/* * Copyright © 2019 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Rhys Perry (pendingchaos02@gmail.com) * */ #include #include "aco_ir.h" #include "aco_builder.h" #include namespace aco { struct ssa_state { bool checked_preds_for_uniform; bool all_preds_uniform; bool needs_init; uint64_t cur_undef_operands; unsigned phi_block_idx; unsigned loop_nest_depth; std::map writes; std::vector latest; std::vector visited; }; Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state, bool before_write) { if (!before_write) { auto it = state->writes.find(block_idx); if (it != state->writes.end()) return Operand(Temp(it->second, program->lane_mask)); if (state->visited[block_idx]) return state->latest[block_idx]; } state->visited[block_idx] = true; Block& block = program->blocks[block_idx]; size_t pred = block.linear_preds.size(); if (pred == 0 || block.loop_nest_depth < state->loop_nest_depth) { return Operand(program->lane_mask); } else if (block.loop_nest_depth > state->loop_nest_depth) { Operand op = get_ssa(program, block_idx - 1, state, false); state->latest[block_idx] = op; return op; } else if (pred == 1 || block.kind & block_kind_loop_exit) { Operand op = get_ssa(program, block.linear_preds[0], state, false); state->latest[block_idx] = op; return op; } else if (block.kind & block_kind_loop_header && !(program->blocks[state->phi_block_idx].kind & block_kind_loop_exit)) { return Operand(program->lane_mask); } else { Temp res = Temp(program->allocateTmp(program->lane_mask)); state->latest[block_idx] = Operand(res); Operand *const ops = (Operand *)alloca(pred * sizeof(Operand)); for (unsigned i = 0; i < pred; i++) ops[i] = get_ssa(program, block.linear_preds[i], state, false); bool all_undef = true; for (unsigned i = 0; i < pred; i++) all_undef = all_undef && ops[i].isUndefined(); if (all_undef) { state->latest[block_idx] = ops[0]; return ops[0]; } aco_ptr phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)}; for (unsigned i = 0; i < pred; i++) phi->operands[i] = ops[i]; phi->definitions[0] = Definition(res); block.instructions.emplace(block.instructions.begin(), std::move(phi)); return Operand(res); } } void insert_before_logical_end(Block *block, aco_ptr instr) { auto IsLogicalEnd = [] (const aco_ptr& instr) -> bool { return instr->opcode == aco_opcode::p_logical_end; }; auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd); if (it == block->instructions.crend()) { assert(block->instructions.back()->format == Format::PSEUDO_BRANCH); block->instructions.insert(std::prev(block->instructions.end()), std::move(instr)); } else { block->instructions.insert(std::prev(it.base()), std::move(instr)); } } void build_merge_code(Program *program, Block *block, Definition dst, Operand prev, Operand cur) { Builder bld(program); auto IsLogicalEnd = [] (const aco_ptr& instr) -> bool { return instr->opcode == aco_opcode::p_logical_end; }; auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd); assert(it != block->instructions.rend()); bld.reset(&block->instructions, std::prev(it.base())); if (prev.isUndefined()) { bld.copy(dst, cur); return; } bool prev_is_constant = prev.isConstant() && prev.constantValue64(true) + 1u < 2u; bool cur_is_constant = cur.isConstant() && cur.constantValue64(true) + 1u < 2u; if (!prev_is_constant) { if (!cur_is_constant) { Temp tmp1 = bld.tmp(bld.lm), tmp2 = bld.tmp(bld.lm); bld.sop2(Builder::s_andn2, Definition(tmp1), bld.def(s1, scc), prev, Operand(exec, bld.lm)); bld.sop2(Builder::s_and, Definition(tmp2), bld.def(s1, scc), cur, Operand(exec, bld.lm)); bld.sop2(Builder::s_or, dst, bld.def(s1, scc), tmp1, tmp2); } else if (cur.constantValue64(true)) { bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); } else { bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); } } else if (prev.constantValue64(true)) { if (!cur_is_constant) bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); else if (cur.constantValue64(true)) bld.copy(dst, Operand(UINT32_MAX, bld.lm == s2)); else bld.sop1(Builder::s_not, dst, bld.def(s1, scc), Operand(exec, bld.lm)); } else { if (!cur_is_constant) bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); else if (cur.constantValue64(true)) bld.copy(dst, Operand(exec, bld.lm)); else bld.copy(dst, Operand(0u, bld.lm == s2)); } } void lower_divergent_bool_phi(Program *program, ssa_state *state, Block *block, aco_ptr& phi) { Builder bld(program); if (!state->checked_preds_for_uniform) { state->all_preds_uniform = !(block->kind & block_kind_merge); for (unsigned pred : block->logical_preds) state->all_preds_uniform = state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform); state->checked_preds_for_uniform = true; } if (state->all_preds_uniform) { assert(block->logical_preds.size() == block->linear_preds.size()); phi->opcode = aco_opcode::p_linear_phi; return; } state->latest.resize(program->blocks.size()); state->visited.resize(program->blocks.size()); uint64_t undef_operands = 0; for (unsigned i = 0; i < phi->operands.size(); i++) undef_operands |= phi->operands[i].isUndefined() << i; if (state->needs_init || undef_operands != state->cur_undef_operands || block->logical_preds.size() > 64) { /* this only has to be done once per block unless the set of predecessors * which are undefined changes */ state->cur_undef_operands = undef_operands; state->phi_block_idx = block->index; state->loop_nest_depth = block->loop_nest_depth; if (block->kind & block_kind_loop_exit) { state->loop_nest_depth += 1; } state->writes.clear(); state->needs_init = false; } std::fill(state->latest.begin(), state->latest.end(), Operand(program->lane_mask)); std::fill(state->visited.begin(), state->visited.end(), false); for (unsigned i = 0; i < phi->operands.size(); i++) { if (phi->operands[i].isUndefined()) continue; state->writes[block->logical_preds[i]] = program->allocateId(program->lane_mask); } bool uniform_merge = block->kind & block_kind_loop_header; for (unsigned i = 0; i < phi->operands.size(); i++) { Block *pred = &program->blocks[block->logical_preds[i]]; bool need_get_ssa = !uniform_merge; if (block->kind & block_kind_loop_header && !(pred->kind & block_kind_uniform)) uniform_merge = false; if (phi->operands[i].isUndefined()) continue; Operand cur(bld.lm); if (need_get_ssa) cur = get_ssa(program, pred->index, state, true); assert(cur.regClass() == bld.lm); Temp new_cur = {state->writes.at(pred->index), program->lane_mask}; assert(new_cur.regClass() == bld.lm); if (i == 1 && (block->kind & block_kind_merge) && phi->operands[0].isConstant()) cur = phi->operands[0]; build_merge_code(program, pred, Definition(new_cur), cur, phi->operands[i]); } unsigned num_preds = block->linear_preds.size(); if (phi->operands.size() != num_preds) { Pseudo_instruction* new_phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; new_phi->definitions[0] = phi->definitions[0]; phi.reset(new_phi); } else { phi->opcode = aco_opcode::p_linear_phi; } assert(phi->operands.size() == num_preds); for (unsigned i = 0; i < num_preds; i++) phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false); return; } void lower_subdword_phis(Program *program, Block *block, aco_ptr& phi) { Builder bld(program); for (unsigned i = 0; i < phi->operands.size(); i++) { if (phi->operands[i].isUndefined()) continue; if (phi->operands[i].regClass() == phi->definitions[0].regClass()) continue; assert(phi->operands[i].isTemp()); Block *pred = &program->blocks[block->logical_preds[i]]; Temp phi_src = phi->operands[i].getTemp(); assert(phi_src.regClass().type() == RegType::sgpr); Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size())); insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr()); Temp new_phi_src = bld.tmp(phi->definitions[0].regClass()); insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, Definition(new_phi_src), tmp, Operand(0u)).get_ptr()); phi->operands[i].setTemp(new_phi_src); } return; } void lower_phis(Program* program) { ssa_state state; for (Block& block : program->blocks) { state.checked_preds_for_uniform = false; state.needs_init = true; for (aco_ptr& phi : block.instructions) { if (phi->opcode == aco_opcode::p_phi) { assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1 : phi->definitions[0].regClass() != s2); if (phi->definitions[0].regClass() == program->lane_mask) lower_divergent_bool_phi(program, &state, &block, phi); else if (phi->definitions[0].regClass().is_subdword()) lower_subdword_phis(program, &block, phi); } else if (!is_phi(phi)) { break; } } } } }