f2a96895235afd4", "002976970ec62b360f956b9c091782d4", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "78673b1084367e97b8dd83990adc5219", "06b5d4a30b9efb6c1d95ef7957f49e76", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "ce460146922cd53970b510d460aa4062", "6fd051938b8efcec9ece042f1edc177a", "f5ff0dcfe3c1a56e3856549d8ded416b", "b69bc2cfc17c6b4313264db96831f0d1", "38a5e65bd71934becfb376eb3b9bc513", "32c1163aa4ca6b6c69d950aba7b06d48", "0c22a6c014c6347983de4ca863f3b53f", "a80c5ee9eb2dfb9a0d56e92eb3f85d91", "a9719722a150a81175427bc161b95d7a", "8237befd456131a488cc5b8b63f4aca5", "51616abcd0beea53a78ffce106b974fc", "6c47b22270f01d27b404da07e1be1202", "356268298d3887edaabd0169a912c94e", "d2b00216e106cb8c5450e2eff1f8481a", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "c2de3a582c79aee811076211c497d2bc", "d1b6d9c73da41def26dd4f85fbd1bde8", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "d8374eb7825081b89f74b05c66bccd63", "d5f7d68c10b5eaf0fba6f93ee26266e6", "94d19cb65f29db65e6656b588f431ade", "5126e95f0249024a6f6d426714bd5b20", "d7d3654b9c2dabe13239875984770acd", "6491afd5d651aab80aa179b579b74341", "037a5de0de89983808f8e8f6dc39110f", "5980073b7685c5c9b2ec027e06be2cbc", "0abb9d035aca426b62ca0f3fab063bab", "fe002a902bb4ec24dfe3ea0fe381a472", "1ac15726df1aa2cd8855162a91893379", "0758c3ac16467605d73c725a697c3dc1", "97d894d85f6ccfa4ff81e0e8fdf03da1", "c3c7b362f063a18244ea542a42d2873c", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "7f6829458f00edb88f78851dd1a08739", "a8bbe9b6b9eaf6f681d91c981b994949", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "403c2ccced3b5b141a4c7559c0cd841b", "1c3c4c6cd8a3e79cd95d6038531b47e5", "f18d6950d36619086ac0055bab528cb1", "37d9c5babddf24fe8cb061297297b769", "c111000d4021381f3d18ea0e24a1b5f5", "4e1e4f0a592ff028e35f8187627d6e68", "0ca9ad4614d32da05746f8712a46d861", "8a122ab194e2fdb7089b29be50af8c86", "3c21326e22a80982d1b0ffc09be4beae", "f6c8d1fe2c1fb19604c49c6a49bd26a8", "d3eda9d7aa80e4ea1f18bf565b143e57", "fe21bd1cb8e90466dc727f2223ea7aed", "01efe3df83c715325aaddd4d4ce130ad", "ecaa751360121d3746b72932415fb998", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "67b2ea94cc4d0b32db3ae3c29eee4d46", "bcfec99ad75988fa1efc1733204f17f2", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "79c222c5796e50119f1921e7bc534a25", "ae3f7c189458f044e9c52399d37a55e2", "fd6dde45bd2937331428de9ef4f8e869", "b384d065423f3d271b85781d76a73218", "466ea0680c06f59e8b3bb293608731fb", "360541ba94f42d115fe687a97a457ffb", "e5a0794d37af40c40a4d2c6d3f7d2aa2", "4eed285651a75614bd60adebbe2e185c", "bbdbf93942282d7b9c4f07591a1764a6", "1288a9ec3e6f79213b6745e6e7568c44", "4ff1310bfd656d69ed5c108a91a9b01a", "3380806b5f67eb3ebce42f8e7c05b256", "09c4bdf0f30aca6812fb55a5ac06b1bd", "722c86ba6bf21f40742ee33b4edc17c4", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "f5303c96d1630f9840eaaba058cd818b", "c20cd45782b2f52c05e4189912047570", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "d6360f96fe15a3ee1e903b0a53dcaaeb", "4b18995cdf2f5d18410d3a732c5932b1", "6f62bf7395c3dfccc1565ba8424f20e8", "c9987ed30491cd28bbc711dd57228247", "8e277ec837cbecf529ae2eb0578fddc1", "c0c132386f23c5f0fba055a12fb79547", "6b5617ab78dd0916690dfa358298b7b3", "394abedca37f60d1a5148a4c975305ed", "bb88881e0e4cf2d88c2d2b38b5833f20", "bef10806be8d58ea8e97870a813b075e", "b4b017d1f792bea69d3b773db7c80c7c", "0660bc63041213a8a4d74724a3bc4291", "5050c8c5388a561691fd414b00c041df", "9ed40c68de6a8008a902d7224f8b620f", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "ec10ce4a674424478a401847f744251d", "bdd897eafc8ef2651a7bba5e523a6ac2", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "2745de4a6b29abb85ee513e22ad362c3", "8aaad384b7cd349b4b968e657ec15523", "fb6c0723432bcd2246d51a90f5fb5826", "f8104ed5921ebd48c6eed16150ffe028", "85c2e236b3e32bf731601237cf0594cd", "8bd6eefff9640766cdf64ab082cb1485", "78b5cd9dde6c6a5900f3040c57172091", "aaa980506bd7bb1d75924a8025698d1a", "90050a411d501f7166f6741832b0c342", "d6ec88b2c38e32511f3359e1d5f9d85b", "96506b8b39274c8fe687ea39761997f1", "3322ea83995c2762fb60db993b401658", "151b6e4ce60392639982fca5a73ac3d3", "d52a1038e135bef233674a843f8c7cb6", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } const char* GetConvolveScaleDigest12bpp(int id) { // Entries containing 'XXXXX...' are skipped. See the test for details. static const char* const kDigest[ConvolveTestParam::kNumBlockSizes * 2] = { "aea59b7a638f27acad2b90fd2b8c9fee", "be87ba981a0af25611a7d5f0970be9b3", "7c81f1486cd607376d776bf2c6e81dec", "f683ba2a9b353bea35f26c1ed730f3c5", "11e2d70daff1726093cb4fcae33ce0d6", "567575eac0dea2f379019b2d4bafe444", "216479ed580d6e0d7c1d523015394814", "dcabbe5f5709a4b6634d77cc514e863a", "4e888207fe917faeea2b44383ac16caf", "d617c5608fae3b01c507c7e88040fee3", "eeac5d9b3dc005e76f13dfc7483eae48", "8ff0a82811f77303c4516bb8c761336f", "95a7c315aaa208097b6ab006f1d07654", "da63527ee80e6772435cff8321a29a95", "404457f72e7113d1f3797a39319fd3fe", "43cbccfe2663ec11c157319acfe629a5", "1dc5b8dee4542f3d7fcf6b0fa325dfde", "16d4506674f2fcedfcd1e006eb097141", "4fcf329ddb405cd6bbb0a6fb87e29eb3", "de77a781957653ea1750f79995605cdc", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "436f6fdc008d94a94bc6f516f98f402f", "b436bd9036f08ba7e50cfc536911dbbd", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "720a01018856bd83f4d89a9024b14728", "b7e01a3f161007712ce342f59b2c51f2", "922420ebe5dec4f19c259ebdf8a3259a", "979aaba579556207a7bbcc939123c1b2", "89a30898cbaa4d64f9072173e8365864", "0586ff961f2e4228f4e38299fb25ae07", "adb27a03f8b1b50fe2a52b5ca8d4fc28", "4f91cd92aab2e09f4b123251a8d2f219", "620fba0fff163d96a1cd663d1af4a4c5", "bf7a0fa65b1a90ba34c834558fa2c86e", "c21f7d7d16d047a27b871a7bf8476e2d", "a94b17c81f3ce2b47081bd8dd762a2e5", "9078d20f59bc24862af3856acb8c0357", "ee510ce6b3d22de9e4bd7920a26fd69a", }; assert(id >= 0); assert(id < sizeof(kDigest) / sizeof(kDigest[0])); return kDigest[id]; } #endif // LIBGAV1_MAX_BITDEPTH == 12 struct ConvolveTypeParam { ConvolveTypeParam(bool is_intra_block_copy, bool is_compound, bool has_vertical_filter, bool has_horizontal_filter) : is_intra_block_copy(is_intra_block_copy), is_compound(is_compound), has_vertical_filter(has_vertical_filter), has_horizontal_filter(has_horizontal_filter) {} bool is_intra_block_copy; bool is_compound; bool has_vertical_filter; bool has_horizontal_filter; }; std::ostream& operator<<(std::ostream& os, const ConvolveTestParam& param) { return os << "BlockSize" << param.width << "x" << param.height; } std::ostream& operator<<(std::ostream& os, const ConvolveTypeParam& param) { return os << "is_intra_block_copy: " << param.is_intra_block_copy << ", is_compound: " << param.is_compound << ", has_(vertical/horizontal)_filter: " << param.has_vertical_filter << "/" << param.has_horizontal_filter; } //------------------------------------------------------------------------------ template class ConvolveTest : public testing::TestWithParam< std::tuple> { public: static_assert(bitdepth >= kBitdepth8 && bitdepth <= LIBGAV1_MAX_BITDEPTH, ""); ConvolveTest() = default; ~ConvolveTest() override = default; void SetUp() override { ConvolveInit_C(); const Dsp* const dsp = GetDspTable(bitdepth); ASSERT_NE(dsp, nullptr); GetConvolveFunc(dsp, &base_convolve_func_); const testing::TestInfo* const test_info = testing::UnitTest::GetInstance()->current_test_info(); const absl::string_view test_case = test_info->test_suite_name(); if (absl::StartsWith(test_case, "C/")) { base_convolve_func_ = nullptr; } else if (absl::StartsWith(test_case, "SSE41/")) { if ((GetCpuInfo() & kSSE4_1) != 0) { ConvolveInit_SSE4_1(); } } else if (absl::StartsWith(test_case, "AVX2/")) { if ((GetCpuInfo() & kAVX2) != 0) { ConvolveInit_AVX2(); } } else if (absl::StartsWith(test_case, "NEON/")) { ConvolveInit_NEON(); #if LIBGAV1_MAX_BITDEPTH >= 10 ConvolveInit10bpp_NEON(); #endif } else { FAIL() << "Unrecognized architecture prefix in test case name: " << test_case; } GetConvolveFunc(dsp, &cur_convolve_func_); // Skip functions that have not been specialized for this particular // architecture. if (cur_convolve_func_ == base_convolve_func_) { cur_convolve_func_ = nullptr; } } protected: int GetDigestId() const { int id = param_.block_size; id += param_.kNumBlockSizes * static_cast(type_param_.has_horizontal_filter); id += 2 * param_.kNumBlockSizes * static_cast(type_param_.has_vertical_filter); id += 4 * param_.kNumBlockSizes * static_cast(type_param_.is_compound); id += 8 * param_.kNumBlockSizes * static_cast(type_param_.is_intra_block_copy); return id; } void GetConvolveFunc(const Dsp* dsp, ConvolveFunc* func); void SetInputData(bool use_fixed_values, int value); void Check(bool use_fixed_values, const Pixel* src, const Pixel* dest, libvpx_test::MD5* md5_digest); void Check16Bit(bool use_fixed_values, const uint16_t* src, const uint16_t* dest, libvpx_test::MD5* md5_digest); // |num_runs| covers the categories of filters (6) and the number of filters // under each category (16). void Test(bool use_fixed_values, int value, int num_runs = kMinimumViableRuns); const ConvolveTypeParam type_param_ = std::get<0>(GetParam()); const ConvolveTestParam param_ = std::get<1>(GetParam()); private: ConvolveFunc base_convolve_func_; ConvolveFunc cur_convolve_func_; // Convolve filters are 7-tap, which need 3 pixels // (kRestorationHorizontalBorder) padding. Pixel source_[kMaxBlockHeight * kMaxBlockWidth] = {}; uint16_t source_16bit_[kMaxBlockHeight * kMaxBlockWidth] = {}; uint16_t dest_16bit_[kMaxBlockHeight * kMaxBlockWidth] = {}; Pixel dest_clipped_[kMaxBlockHeight * kMaxBlockWidth] = {}; const int source_stride_ = kMaxBlockWidth; const int source_height_ = kMaxBlockHeight; }; template void ConvolveTest::GetConvolveFunc(const Dsp* const dsp, ConvolveFunc* func) { *func = dsp->convolve[type_param_.is_intra_block_copy][type_param_.is_compound] [type_param_.has_vertical_filter] [type_param_.has_horizontal_filter]; } template void ConvolveTest::SetInputData(bool use_fixed_values, int value) { if (use_fixed_values) { std::fill(source_, source_ + source_height_ * source_stride_, value); } else { const int offset = kConvolveBorderLeftTop * source_stride_ + kConvolveBorderLeftTop; const int mask = (1 << bitdepth) - 1; libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed()); const int height = param_.height; const int width = param_.width; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { source_[y * source_stride_ + x + offset] = rnd.Rand16() & mask; } } // Copy border pixels to the left and right borders. for (int y = 0; y < height; ++y) { Memset(&source_[(y + kConvolveBorderLeftTop) * source_stride_], source_[y * source_stride_ + offset], kConvolveBorderLeftTop); Memset(&source_[y * source_stride_ + offset + width], source_[y * source_stride_ + offset + width - 1], kConvolveBorderLeftTop); } // Copy border pixels to the top and bottom borders. for (int y = 0; y < kConvolveBorderLeftTop; ++y) { memcpy(&source_[y * source_stride_], &source_[kConvolveBorderLeftTop * source_stride_], source_stride_ * sizeof(Pixel)); memcpy(&source_[(y + kConvolveBorderLeftTop + height) * source_stride_], &source_[(kConvolveBorderLeftTop + height - 1) * source_stride_], source_stride_ * sizeof(Pixel)); } } } template void ConvolveTest::Check(bool use_fixed_values, const Pixel* src, const Pixel* dest, libvpx_test::MD5* md5_digest) { if (use_fixed_values) { // For fixed values, input and output are identical. const bool success = test_utils::CompareBlocks(src, dest, param_.width, param_.height, kMaxBlockWidth, kMaxBlockWidth, false, false); EXPECT_TRUE(success); } else { // For random input, compare md5. const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const size_t size = sizeof(dest_clipped_) - offset * sizeof(Pixel); md5_digest->Add(reinterpret_cast(dest), size); } } template void ConvolveTest::Check16Bit(bool use_fixed_values, const uint16_t* src, const uint16_t* dest, libvpx_test::MD5* md5_digest) { if (use_fixed_values) { // For fixed values, input and output are identical. const bool success = test_utils::CompareBlocks(src, dest, param_.width, param_.height, kMaxBlockWidth, kMaxBlockWidth, false); EXPECT_TRUE(success); } else { // For random input, compare md5. const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const size_t size = sizeof(dest_16bit_) - offset * sizeof(uint16_t); md5_digest->Add(reinterpret_cast(dest), size); } } template void ConvolveTest::Test( bool use_fixed_values, int value, int num_runs /*= kMinimumViableRuns*/) { // There's no meaning testing fixed input in compound convolve. if (type_param_.is_compound && use_fixed_values) return; // There should not be any function set for this combination. if (type_param_.is_intra_block_copy && type_param_.is_compound) { ASSERT_EQ(cur_convolve_func_, nullptr); return; } // Compound and intra block copy functions are only used for blocks 4x4 or // greater. if (type_param_.is_compound || type_param_.is_intra_block_copy) { if (param_.width < 4 || param_.height < 4) { GTEST_SKIP(); } } // Skip unspecialized functions. if (cur_convolve_func_ == nullptr) { GTEST_SKIP(); } SetInputData(use_fixed_values, value); int subpixel_x = 0; int subpixel_y = 0; int vertical_index = 0; int horizontal_index = 0; const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const Pixel* const src = source_ + offset; const ptrdiff_t src_stride = source_stride_ * sizeof(Pixel); const ptrdiff_t src_stride_16 = source_stride_; const ptrdiff_t dst_stride = kMaxBlockWidth * sizeof(Pixel); // Pack Compound output since we control the predictor buffer. const ptrdiff_t dst_stride_compound = param_.width; // Output is always 16 bits regardless of |bitdepth|. uint16_t* dst_16 = dest_16bit_ + offset; // Output depends on |bitdepth|. Pixel* dst_pixel = dest_clipped_ + offset; // Collect the first |kMinimumViableRuns| into one md5 buffer. libvpx_test::MD5 md5_digest; absl::Duration elapsed_time; for (int i = 0; i < num_runs; ++i) { // Test every filter. // Because of masking |subpixel_{x,y}| values roll over every 16 iterations. subpixel_x += 1 << 6; subpixel_y += 1 << 6; const int horizontal_filter_id = (subpixel_x >> 6) & 0xF; const int vertical_filter_id = (subpixel_y >> 6) & 0xF; // |filter_id| == 0 (copy) must be handled by the appropriate 1D or copy // function. if (horizontal_filter_id == 0 || vertical_filter_id == 0) { continue; } // For focused speed testing these can be set to the desired filter. Want // only 8 tap filters? Set |{vertical,horizontal}_index| to 2. vertical_index += static_cast(i % 16 == 0); vertical_index %= 4; horizontal_index += static_cast(i % 16 == 0); horizontal_index %= 4; if (type_param_.is_compound) { // Output type is uint16_t. const absl::Time start = absl::Now(); cur_convolve_func_(src, src_stride, horizontal_index, vertical_index, horizontal_filter_id, vertical_filter_id, param_.width, param_.height, dst_16, dst_stride_compound); elapsed_time += absl::Now() - start; } else { // Output type is Pixel. const absl::Time start = absl::Now(); cur_convolve_func_(src, src_stride, horizontal_index, vertical_index, horizontal_filter_id, vertical_filter_id, param_.width, param_.height, dst_pixel, dst_stride); elapsed_time += absl::Now() - start; } // Only check the output for the first set. After that it's just repeated // runs for speed timing. if (i >= kMinimumViableRuns) continue; if (type_param_.is_compound) { // Need to copy source to a uint16_t buffer for comparison. Pixel* src_ptr = source_; uint16_t* src_ptr_16 = source_16bit_; for (int y = 0; y < kMaxBlockHeight; ++y) { for (int x = 0; x < kMaxBlockWidth; ++x) { src_ptr_16[x] = src_ptr[x]; } src_ptr += src_stride_16; src_ptr_16 += src_stride_16; } Check16Bit(use_fixed_values, source_16bit_ + offset, dst_16, &md5_digest); } else { Check(use_fixed_values, src, dst_pixel, &md5_digest); } } if (!use_fixed_values) { // md5 sums are only calculated for random input. const char* ref_digest = nullptr; switch (bitdepth) { case 8: ref_digest = GetConvolveDigest8bpp(GetDigestId()); break; #if LIBGAV1_MAX_BITDEPTH >= 10 case 10: ref_digest = GetConvolveDigest10bpp(GetDigestId()); break; #endif #if LIBGAV1_MAX_BITDEPTH == 12 case 12: ref_digest = GetConvolveDigest12bpp(GetDigestId()); break; #endif } ASSERT_NE(ref_digest, nullptr); const char* direction; if (type_param_.has_vertical_filter && type_param_.has_horizontal_filter) { direction = "2D"; } else if (type_param_.has_vertical_filter) { direction = "Vertical"; } else if (type_param_.has_horizontal_filter) { direction = "Horizontal"; } else { direction = "Copy"; } const auto elapsed_time_us = static_cast(absl::ToInt64Microseconds(elapsed_time)); printf("Mode Convolve%s%s%s[%25s]: %5d us MD5: %s\n", type_param_.is_compound ? "Compound" : "", type_param_.is_intra_block_copy ? "IntraBlockCopy" : "", direction, absl::StrFormat("%dx%d", param_.width, param_.height).c_str(), elapsed_time_us, md5_digest.Get()); EXPECT_STREQ(ref_digest, md5_digest.Get()); } } void ApplyFilterToSignedInput(const int min_input, const int max_input, const int8_t filter[kSubPixelTaps], int* min_output, int* max_output) { int min = 0, max = 0; for (int i = 0; i < kSubPixelTaps; ++i) { const int tap = filter[i]; if (tap > 0) { max += max_input * tap; min += min_input * tap; } else { min += max_input * tap; max += min_input * tap; } } *min_output = min; *max_output = max; } void ApplyFilterToUnsignedInput(const int max_input, const int8_t filter[kSubPixelTaps], int* min_output, int* max_output) { ApplyFilterToSignedInput(0, max_input, filter, min_output, max_output); } // Validate the maximum ranges for different parts of the Convolve process. template void ShowRange() { // Subtract one from the shift bits because the filter is pre-shifted by 1. constexpr int horizontal_bits = (bitdepth == kBitdepth12) ? kInterRoundBitsHorizontal12bpp - 1 : kInterRoundBitsHorizontal - 1; constexpr int vertical_bits = (bitdepth == kBitdepth12) ? kInterRoundBitsVertical12bpp - 1 : kInterRoundBitsVertical - 1; constexpr int compound_vertical_bits = kInterRoundBitsCompoundVertical - 1; constexpr int compound_offset = (bitdepth == 8) ? 0 : kCompoundOffset; constexpr int max_input = (1 << bitdepth) - 1; const int8_t* worst_convolve_filter = kHalfSubPixelFilters[2][8]; // First pass. printf("Bitdepth: %2d Input range: [%8d, %8d]\n", bitdepth, 0, max_input); int min, max; ApplyFilterToUnsignedInput(max_input, worst_convolve_filter, &min, &max); if (bitdepth == 8) { // 8bpp can use int16_t for sums. assert(min > INT16_MIN); assert(max < INT16_MAX); } else { // 10bpp and 12bpp require int32_t. assert(min > INT32_MIN); assert(max > INT16_MAX && max < INT32_MAX); } printf(" Horizontal upscaled range: [%8d, %8d]\n", min, max); const int first_pass_min = RightShiftWithRounding(min, horizontal_bits); const int first_pass_max = RightShiftWithRounding(max, horizontal_bits); // All bitdepths can use int16_t for first pass output. assert(first_pass_min > INT16_MIN); assert(first_pass_max < INT16_MAX); printf(" Horizontal downscaled range: [%8d, %8d]\n", first_pass_min, first_pass_max); // Second pass. ApplyFilterToSignedInput(first_pass_min, first_pass_max, worst_convolve_filter, &min, &max); // All bitdepths require int32_t for second pass sums. assert(min < INT16_MIN && min > INT32_MIN); assert(max > INT16_MAX && max < INT32_MAX); printf(" Vertical upscaled range: [%8d, %8d]\n", min, max); // Second pass non-compound output is clipped to Pixel values. const int second_pass_min = Clip3(RightShiftWithRounding(min, vertical_bits), 0, max_input); const int second_pass_max = Clip3(RightShiftWithRounding(max, vertical_bits), 0, max_input); printf(" Pixel output range: [%8d, %8d]\n", second_pass_min, second_pass_max); // Output is Pixel so matches Pixel values. assert(second_pass_min == 0); assert(second_pass_max == max_input); const int compound_second_pass_min = RightShiftWithRounding(min, compound_vertical_bits) + compound_offset; const int compound_second_pass_max = RightShiftWithRounding(max, compound_vertical_bits) + compound_offset; printf(" Compound output range: [%8d, %8d]\n", compound_second_pass_min, compound_second_pass_max); if (bitdepth == 8) { // 8bpp output is int16_t without an offset. assert(compound_second_pass_min > INT16_MIN); assert(compound_second_pass_max < INT16_MAX); } else { // 10bpp and 12bpp use the offset to fit inside uint16_t. assert(compound_second_pass_min > 0); assert(compound_second_pass_max < UINT16_MAX); } printf("\n"); } TEST(ConvolveTest, ShowRange) { ShowRange(); ShowRange(); ShowRange(); } using ConvolveTest8bpp = ConvolveTest<8, uint8_t>; TEST_P(ConvolveTest8bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, 255); } TEST_P(ConvolveTest8bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveTest8bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } //------------------------------------------------------------------------------ template class ConvolveScaleTest : public testing::TestWithParam< std::tuple> { public: static_assert(bitdepth >= kBitdepth8 && bitdepth <= LIBGAV1_MAX_BITDEPTH, ""); ConvolveScaleTest() = default; ~ConvolveScaleTest() override = default; void SetUp() override { ConvolveInit_C(); const Dsp* const dsp = GetDspTable(bitdepth); ASSERT_NE(dsp, nullptr); base_convolve_scale_func_ = dsp->convolve_scale[is_compound_]; const testing::TestInfo* const test_info = testing::UnitTest::GetInstance()->current_test_info(); const absl::string_view test_case = test_info->test_suite_name(); if (absl::StartsWith(test_case, "C/")) { base_convolve_scale_func_ = nullptr; } else if (absl::StartsWith(test_case, "SSE41/")) { if ((GetCpuInfo() & kSSE4_1) != 0) { ConvolveInit_SSE4_1(); } } else if (absl::StartsWith(test_case, "AVX2/")) { if ((GetCpuInfo() & kAVX2) != 0) { ConvolveInit_AVX2(); } } else if (absl::StartsWith(test_case, "NEON/")) { ConvolveInit_NEON(); #if LIBGAV1_MAX_BITDEPTH >= 10 ConvolveInit10bpp_NEON(); #endif } else { FAIL() << "Unrecognized architecture prefix in test case name: " << test_case; } cur_convolve_scale_func_ = dsp->convolve_scale[is_compound_]; // Skip functions that have not been specialized for this particular // architecture. if (cur_convolve_scale_func_ == base_convolve_scale_func_) { cur_convolve_scale_func_ = nullptr; } } protected: int GetDigestId() const { return param_.block_size + param_.kNumBlockSizes * static_cast(is_compound_); } void SetInputData(bool use_fixed_values, int value); void Check(bool use_fixed_values, const Pixel* src, const Pixel* dest, libvpx_test::MD5* md5_digest); void Check16Bit(bool use_fixed_values, const uint16_t* src, const uint16_t* dest, libvpx_test::MD5* md5_digest); // |num_runs| covers the categories of filters (6) and the number of filters // under each category (16). void Test(bool use_fixed_values, int value, int num_runs = kMinimumViableRuns); const bool is_compound_ = std::get<0>(GetParam()); const ConvolveTestParam param_ = std::get<1>(GetParam()); private: ConvolveScaleFunc base_convolve_scale_func_; ConvolveScaleFunc cur_convolve_scale_func_; // Convolve filters are 7-tap, which need 3 pixels // (kRestorationHorizontalBorder) padding. // The source can be at most 2 times of max width/height. Pixel source_[kMaxBlockHeight * kMaxBlockWidth * 4] = {}; uint16_t source_16bit_[kMaxBlockHeight * kMaxBlockWidth * 4] = {}; uint16_t dest_16bit_[kMaxBlockHeight * kMaxBlockWidth] = {}; Pixel dest_clipped_[kMaxBlockHeight * kMaxBlockWidth] = {}; const int source_stride_ = kMaxBlockWidth * 2; const int source_height_ = kMaxBlockHeight * 2; }; template void ConvolveScaleTest::SetInputData(bool use_fixed_values, int value) { if (use_fixed_values) { std::fill(source_, source_ + source_height_ * source_stride_, value); } else { const int offset = kConvolveBorderLeftTop * source_stride_ + kConvolveBorderLeftTop; const int mask = (1 << bitdepth) - 1; libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed()); const int height = param_.height * 2; const int width = param_.width * 2; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { source_[y * source_stride_ + x + offset] = rnd.Rand16() & mask; } } // Copy border pixels to the left and right borders. for (int y = 0; y < height; ++y) { Memset(&source_[(y + kConvolveBorderLeftTop) * source_stride_], source_[y * source_stride_ + offset], kConvolveBorderLeftTop); Memset(&source_[y * source_stride_ + offset + width], source_[y * source_stride_ + offset + width - 1], kConvolveBorderLeftTop); } // Copy border pixels to the top and bottom borders. for (int y = 0; y < kConvolveBorderLeftTop; ++y) { memcpy(&source_[y * source_stride_], &source_[kConvolveBorderLeftTop * source_stride_], source_stride_ * sizeof(Pixel)); memcpy(&source_[(y + kConvolveBorderLeftTop + height) * source_stride_], &source_[(kConvolveBorderLeftTop + height - 1) * source_stride_], source_stride_ * sizeof(Pixel)); } } } template void ConvolveScaleTest::Check(bool use_fixed_values, const Pixel* src, const Pixel* dest, libvpx_test::MD5* md5_digest) { if (use_fixed_values) { // For fixed values, input and output are identical. const bool success = test_utils::CompareBlocks(src, dest, param_.width, param_.height, kMaxBlockWidth, kMaxBlockWidth, false, false); EXPECT_TRUE(success); } else { // For random input, compare md5. const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const size_t size = sizeof(dest_clipped_) - offset * sizeof(Pixel); md5_digest->Add(reinterpret_cast(dest), size); } } template void ConvolveScaleTest::Check16Bit( bool use_fixed_values, const uint16_t* src, const uint16_t* dest, libvpx_test::MD5* md5_digest) { if (use_fixed_values) { // For fixed values, input and output are identical. const bool success = test_utils::CompareBlocks(src, dest, param_.width, param_.height, kMaxBlockWidth, kMaxBlockWidth, false); EXPECT_TRUE(success); } else { // For random input, compare md5. const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const size_t size = sizeof(dest_16bit_) - offset * sizeof(uint16_t); md5_digest->Add(reinterpret_cast(dest), size); } } template void ConvolveScaleTest::Test( bool use_fixed_values, int value, int num_runs /*= kMinimumViableRuns*/) { // There's no meaning testing fixed input in compound convolve. if (is_compound_ && use_fixed_values) return; // The compound function is only used for blocks 4x4 or greater. if (is_compound_) { if (param_.width < 4 || param_.height < 4) { GTEST_SKIP(); } } // Skip unspecialized functions. if (cur_convolve_scale_func_ == nullptr) { GTEST_SKIP(); } SetInputData(use_fixed_values, value); libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed() + GetDigestId()); // [1,2048] for |step_[xy]|. This covers a scaling range of 1/1024 to 2x. const int step_x = (rnd.Rand16() & ((1 << 11) - 1)) + 1; const int step_y = (rnd.Rand16() & ((1 << 11) - 1)) + 1; int subpixel_x = 0; int subpixel_y = 0; int vertical_index = 0; int horizontal_index = 0; const int offset = kConvolveBorderLeftTop * kMaxBlockWidth + kConvolveBorderLeftTop; const int offset_scale = kConvolveBorderLeftTop * source_stride_ + kConvolveBorderLeftTop; const Pixel* const src_scale = source_ + offset_scale; const ptrdiff_t src_stride = source_stride_ * sizeof(Pixel); const ptrdiff_t dst_stride = kMaxBlockWidth * sizeof(Pixel); // Pack Compound output since we control the predictor buffer. const ptrdiff_t dst_stride_compound = param_.width; // Output is always 16 bits regardless of |bitdepth|. uint16_t* dst_16 = dest_16bit_ + offset; // Output depends on |bitdepth|. Pixel* dst_pixel = dest_clipped_ + offset; // Collect the first |kMinimumViableRuns| into one md5 buffer. libvpx_test::MD5 md5_digest; absl::Duration elapsed_time; for (int i = 0; i < num_runs; ++i) { // Test every filter. // Because of masking |subpixel_{x,y}| values roll over every 16 iterations. subpixel_x += 1 << 6; subpixel_y += 1 << 6; const int horizontal_filter_id = (subpixel_x >> 6) & 0xF; const int vertical_filter_id = (subpixel_y >> 6) & 0xF; // |filter_id| == 0 (copy) must be handled by the appropriate 1D or copy // function. if (horizontal_filter_id == 0 || vertical_filter_id == 0) { continue; } // For focused speed testing these can be set to the desired filter. Want // only 8 tap filters? Set |{vertical,horizontal}_index| to 2. vertical_index += static_cast(i % 16 == 0); vertical_index %= 4; horizontal_index += static_cast(i % 16 == 0); horizontal_index %= 4; // Output type is uint16_t. const absl::Time start = absl::Now(); if (is_compound_) { cur_convolve_scale_func_( source_, src_stride, horizontal_index, vertical_index, 0, 0, step_x, step_y, param_.width, param_.height, dst_16, dst_stride_compound); } else { cur_convolve_scale_func_( source_, src_stride, horizontal_index, vertical_index, 0, 0, step_x, step_y, param_.width, param_.height, dst_pixel, dst_stride); } elapsed_time += absl::Now() - start; // Only check the output for the first set. After that it's just repeated // runs for speed timing. if (i >= kMinimumViableRuns) continue; // Convolve function does not clip the output. The clipping is applied // later, but libaom clips the output. So we apply clipping to match // libaom in tests. if (is_compound_) { const int single_round_offset = (1 << bitdepth) + (1 << (bitdepth - 1)); Pixel* dest_row = dest_clipped_; for (int y = 0; y < kMaxBlockHeight; ++y) { for (int x = 0; x < kMaxBlockWidth; ++x) { dest_row[x] = static_cast(Clip3( dest_16bit_[y * dst_stride_compound + x] - single_round_offset, 0, (1 << bitdepth) - 1)); } dest_row += kMaxBlockWidth; } } if (is_compound_) { Check16Bit(use_fixed_values, source_16bit_ + offset_scale, dst_16, &md5_digest); } else { Check(use_fixed_values, src_scale, dst_pixel, &md5_digest); } } if (!use_fixed_values) { // md5 sums are only calculated for random input. const char* ref_digest = nullptr; switch (bitdepth) { case 8: ref_digest = GetConvolveScaleDigest8bpp(GetDigestId()); break; #if LIBGAV1_MAX_BITDEPTH >= 10 case 10: ref_digest = GetConvolveScaleDigest10bpp(GetDigestId()); break; #endif #if LIBGAV1_MAX_BITDEPTH == 12 case 12: ref_digest = GetConvolveScaleDigest12bpp(GetDigestId()); break; #endif } ASSERT_NE(ref_digest, nullptr); const auto elapsed_time_us = static_cast(absl::ToInt64Microseconds(elapsed_time)); printf("Mode Convolve%sScale2D[%25s]: %5d us MD5: %s\n", is_compound_ ? "Compound" : "", absl::StrFormat("%dx%d", param_.width, param_.height).c_str(), elapsed_time_us, md5_digest.Get()); EXPECT_STREQ(ref_digest, md5_digest.Get()); } } using ConvolveScaleTest8bpp = ConvolveScaleTest<8, uint8_t>; TEST_P(ConvolveScaleTest8bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, 255); } TEST_P(ConvolveScaleTest8bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveScaleTest8bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } //------------------------------------------------------------------------------ const ConvolveTestParam kConvolveParam[] = { ConvolveTestParam(ConvolveTestParam::kBlockSize2x2), ConvolveTestParam(ConvolveTestParam::kBlockSize2x4), ConvolveTestParam(ConvolveTestParam::kBlockSize4x2), ConvolveTestParam(ConvolveTestParam::kBlockSize4x4), ConvolveTestParam(ConvolveTestParam::kBlockSize4x8), ConvolveTestParam(ConvolveTestParam::kBlockSize8x2), ConvolveTestParam(ConvolveTestParam::kBlockSize8x4), ConvolveTestParam(ConvolveTestParam::kBlockSize8x8), ConvolveTestParam(ConvolveTestParam::kBlockSize8x16), ConvolveTestParam(ConvolveTestParam::kBlockSize16x8), ConvolveTestParam(ConvolveTestParam::kBlockSize16x16), ConvolveTestParam(ConvolveTestParam::kBlockSize16x32), ConvolveTestParam(ConvolveTestParam::kBlockSize32x16), ConvolveTestParam(ConvolveTestParam::kBlockSize32x32), ConvolveTestParam(ConvolveTestParam::kBlockSize32x64), ConvolveTestParam(ConvolveTestParam::kBlockSize64x32), ConvolveTestParam(ConvolveTestParam::kBlockSize64x64), ConvolveTestParam(ConvolveTestParam::kBlockSize64x128), ConvolveTestParam(ConvolveTestParam::kBlockSize128x64), ConvolveTestParam(ConvolveTestParam::kBlockSize128x128), }; const ConvolveTypeParam kConvolveTypeParam[] = { ConvolveTypeParam(false, false, false, false), ConvolveTypeParam(false, false, false, true), ConvolveTypeParam(false, false, true, false), ConvolveTypeParam(false, false, true, true), ConvolveTypeParam(false, true, false, false), ConvolveTypeParam(false, true, false, true), ConvolveTypeParam(false, true, true, false), ConvolveTypeParam(false, true, true, true), ConvolveTypeParam(true, false, false, false), ConvolveTypeParam(true, false, false, true), ConvolveTypeParam(true, false, true, false), ConvolveTypeParam(true, false, true, true), // This is left to ensure no function exists for |intra_block_copy| when // |is_compound| is true; all combinations aren't necessary. ConvolveTypeParam(true, true, false, false), }; INSTANTIATE_TEST_SUITE_P(C, ConvolveTest8bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(C, ConvolveScaleTest8bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #if LIBGAV1_ENABLE_NEON INSTANTIATE_TEST_SUITE_P(NEON, ConvolveTest8bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(NEON, ConvolveScaleTest8bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #endif // LIBGAV1_ENABLE_NEON #if LIBGAV1_ENABLE_SSE4_1 INSTANTIATE_TEST_SUITE_P(SSE41, ConvolveTest8bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(SSE41, ConvolveScaleTest8bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #endif // LIBGAV1_ENABLE_SSE4_1 #if LIBGAV1_ENABLE_AVX2 INSTANTIATE_TEST_SUITE_P(AVX2, ConvolveTest8bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(AVX2, ConvolveScaleTest8bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #endif // LIBGAV1_ENABLE_AVX2 #if LIBGAV1_MAX_BITDEPTH >= 10 using ConvolveTest10bpp = ConvolveTest<10, uint16_t>; TEST_P(ConvolveTest10bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, (1 << 10) - 1); } TEST_P(ConvolveTest10bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveTest10bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } using ConvolveScaleTest10bpp = ConvolveScaleTest<10, uint16_t>; TEST_P(ConvolveScaleTest10bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, (1 << 10) - 1); } TEST_P(ConvolveScaleTest10bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveScaleTest10bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } INSTANTIATE_TEST_SUITE_P(C, ConvolveTest10bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(C, ConvolveScaleTest10bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #if LIBGAV1_ENABLE_NEON INSTANTIATE_TEST_SUITE_P(NEON, ConvolveTest10bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(NEON, ConvolveScaleTest10bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #endif // LIBGAV1_ENABLE_NEON #endif // LIBGAV1_MAX_BITDEPTH >= 10 #if LIBGAV1_MAX_BITDEPTH == 12 using ConvolveTest12bpp = ConvolveTest<12, uint16_t>; TEST_P(ConvolveTest12bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, (1 << 12) - 1); } TEST_P(ConvolveTest12bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveTest12bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } using ConvolveScaleTest12bpp = ConvolveScaleTest<12, uint16_t>; TEST_P(ConvolveScaleTest12bpp, FixedValues) { Test(true, 0); Test(true, 1); Test(true, 128); Test(true, (1 << 12) - 1); } TEST_P(ConvolveScaleTest12bpp, RandomValues) { Test(false, 0); } TEST_P(ConvolveScaleTest12bpp, DISABLED_Speed) { const int num_runs = static_cast(1.0e7 / (param_.width * param_.height)); Test(false, 0, num_runs); } INSTANTIATE_TEST_SUITE_P(C, ConvolveTest12bpp, testing::Combine(testing::ValuesIn(kConvolveTypeParam), testing::ValuesIn(kConvolveParam))); INSTANTIATE_TEST_SUITE_P(C, ConvolveScaleTest12bpp, testing::Combine(testing::Bool(), testing::ValuesIn(kConvolveParam))); #endif // LIBGAV1_MAX_BITDEPTH == 12 } // namespace } // namespace dsp } // namespace libgav1