/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "nir.h" #include "nir_builder.h" #include "nir_control_flow_private.h" #include "util/half_float.h" #include #include #include #include "util/u_math.h" #include "main/menums.h" /* BITFIELD64_MASK */ /** Return true if the component mask "mask" with bit size "old_bit_size" can * be re-interpreted to be used with "new_bit_size". */ bool nir_component_mask_can_reinterpret(nir_component_mask_t mask, unsigned old_bit_size, unsigned new_bit_size) { assert(util_is_power_of_two_nonzero(old_bit_size)); assert(util_is_power_of_two_nonzero(new_bit_size)); if (old_bit_size == new_bit_size) return true; if (old_bit_size == 1 || new_bit_size == 1) return false; if (old_bit_size > new_bit_size) { unsigned ratio = old_bit_size / new_bit_size; return util_last_bit(mask) * ratio <= NIR_MAX_VEC_COMPONENTS; } unsigned iter = mask; while (iter) { int start, count; u_bit_scan_consecutive_range(&iter, &start, &count); start *= old_bit_size; count *= old_bit_size; if (start % new_bit_size != 0) return false; if (count % new_bit_size != 0) return false; } return true; } /** Re-interprets a component mask "mask" with bit size "old_bit_size" so that * it can be used can be used with "new_bit_size". */ nir_component_mask_t nir_component_mask_reinterpret(nir_component_mask_t mask, unsigned old_bit_size, unsigned new_bit_size) { assert(nir_component_mask_can_reinterpret(mask, old_bit_size, new_bit_size)); if (old_bit_size == new_bit_size) return mask; nir_component_mask_t new_mask = 0; unsigned iter = mask; while (iter) { int start, count; u_bit_scan_consecutive_range(&iter, &start, &count); start = start * old_bit_size / new_bit_size; count = count * old_bit_size / new_bit_size; new_mask |= BITFIELD_RANGE(start, count); } return new_mask; } nir_shader * nir_shader_create(void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options, shader_info *si) { nir_shader *shader = rzalloc(mem_ctx, nir_shader); exec_list_make_empty(&shader->variables); shader->options = options; if (si) { assert(si->stage == stage); shader->info = *si; } else { shader->info.stage = stage; } exec_list_make_empty(&shader->functions); shader->num_inputs = 0; shader->num_outputs = 0; shader->num_uniforms = 0; shader->shared_size = 0; return shader; } static nir_register * reg_create(void *mem_ctx, struct exec_list *list) { nir_register *reg = ralloc(mem_ctx, nir_register); list_inithead(®->uses); list_inithead(®->defs); list_inithead(®->if_uses); reg->num_components = 0; reg->bit_size = 32; reg->num_array_elems = 0; reg->name = NULL; exec_list_push_tail(list, ®->node); return reg; } nir_register * nir_local_reg_create(nir_function_impl *impl) { nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers); reg->index = impl->reg_alloc++; return reg; } void nir_reg_remove(nir_register *reg) { exec_node_remove(®->node); } void nir_shader_add_variable(nir_shader *shader, nir_variable *var) { switch (var->data.mode) { case nir_var_function_temp: assert(!"nir_shader_add_variable cannot be used for local variables"); return; case nir_var_shader_temp: case nir_var_shader_in: case nir_var_shader_out: case nir_var_uniform: case nir_var_mem_ubo: case nir_var_mem_ssbo: case nir_var_mem_shared: case nir_var_system_value: case nir_var_mem_push_const: case nir_var_mem_constant: case nir_var_shader_call_data: case nir_var_ray_hit_attrib: break; case nir_var_mem_global: assert(!"nir_shader_add_variable cannot be used for global memory"); return; default: assert(!"invalid mode"); return; } exec_list_push_tail(&shader->variables, &var->node); } nir_variable * nir_variable_create(nir_shader *shader, nir_variable_mode mode, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = mode; var->data.how_declared = nir_var_declared_normally; if ((mode == nir_var_shader_in && shader->info.stage != MESA_SHADER_VERTEX && shader->info.stage != MESA_SHADER_KERNEL) || (mode == nir_var_shader_out && shader->info.stage != MESA_SHADER_FRAGMENT)) var->data.interpolation = INTERP_MODE_SMOOTH; if (mode == nir_var_shader_in || mode == nir_var_uniform) var->data.read_only = true; nir_shader_add_variable(shader, var); return var; } nir_variable * nir_local_variable_create(nir_function_impl *impl, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(impl->function->shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = nir_var_function_temp; nir_function_impl_add_variable(impl, var); return var; } nir_variable * nir_find_variable_with_location(nir_shader *shader, nir_variable_mode mode, unsigned location) { assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); nir_foreach_variable_with_modes(var, shader, mode) { if (var->data.location == location) return var; } return NULL; } nir_variable * nir_find_variable_with_driver_location(nir_shader *shader, nir_variable_mode mode, unsigned location) { assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp); nir_foreach_variable_with_modes(var, shader, mode) { if (var->data.driver_location == location) return var; } return NULL; } nir_function * nir_function_create(nir_shader *shader, const char *name) { nir_function *func = ralloc(shader, nir_function); exec_list_push_tail(&shader->functions, &func->node); func->name = ralloc_strdup(func, name); func->shader = shader; func->num_params = 0; func->params = NULL; func->impl = NULL; func->is_entrypoint = false; return func; } /* NOTE: if the instruction you are copying a src to is already added * to the IR, use nir_instr_rewrite_src() instead. */ void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx) { dest->is_ssa = src->is_ssa; if (src->is_ssa) { dest->ssa = src->ssa; } else { dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = ralloc(mem_ctx, nir_src); nir_src_copy(dest->reg.indirect, src->reg.indirect, mem_ctx); } else { dest->reg.indirect = NULL; } } } void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr) { /* Copying an SSA definition makes no sense whatsoever. */ assert(!src->is_ssa); dest->is_ssa = false; dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = ralloc(instr, nir_src); nir_src_copy(dest->reg.indirect, src->reg.indirect, instr); } else { dest->reg.indirect = NULL; } } void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, nir_alu_instr *instr) { nir_src_copy(&dest->src, &src->src, &instr->instr); dest->abs = src->abs; dest->negate = src->negate; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) dest->swizzle[i] = src->swizzle[i]; } void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src, nir_alu_instr *instr) { nir_dest_copy(&dest->dest, &src->dest, &instr->instr); dest->write_mask = src->write_mask; dest->saturate = src->saturate; } bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn) { static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS); const nir_alu_src *src = &alu->src[srcn]; unsigned num_components = nir_ssa_alu_instr_src_components(alu, srcn); return src->src.is_ssa && (src->src.ssa->num_components == num_components) && !src->abs && !src->negate && (memcmp(src->swizzle, trivial_swizzle, num_components) == 0); } static void cf_init(nir_cf_node *node, nir_cf_node_type type) { exec_node_init(&node->node); node->parent = NULL; node->type = type; } nir_function_impl * nir_function_impl_create_bare(nir_shader *shader) { nir_function_impl *impl = ralloc(shader, nir_function_impl); impl->function = NULL; cf_init(&impl->cf_node, nir_cf_node_function); exec_list_make_empty(&impl->body); exec_list_make_empty(&impl->registers); exec_list_make_empty(&impl->locals); impl->reg_alloc = 0; impl->ssa_alloc = 0; impl->valid_metadata = nir_metadata_none; impl->structured = true; /* create start & end blocks */ nir_block *start_block = nir_block_create(shader); nir_block *end_block = nir_block_create(shader); start_block->cf_node.parent = &impl->cf_node; end_block->cf_node.parent = &impl->cf_node; impl->end_block = end_block; exec_list_push_tail(&impl->body, &start_block->cf_node.node); start_block->successors[0] = end_block; _mesa_set_add(end_block->predecessors, start_block); return impl; } nir_function_impl * nir_function_impl_create(nir_function *function) { assert(function->impl == NULL); nir_function_impl *impl = nir_function_impl_create_bare(function->shader); function->impl = impl; impl->function = function; return impl; } nir_block * nir_block_create(nir_shader *shader) { nir_block *block = rzalloc(shader, nir_block); cf_init(&block->cf_node, nir_cf_node_block); block->successors[0] = block->successors[1] = NULL; block->predecessors = _mesa_pointer_set_create(block); block->imm_dom = NULL; /* XXX maybe it would be worth it to defer allocation? This * way it doesn't get allocated for shader refs that never run * nir_calc_dominance? For example, state-tracker creates an * initial IR, clones that, runs appropriate lowering pass, passes * to driver which does common lowering/opt, and then stores ref * which is later used to do state specific lowering and futher * opt. Do any of the references not need dominance metadata? */ block->dom_frontier = _mesa_pointer_set_create(block); exec_list_make_empty(&block->instr_list); return block; } static inline void src_init(nir_src *src) { src->is_ssa = false; src->reg.reg = NULL; src->reg.indirect = NULL; src->reg.base_offset = 0; } nir_if * nir_if_create(nir_shader *shader) { nir_if *if_stmt = ralloc(shader, nir_if); if_stmt->control = nir_selection_control_none; cf_init(&if_stmt->cf_node, nir_cf_node_if); src_init(&if_stmt->condition); nir_block *then = nir_block_create(shader); exec_list_make_empty(&if_stmt->then_list); exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node); then->cf_node.parent = &if_stmt->cf_node; nir_block *else_stmt = nir_block_create(shader); exec_list_make_empty(&if_stmt->else_list); exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node); else_stmt->cf_node.parent = &if_stmt->cf_node; return if_stmt; } nir_loop * nir_loop_create(nir_shader *shader) { nir_loop *loop = rzalloc(shader, nir_loop); cf_init(&loop->cf_node, nir_cf_node_loop); nir_block *body = nir_block_create(shader); exec_list_make_empty(&loop->body); exec_list_push_tail(&loop->body, &body->cf_node.node); body->cf_node.parent = &loop->cf_node; body->successors[0] = body; _mesa_set_add(body->predecessors, body); return loop; } static void instr_init(nir_instr *instr, nir_instr_type type) { instr->type = type; instr->block = NULL; exec_node_init(&instr->node); } static void dest_init(nir_dest *dest) { dest->is_ssa = false; dest->reg.reg = NULL; dest->reg.indirect = NULL; dest->reg.base_offset = 0; } static void alu_dest_init(nir_alu_dest *dest) { dest_init(&dest->dest); dest->saturate = false; dest->write_mask = 0xf; } static void alu_src_init(nir_alu_src *src) { src_init(&src->src); src->abs = src->negate = false; for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) src->swizzle[i] = i; } nir_alu_instr * nir_alu_instr_create(nir_shader *shader, nir_op op) { unsigned num_srcs = nir_op_infos[op].num_inputs; /* TODO: don't use rzalloc */ nir_alu_instr *instr = rzalloc_size(shader, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src)); instr_init(&instr->instr, nir_instr_type_alu); instr->op = op; alu_dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) alu_src_init(&instr->src[i]); return instr; } nir_deref_instr * nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type) { nir_deref_instr *instr = rzalloc_size(shader, sizeof(nir_deref_instr)); instr_init(&instr->instr, nir_instr_type_deref); instr->deref_type = deref_type; if (deref_type != nir_deref_type_var) src_init(&instr->parent); if (deref_type == nir_deref_type_array || deref_type == nir_deref_type_ptr_as_array) src_init(&instr->arr.index); dest_init(&instr->dest); return instr; } nir_jump_instr * nir_jump_instr_create(nir_shader *shader, nir_jump_type type) { nir_jump_instr *instr = ralloc(shader, nir_jump_instr); instr_init(&instr->instr, nir_instr_type_jump); src_init(&instr->condition); instr->type = type; instr->target = NULL; instr->else_target = NULL; return instr; } nir_load_const_instr * nir_load_const_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_load_const_instr *instr = rzalloc_size(shader, sizeof(*instr) + num_components * sizeof(*instr->value)); instr_init(&instr->instr, nir_instr_type_load_const); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL); return instr; } nir_intrinsic_instr * nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op) { unsigned num_srcs = nir_intrinsic_infos[op].num_srcs; /* TODO: don't use rzalloc */ nir_intrinsic_instr *instr = rzalloc_size(shader, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src)); instr_init(&instr->instr, nir_instr_type_intrinsic); instr->intrinsic = op; if (nir_intrinsic_infos[op].has_dest) dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i]); return instr; } nir_call_instr * nir_call_instr_create(nir_shader *shader, nir_function *callee) { const unsigned num_params = callee->num_params; nir_call_instr *instr = rzalloc_size(shader, sizeof(*instr) + num_params * sizeof(instr->params[0])); instr_init(&instr->instr, nir_instr_type_call); instr->callee = callee; instr->num_params = num_params; for (unsigned i = 0; i < num_params; i++) src_init(&instr->params[i]); return instr; } static int8_t default_tg4_offsets[4][2] = { { 0, 1 }, { 1, 1 }, { 1, 0 }, { 0, 0 }, }; nir_tex_instr * nir_tex_instr_create(nir_shader *shader, unsigned num_srcs) { nir_tex_instr *instr = rzalloc(shader, nir_tex_instr); instr_init(&instr->instr, nir_instr_type_tex); dest_init(&instr->dest); instr->num_srcs = num_srcs; instr->src = ralloc_array(instr, nir_tex_src, num_srcs); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i].src); instr->texture_index = 0; instr->sampler_index = 0; memcpy(instr->tg4_offsets, default_tg4_offsets, sizeof(instr->tg4_offsets)); return instr; } void nir_tex_instr_add_src(nir_tex_instr *tex, nir_tex_src_type src_type, nir_src src) { nir_tex_src *new_srcs = rzalloc_array(tex, nir_tex_src, tex->num_srcs + 1); for (unsigned i = 0; i < tex->num_srcs; i++) { new_srcs[i].src_type = tex->src[i].src_type; nir_instr_move_src(&tex->instr, &new_srcs[i].src, &tex->src[i].src); } ralloc_free(tex->src); tex->src = new_srcs; tex->src[tex->num_srcs].src_type = src_type; nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src); tex->num_srcs++; } void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx) { assert(src_idx < tex->num_srcs); /* First rewrite the source to NIR_SRC_INIT */ nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT); /* Now, move all of the other sources down */ for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) { tex->src[i-1].src_type = tex->src[i].src_type; nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src); } tex->num_srcs--; } bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex) { if (tex->op != nir_texop_tg4) return false; return memcmp(tex->tg4_offsets, default_tg4_offsets, sizeof(tex->tg4_offsets)) != 0; } nir_phi_instr * nir_phi_instr_create(nir_shader *shader) { nir_phi_instr *instr = ralloc(shader, nir_phi_instr); instr_init(&instr->instr, nir_instr_type_phi); dest_init(&instr->dest); exec_list_make_empty(&instr->srcs); return instr; } nir_parallel_copy_instr * nir_parallel_copy_instr_create(nir_shader *shader) { nir_parallel_copy_instr *instr = ralloc(shader, nir_parallel_copy_instr); instr_init(&instr->instr, nir_instr_type_parallel_copy); exec_list_make_empty(&instr->entries); return instr; } nir_ssa_undef_instr * nir_ssa_undef_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_ssa_undef_instr *instr = ralloc(shader, nir_ssa_undef_instr); instr_init(&instr->instr, nir_instr_type_ssa_undef); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL); return instr; } static nir_const_value const_value_float(double d, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 16: v.u16 = _mesa_float_to_half(d); break; case 32: v.f32 = d; break; case 64: v.f64 = d; break; default: unreachable("Invalid bit size"); } return v; } static nir_const_value const_value_int(int64_t i, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 1: v.b = i & 1; break; case 8: v.i8 = i; break; case 16: v.i16 = i; break; case 32: v.i32 = i; break; case 64: v.i64 = i; break; default: unreachable("Invalid bit size"); } return v; } nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size) { const int64_t max_int = (1ull << (bit_size - 1)) - 1; const int64_t min_int = -max_int - 1; switch (binop) { case nir_op_iadd: return const_value_int(0, bit_size); case nir_op_fadd: return const_value_float(0, bit_size); case nir_op_imul: return const_value_int(1, bit_size); case nir_op_fmul: return const_value_float(1, bit_size); case nir_op_imin: return const_value_int(max_int, bit_size); case nir_op_umin: return const_value_int(~0ull, bit_size); case nir_op_fmin: return const_value_float(INFINITY, bit_size); case nir_op_imax: return const_value_int(min_int, bit_size); case nir_op_umax: return const_value_int(0, bit_size); case nir_op_fmax: return const_value_float(-INFINITY, bit_size); case nir_op_iand: return const_value_int(~0ull, bit_size); case nir_op_ior: return const_value_int(0, bit_size); case nir_op_ixor: return const_value_int(0, bit_size); default: unreachable("Invalid reduction operation"); } } nir_function_impl * nir_cf_node_get_function(nir_cf_node *node) { while (node->type != nir_cf_node_function) { node = node->parent; } return nir_cf_node_as_function(node); } /* Reduces a cursor by trying to convert everything to after and trying to * go up to block granularity when possible. */ static nir_cursor reduce_cursor(nir_cursor cursor) { switch (cursor.option) { case nir_cursor_before_block: if (exec_list_is_empty(&cursor.block->instr_list)) { /* Empty block. After is as good as before. */ cursor.option = nir_cursor_after_block; } return cursor; case nir_cursor_after_block: return cursor; case nir_cursor_before_instr: { nir_instr *prev_instr = nir_instr_prev(cursor.instr); if (prev_instr) { /* Before this instruction is after the previous */ cursor.instr = prev_instr; cursor.option = nir_cursor_after_instr; } else { /* No previous instruction. Switch to before block */ cursor.block = cursor.instr->block; cursor.option = nir_cursor_before_block; } return reduce_cursor(cursor); } case nir_cursor_after_instr: if (nir_instr_next(cursor.instr) == NULL) { /* This is the last instruction, switch to after block */ cursor.option = nir_cursor_after_block; cursor.block = cursor.instr->block; } return cursor; default: unreachable("Inavlid cursor option"); } } bool nir_cursors_equal(nir_cursor a, nir_cursor b) { /* Reduced cursors should be unique */ a = reduce_cursor(a); b = reduce_cursor(b); return a.block == b.block && a.option == b.option; } static bool add_use_cb(nir_src *src, void *state) { nir_instr *instr = state; src->parent_instr = instr; list_addtail(&src->use_link, src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses); return true; } static bool add_ssa_def_cb(nir_ssa_def *def, void *state) { nir_instr *instr = state; if (instr->block && def->index == UINT_MAX) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; } return true; } static bool add_reg_def_cb(nir_dest *dest, void *state) { nir_instr *instr = state; if (!dest->is_ssa) { dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &dest->reg.reg->defs); } return true; } static void add_defs_uses(nir_instr *instr) { nir_foreach_src(instr, add_use_cb, instr); nir_foreach_dest(instr, add_reg_def_cb, instr); nir_foreach_ssa_def(instr, add_ssa_def_cb, instr); } void nir_instr_insert(nir_cursor cursor, nir_instr *instr) { switch (cursor.option) { case nir_cursor_before_block: /* Only allow inserting jumps into empty blocks. */ if (instr->type == nir_instr_type_jump) assert(exec_list_is_empty(&cursor.block->instr_list)); instr->block = cursor.block; add_defs_uses(instr); exec_list_push_head(&cursor.block->instr_list, &instr->node); break; case nir_cursor_after_block: { /* Inserting instructions after a jump is illegal. */ nir_instr *last = nir_block_last_instr(cursor.block); assert(last == NULL || last->type != nir_instr_type_jump); (void) last; instr->block = cursor.block; add_defs_uses(instr); exec_list_push_tail(&cursor.block->instr_list, &instr->node); break; } case nir_cursor_before_instr: assert(instr->type != nir_instr_type_jump); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_node_before(&cursor.instr->node, &instr->node); break; case nir_cursor_after_instr: /* Inserting instructions after a jump is illegal. */ assert(cursor.instr->type != nir_instr_type_jump); /* Only allow inserting jumps at the end of the block. */ if (instr->type == nir_instr_type_jump) assert(cursor.instr == nir_block_last_instr(cursor.instr->block)); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_after(&cursor.instr->node, &instr->node); break; } if (instr->type == nir_instr_type_jump) nir_handle_add_jump(instr->block); nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); impl->valid_metadata &= ~nir_metadata_instr_index; } static bool src_is_valid(const nir_src *src) { return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL); } static bool remove_use_cb(nir_src *src, void *state) { (void) state; if (src_is_valid(src)) list_del(&src->use_link); return true; } static bool remove_def_cb(nir_dest *dest, void *state) { (void) state; if (!dest->is_ssa) list_del(&dest->reg.def_link); return true; } static void remove_defs_uses(nir_instr *instr) { nir_foreach_dest(instr, remove_def_cb, instr); nir_foreach_src(instr, remove_use_cb, instr); } void nir_instr_remove_v(nir_instr *instr) { remove_defs_uses(instr); exec_node_remove(&instr->node); if (instr->type == nir_instr_type_jump) { nir_jump_instr *jump_instr = nir_instr_as_jump(instr); nir_handle_remove_jump(instr->block, jump_instr->type); } } /*@}*/ void nir_index_local_regs(nir_function_impl *impl) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &impl->registers) { reg->index = index++; } impl->reg_alloc = index; } static bool visit_alu_dest(nir_alu_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest.dest, state); } static bool visit_deref_dest(nir_deref_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_intrinsic_dest(nir_intrinsic_instr *instr, nir_foreach_dest_cb cb, void *state) { if (nir_intrinsic_infos[instr->intrinsic].has_dest) return cb(&instr->dest, state); return true; } static bool visit_texture_dest(nir_tex_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_phi_dest(nir_phi_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_parallel_copy_dest(nir_parallel_copy_instr *instr, nir_foreach_dest_cb cb, void *state) { nir_foreach_parallel_copy_entry(entry, instr) { if (!cb(&entry->dest, state)) return false; } return true; } bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: return visit_alu_dest(nir_instr_as_alu(instr), cb, state); case nir_instr_type_deref: return visit_deref_dest(nir_instr_as_deref(instr), cb, state); case nir_instr_type_intrinsic: return visit_intrinsic_dest(nir_instr_as_intrinsic(instr), cb, state); case nir_instr_type_tex: return visit_texture_dest(nir_instr_as_tex(instr), cb, state); case nir_instr_type_phi: return visit_phi_dest(nir_instr_as_phi(instr), cb, state); case nir_instr_type_parallel_copy: return visit_parallel_copy_dest(nir_instr_as_parallel_copy(instr), cb, state); case nir_instr_type_load_const: case nir_instr_type_ssa_undef: case nir_instr_type_call: case nir_instr_type_jump: break; default: unreachable("Invalid instruction type"); break; } return true; } struct foreach_ssa_def_state { nir_foreach_ssa_def_cb cb; void *client_state; }; static inline bool nir_ssa_def_visitor(nir_dest *dest, void *void_state) { struct foreach_ssa_def_state *state = void_state; if (dest->is_ssa) return state->cb(&dest->ssa, state->client_state); else return true; } bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: case nir_instr_type_deref: case nir_instr_type_tex: case nir_instr_type_intrinsic: case nir_instr_type_phi: case nir_instr_type_parallel_copy: { struct foreach_ssa_def_state foreach_state = {cb, state}; return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state); } case nir_instr_type_load_const: return cb(&nir_instr_as_load_const(instr)->def, state); case nir_instr_type_ssa_undef: return cb(&nir_instr_as_ssa_undef(instr)->def, state); case nir_instr_type_call: case nir_instr_type_jump: return true; default: unreachable("Invalid instruction type"); } } nir_ssa_def * nir_instr_ssa_def(nir_instr *instr) { switch (instr->type) { case nir_instr_type_alu: assert(nir_instr_as_alu(instr)->dest.dest.is_ssa); return &nir_instr_as_alu(instr)->dest.dest.ssa; case nir_instr_type_deref: assert(nir_instr_as_deref(instr)->dest.is_ssa); return &nir_instr_as_deref(instr)->dest.ssa; case nir_instr_type_tex: assert(nir_instr_as_tex(instr)->dest.is_ssa); return &nir_instr_as_tex(instr)->dest.ssa; case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (nir_intrinsic_infos[intrin->intrinsic].has_dest) { assert(intrin->dest.is_ssa); return &intrin->dest.ssa; } else { return NULL; } } case nir_instr_type_phi: assert(nir_instr_as_phi(instr)->dest.is_ssa); return &nir_instr_as_phi(instr)->dest.ssa; case nir_instr_type_parallel_copy: unreachable("Parallel copies are unsupported by this function"); case nir_instr_type_load_const: return &nir_instr_as_load_const(instr)->def; case nir_instr_type_ssa_undef: return &nir_instr_as_ssa_undef(instr)->def; case nir_instr_type_call: case nir_instr_type_jump: return NULL; } unreachable("Invalid instruction type"); } static bool visit_src(nir_src *src, nir_foreach_src_cb cb, void *state) { if (!cb(src, state)) return false; if (!src->is_ssa && src->reg.indirect) return cb(src->reg.indirect, state); return true; } static bool visit_alu_src(nir_alu_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) if (!visit_src(&instr->src[i].src, cb, state)) return false; return true; } static bool visit_deref_instr_src(nir_deref_instr *instr, nir_foreach_src_cb cb, void *state) { if (instr->deref_type != nir_deref_type_var) { if (!visit_src(&instr->parent, cb, state)) return false; } if (instr->deref_type == nir_deref_type_array || instr->deref_type == nir_deref_type_ptr_as_array) { if (!visit_src(&instr->arr.index, cb, state)) return false; } return true; } static bool visit_tex_src(nir_tex_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < instr->num_srcs; i++) { if (!visit_src(&instr->src[i].src, cb, state)) return false; } return true; } static bool visit_intrinsic_src(nir_intrinsic_instr *instr, nir_foreach_src_cb cb, void *state) { unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs; for (unsigned i = 0; i < num_srcs; i++) { if (!visit_src(&instr->src[i], cb, state)) return false; } return true; } static bool visit_call_src(nir_call_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < instr->num_params; i++) { if (!visit_src(&instr->params[i], cb, state)) return false; } return true; } static bool visit_phi_src(nir_phi_instr *instr, nir_foreach_src_cb cb, void *state) { nir_foreach_phi_src(src, instr) { if (!visit_src(&src->src, cb, state)) return false; } return true; } static bool visit_parallel_copy_src(nir_parallel_copy_instr *instr, nir_foreach_src_cb cb, void *state) { nir_foreach_parallel_copy_entry(entry, instr) { if (!visit_src(&entry->src, cb, state)) return false; } return true; } static bool visit_jump_src(nir_jump_instr *instr, nir_foreach_src_cb cb, void *state) { if (instr->type != nir_jump_goto_if) return true; return visit_src(&instr->condition, cb, state); } typedef struct { void *state; nir_foreach_src_cb cb; } visit_dest_indirect_state; static bool visit_dest_indirect(nir_dest *dest, void *_state) { visit_dest_indirect_state *state = (visit_dest_indirect_state *) _state; if (!dest->is_ssa && dest->reg.indirect) return state->cb(dest->reg.indirect, state->state); return true; } bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: if (!visit_alu_src(nir_instr_as_alu(instr), cb, state)) return false; break; case nir_instr_type_deref: if (!visit_deref_instr_src(nir_instr_as_deref(instr), cb, state)) return false; break; case nir_instr_type_intrinsic: if (!visit_intrinsic_src(nir_instr_as_intrinsic(instr), cb, state)) return false; break; case nir_instr_type_tex: if (!visit_tex_src(nir_instr_as_tex(instr), cb, state)) return false; break; case nir_instr_type_call: if (!visit_call_src(nir_instr_as_call(instr), cb, state)) return false; break; case nir_instr_type_load_const: /* Constant load instructions have no regular sources */ break; case nir_instr_type_phi: if (!visit_phi_src(nir_instr_as_phi(instr), cb, state)) return false; break; case nir_instr_type_parallel_copy: if (!visit_parallel_copy_src(nir_instr_as_parallel_copy(instr), cb, state)) return false; break; case nir_instr_type_jump: return visit_jump_src(nir_instr_as_jump(instr), cb, state); case nir_instr_type_ssa_undef: return true; default: unreachable("Invalid instruction type"); break; } visit_dest_indirect_state dest_state; dest_state.state = state; dest_state.cb = cb; return nir_foreach_dest(instr, visit_dest_indirect, &dest_state); } bool nir_foreach_phi_src_leaving_block(nir_block *block, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) { if (block->successors[i] == NULL) continue; nir_foreach_instr(instr, block->successors[i]) { if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); nir_foreach_phi_src(phi_src, phi) { if (phi_src->pred == block) { if (!cb(&phi_src->src, state)) return false; } } } } return true; } nir_const_value nir_const_value_for_float(double f, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 16: v.u16 = _mesa_float_to_half(f); break; case 32: v.f32 = f; break; case 64: v.f64 = f; break; default: unreachable("Invalid bit size"); } return v; } double nir_const_value_as_float(nir_const_value value, unsigned bit_size) { switch (bit_size) { case 16: return _mesa_half_to_float(value.u16); case 32: return value.f32; case 64: return value.f64; default: unreachable("Invalid bit size"); } } nir_const_value * nir_src_as_const_value(nir_src src) { if (!src.is_ssa) return NULL; if (src.ssa->parent_instr->type != nir_instr_type_load_const) return NULL; nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr); return load->value; } /** * Returns true if the source is known to be dynamically uniform. Otherwise it * returns false which means it may or may not be dynamically uniform but it * can't be determined. */ bool nir_src_is_dynamically_uniform(nir_src src) { if (!src.is_ssa) return false; /* Constants are trivially dynamically uniform */ if (src.ssa->parent_instr->type == nir_instr_type_load_const) return true; /* As are uniform variables */ if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); if (intr->intrinsic == nir_intrinsic_load_uniform && nir_src_is_dynamically_uniform(intr->src[0])) return true; } /* Operating together dynamically uniform expressions produces a * dynamically uniform result */ if (src.ssa->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(src.ssa->parent_instr); for (int i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { if (!nir_src_is_dynamically_uniform(alu->src[i].src)) return false; } return true; } /* XXX: this could have many more tests, such as when a sampler function is * called with dynamically uniform arguments. */ return false; } static void src_remove_all_uses(nir_src *src) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; list_del(&src->use_link); } } static void src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; if (parent_instr) { src->parent_instr = parent_instr; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->uses); else list_addtail(&src->use_link, &src->reg.reg->uses); } else { assert(parent_if); src->parent_if = parent_if; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->if_uses); else list_addtail(&src->use_link, &src->reg.reg->if_uses); } } } void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src) { assert(!src_is_valid(src) || src->parent_instr == instr); src_remove_all_uses(src); *src = new_src; src_add_all_uses(src, instr, NULL); } void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src) { assert(!src_is_valid(dest) || dest->parent_instr == dest_instr); src_remove_all_uses(dest); src_remove_all_uses(src); *dest = *src; *src = NIR_SRC_INIT; src_add_all_uses(dest, dest_instr, NULL); } void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src) { nir_src *src = &if_stmt->condition; assert(!src_is_valid(src) || src->parent_if == if_stmt); src_remove_all_uses(src); *src = new_src; src_add_all_uses(src, NULL, if_stmt); } void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest) { if (dest->is_ssa) { /* We can only overwrite an SSA destination if it has no uses. */ assert(list_is_empty(&dest->ssa.uses) && list_is_empty(&dest->ssa.if_uses)); } else { list_del(&dest->reg.def_link); if (dest->reg.indirect) src_remove_all_uses(dest->reg.indirect); } /* We can't re-write with an SSA def */ assert(!new_dest.is_ssa); nir_dest_copy(dest, &new_dest, instr); dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs); if (dest->reg.indirect) src_add_all_uses(dest->reg.indirect, instr, NULL); } /* note: does *not* take ownership of 'name' */ void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, unsigned bit_size, const char *name) { def->name = ralloc_strdup(instr, name); def->parent_instr = instr; list_inithead(&def->uses); list_inithead(&def->if_uses); def->num_components = num_components; def->bit_size = bit_size; def->divergent = true; /* This is the safer default */ if (instr->block) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; } else { def->index = UINT_MAX; } } /* note: does *not* take ownership of 'name' */ void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, unsigned num_components, unsigned bit_size, const char *name) { dest->is_ssa = true; nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size, name); } void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src) { assert(!new_src.is_ssa || def != new_src.ssa); nir_foreach_use_safe(use_src, def) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition(use_src->parent_if, new_src); } static bool is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between) { assert(start->block == end->block); if (between->block != start->block) return false; /* Search backwards looking for "between" */ while (start != end) { if (between == end) return true; end = nir_instr_prev(end); assert(end); } return false; } /* Replaces all uses of the given SSA def with the given source but only if * the use comes after the after_me instruction. This can be useful if you * are emitting code to fix up the result of some instruction: you can freely * use the result in that code and then call rewrite_uses_after and pass the * last fixup instruction as after_me and it will replace all of the uses you * want without touching the fixup code. * * This function assumes that after_me is in the same block as * def->parent_instr and that after_me comes after def->parent_instr. */ void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src, nir_instr *after_me) { if (new_src.is_ssa && def == new_src.ssa) return; nir_foreach_use_safe(use_src, def) { assert(use_src->parent_instr != def->parent_instr); /* Since def already dominates all of its uses, the only way a use can * not be dominated by after_me is if it is between def and after_me in * the instruction list. */ if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr)) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); } nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition(use_src->parent_if, new_src); } nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def) { nir_component_mask_t read_mask = 0; nir_foreach_use(use, def) { if (use->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(use->parent_instr); nir_alu_src *alu_src = exec_node_data(nir_alu_src, use, src); int src_idx = alu_src - &alu->src[0]; assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs); read_mask |= nir_alu_instr_src_read_mask(alu, src_idx); } else { return (1 << def->num_components) - 1; } } if (!list_is_empty(&def->if_uses)) read_mask |= 1; return read_mask; } nir_block * nir_block_unstructured_next(nir_block *block) { if (block == NULL) { /* nir_foreach_block_unstructured_safe() will call this function on a * NULL block after the last iteration, but it won't use the result so * just return NULL here. */ return NULL; } nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); if (cf_next == NULL && block->cf_node.parent->type == nir_cf_node_function) return NULL; if (cf_next && cf_next->type == nir_cf_node_block) return nir_cf_node_as_block(cf_next); return nir_block_cf_tree_next(block); } nir_block * nir_unstructured_start_block(nir_function_impl *impl) { return nir_start_block(impl); } nir_block * nir_block_cf_tree_next(nir_block *block) { if (block == NULL) { /* nir_foreach_block_safe() will call this function on a NULL block * after the last iteration, but it won't use the result so just return * NULL here. */ return NULL; } assert(nir_cf_node_get_function(&block->cf_node)->structured); nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); if (cf_next) return nir_cf_node_cf_tree_first(cf_next); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the end of the if? Go to the beginning of the else */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_last_then_block(if_stmt)) return nir_if_first_else_block(if_stmt); assert(block == nir_if_last_else_block(if_stmt)); } /* fallthrough */ case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_next(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block * nir_block_cf_tree_prev(nir_block *block) { if (block == NULL) { /* do this for consistency with nir_block_cf_tree_next() */ return NULL; } assert(nir_cf_node_get_function(&block->cf_node)->structured); nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node); if (cf_prev) return nir_cf_node_cf_tree_last(cf_prev); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the beginning of the else? Go to the end of the if */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_first_else_block(if_stmt)) return nir_if_last_then_block(if_stmt); assert(block == nir_if_first_then_block(if_stmt)); } /* fallthrough */ case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_prev(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_start_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_first_then_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_first_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_impl_last_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_last_else_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_last_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_block_cf_tree_next(nir_cf_node_as_block(node)); else if (node->type == nir_cf_node_function) return NULL; else return nir_cf_node_as_block(nir_cf_node_next(node)); } nir_if * nir_block_get_following_if(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_if) return NULL; return nir_cf_node_as_if(next_node); } nir_loop * nir_block_get_following_loop(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_loop) return NULL; return nir_cf_node_as_loop(next_node); } void nir_index_blocks(nir_function_impl *impl) { unsigned index = 0; if (impl->valid_metadata & nir_metadata_block_index) return; nir_foreach_block_unstructured(block, impl) { block->index = index++; } /* The end_block isn't really part of the program, which is why its index * is >= num_blocks. */ impl->num_blocks = impl->end_block->index = index; } static bool index_ssa_def_cb(nir_ssa_def *def, void *state) { unsigned *index = (unsigned *) state; def->index = (*index)++; return true; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ void nir_index_ssa_defs(nir_function_impl *impl) { unsigned index = 0; impl->valid_metadata &= ~nir_metadata_live_ssa_defs; nir_foreach_block_unstructured(block, impl) { nir_foreach_instr(instr, block) nir_foreach_ssa_def(instr, index_ssa_def_cb, &index); } impl->ssa_alloc = index; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ unsigned nir_index_instrs(nir_function_impl *impl) { unsigned index = 0; nir_foreach_block(block, impl) { block->start_ip = index++; nir_foreach_instr(instr, block) instr->index = index++; block->end_ip = index++; } return index; } unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes) { unsigned count = 0; nir_foreach_variable_with_modes(var, shader, modes) var->index = count++; return count; } unsigned nir_function_impl_index_vars(nir_function_impl *impl) { unsigned count = 0; nir_foreach_function_temp_variable(var, impl) var->index = count++; return count; } static nir_instr * cursor_next_instr(nir_cursor cursor) { switch (cursor.option) { case nir_cursor_before_block: for (nir_block *block = cursor.block; block; block = nir_block_cf_tree_next(block)) { nir_instr *instr = nir_block_first_instr(block); if (instr) return instr; } return NULL; case nir_cursor_after_block: cursor.block = nir_block_cf_tree_next(cursor.block); if (cursor.block == NULL) return NULL; cursor.option = nir_cursor_before_block; return cursor_next_instr(cursor); case nir_cursor_before_instr: return cursor.instr; case nir_cursor_after_instr: if (nir_instr_next(cursor.instr)) return nir_instr_next(cursor.instr); cursor.option = nir_cursor_after_block; cursor.block = cursor.instr->block; return cursor_next_instr(cursor); } unreachable("Inavlid cursor option"); } ASSERTED static bool dest_is_ssa(nir_dest *dest, void *_state) { (void) _state; return dest->is_ssa; } bool nir_function_impl_lower_instructions(nir_function_impl *impl, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data) { nir_builder b; nir_builder_init(&b, impl); nir_metadata preserved = nir_metadata_block_index | nir_metadata_dominance; bool progress = false; nir_cursor iter = nir_before_cf_list(&impl->body); nir_instr *instr; while ((instr = cursor_next_instr(iter)) != NULL) { if (filter && !filter(instr, cb_data)) { iter = nir_after_instr(instr); continue; } assert(nir_foreach_dest(instr, dest_is_ssa, NULL)); nir_ssa_def *old_def = nir_instr_ssa_def(instr); if (old_def == NULL) { iter = nir_after_instr(instr); continue; } /* We're about to ask the callback to generate a replacement for instr. * Save off the uses from instr's SSA def so we know what uses to * rewrite later. If we use nir_ssa_def_rewrite_uses, it fails in the * case where the generated replacement code uses the result of instr * itself. If we use nir_ssa_def_rewrite_uses_after (which is the * normal solution to this problem), it doesn't work well if control- * flow is inserted as part of the replacement, doesn't handle cases * where the replacement is something consumed by instr, and suffers * from performance issues. This is the only way to 100% guarantee * that we rewrite the correct set efficiently. */ struct list_head old_uses, old_if_uses; list_replace(&old_def->uses, &old_uses); list_inithead(&old_def->uses); list_replace(&old_def->if_uses, &old_if_uses); list_inithead(&old_def->if_uses); b.cursor = nir_after_instr(instr); nir_ssa_def *new_def = lower(&b, instr, cb_data); if (new_def && new_def != NIR_LOWER_INSTR_PROGRESS) { assert(old_def != NULL); if (new_def->parent_instr->block != instr->block) preserved = nir_metadata_none; nir_src new_src = nir_src_for_ssa(new_def); list_for_each_entry_safe(nir_src, use_src, &old_uses, use_link) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); list_for_each_entry_safe(nir_src, use_src, &old_if_uses, use_link) nir_if_rewrite_condition(use_src->parent_if, new_src); if (list_is_empty(&old_def->uses) && list_is_empty(&old_def->if_uses)) { iter = nir_instr_remove(instr); } else { iter = nir_after_instr(instr); } progress = true; } else { /* We didn't end up lowering after all. Put the uses back */ if (old_def) { list_replace(&old_uses, &old_def->uses); list_replace(&old_if_uses, &old_def->if_uses); } iter = nir_after_instr(instr); if (new_def == NIR_LOWER_INSTR_PROGRESS) progress = true; } } if (progress) { nir_metadata_preserve(impl, preserved); } else { nir_metadata_preserve(impl, nir_metadata_all); } return progress; } bool nir_shader_lower_instructions(nir_shader *shader, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data) { bool progress = false; nir_foreach_function(function, shader) { if (function->impl && nir_function_impl_lower_instructions(function->impl, filter, lower, cb_data)) progress = true; } return progress; } nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val) { switch (val) { case SYSTEM_VALUE_VERTEX_ID: return nir_intrinsic_load_vertex_id; case SYSTEM_VALUE_INSTANCE_ID: return nir_intrinsic_load_instance_id; case SYSTEM_VALUE_DRAW_ID: return nir_intrinsic_load_draw_id; case SYSTEM_VALUE_BASE_INSTANCE: return nir_intrinsic_load_base_instance; case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: return nir_intrinsic_load_vertex_id_zero_base; case SYSTEM_VALUE_IS_INDEXED_DRAW: return nir_intrinsic_load_is_indexed_draw; case SYSTEM_VALUE_FIRST_VERTEX: return nir_intrinsic_load_first_vertex; case SYSTEM_VALUE_BASE_VERTEX: return nir_intrinsic_load_base_vertex; case SYSTEM_VALUE_INVOCATION_ID: return nir_intrinsic_load_invocation_id; case SYSTEM_VALUE_FRAG_COORD: return nir_intrinsic_load_frag_coord; case SYSTEM_VALUE_POINT_COORD: return nir_intrinsic_load_point_coord; case SYSTEM_VALUE_LINE_COORD: return nir_intrinsic_load_line_coord; case SYSTEM_VALUE_FRONT_FACE: return nir_intrinsic_load_front_face; case SYSTEM_VALUE_SAMPLE_ID: return nir_intrinsic_load_sample_id; case SYSTEM_VALUE_SAMPLE_POS: return nir_intrinsic_load_sample_pos; case SYSTEM_VALUE_SAMPLE_MASK_IN: return nir_intrinsic_load_sample_mask_in; case SYSTEM_VALUE_LOCAL_INVOCATION_ID: return nir_intrinsic_load_local_invocation_id; case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX: return nir_intrinsic_load_local_invocation_index; case SYSTEM_VALUE_WORK_GROUP_ID: return nir_intrinsic_load_work_group_id; case SYSTEM_VALUE_NUM_WORK_GROUPS: return nir_intrinsic_load_num_work_groups; case SYSTEM_VALUE_PRIMITIVE_ID: return nir_intrinsic_load_primitive_id; case SYSTEM_VALUE_TESS_COORD: return nir_intrinsic_load_tess_coord; case SYSTEM_VALUE_TESS_LEVEL_OUTER: return nir_intrinsic_load_tess_level_outer; case SYSTEM_VALUE_TESS_LEVEL_INNER: return nir_intrinsic_load_tess_level_inner; case SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT: return nir_intrinsic_load_tess_level_outer_default; case SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT: return nir_intrinsic_load_tess_level_inner_default; case SYSTEM_VALUE_VERTICES_IN: return nir_intrinsic_load_patch_vertices_in; case SYSTEM_VALUE_HELPER_INVOCATION: return nir_intrinsic_load_helper_invocation; case SYSTEM_VALUE_COLOR0: return nir_intrinsic_load_color0; case SYSTEM_VALUE_COLOR1: return nir_intrinsic_load_color1; case SYSTEM_VALUE_VIEW_INDEX: return nir_intrinsic_load_view_index; case SYSTEM_VALUE_SUBGROUP_SIZE: return nir_intrinsic_load_subgroup_size; case SYSTEM_VALUE_SUBGROUP_INVOCATION: return nir_intrinsic_load_subgroup_invocation; case SYSTEM_VALUE_SUBGROUP_EQ_MASK: return nir_intrinsic_load_subgroup_eq_mask; case SYSTEM_VALUE_SUBGROUP_GE_MASK: return nir_intrinsic_load_subgroup_ge_mask; case SYSTEM_VALUE_SUBGROUP_GT_MASK: return nir_intrinsic_load_subgroup_gt_mask; case SYSTEM_VALUE_SUBGROUP_LE_MASK: return nir_intrinsic_load_subgroup_le_mask; case SYSTEM_VALUE_SUBGROUP_LT_MASK: return nir_intrinsic_load_subgroup_lt_mask; case SYSTEM_VALUE_NUM_SUBGROUPS: return nir_intrinsic_load_num_subgroups; case SYSTEM_VALUE_SUBGROUP_ID: return nir_intrinsic_load_subgroup_id; case SYSTEM_VALUE_LOCAL_GROUP_SIZE: return nir_intrinsic_load_local_group_size; case SYSTEM_VALUE_GLOBAL_INVOCATION_ID: return nir_intrinsic_load_global_invocation_id; case SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID: return nir_intrinsic_load_base_global_invocation_id; case SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX: return nir_intrinsic_load_global_invocation_index; case SYSTEM_VALUE_WORK_DIM: return nir_intrinsic_load_work_dim; case SYSTEM_VALUE_USER_DATA_AMD: return nir_intrinsic_load_user_data_amd; case SYSTEM_VALUE_RAY_LAUNCH_ID: return nir_intrinsic_load_ray_launch_id; case SYSTEM_VALUE_RAY_LAUNCH_SIZE: return nir_intrinsic_load_ray_launch_size; case SYSTEM_VALUE_RAY_WORLD_ORIGIN: return nir_intrinsic_load_ray_world_origin; case SYSTEM_VALUE_RAY_WORLD_DIRECTION: return nir_intrinsic_load_ray_world_direction; case SYSTEM_VALUE_RAY_OBJECT_ORIGIN: return nir_intrinsic_load_ray_object_origin; case SYSTEM_VALUE_RAY_OBJECT_DIRECTION: return nir_intrinsic_load_ray_object_direction; case SYSTEM_VALUE_RAY_T_MIN: return nir_intrinsic_load_ray_t_min; case SYSTEM_VALUE_RAY_T_MAX: return nir_intrinsic_load_ray_t_max; case SYSTEM_VALUE_RAY_OBJECT_TO_WORLD: return nir_intrinsic_load_ray_object_to_world; case SYSTEM_VALUE_RAY_WORLD_TO_OBJECT: return nir_intrinsic_load_ray_world_to_object; case SYSTEM_VALUE_RAY_HIT_KIND: return nir_intrinsic_load_ray_hit_kind; case SYSTEM_VALUE_RAY_FLAGS: return nir_intrinsic_load_ray_flags; case SYSTEM_VALUE_RAY_GEOMETRY_INDEX: return nir_intrinsic_load_ray_geometry_index; case SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX: return nir_intrinsic_load_ray_instance_custom_index; default: unreachable("system value does not directly correspond to intrinsic"); } } gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin) { switch (intrin) { case nir_intrinsic_load_vertex_id: return SYSTEM_VALUE_VERTEX_ID; case nir_intrinsic_load_instance_id: return SYSTEM_VALUE_INSTANCE_ID; case nir_intrinsic_load_draw_id: return SYSTEM_VALUE_DRAW_ID; case nir_intrinsic_load_base_instance: return SYSTEM_VALUE_BASE_INSTANCE; case nir_intrinsic_load_vertex_id_zero_base: return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; case nir_intrinsic_load_first_vertex: return SYSTEM_VALUE_FIRST_VERTEX; case nir_intrinsic_load_is_indexed_draw: return SYSTEM_VALUE_IS_INDEXED_DRAW; case nir_intrinsic_load_base_vertex: return SYSTEM_VALUE_BASE_VERTEX; case nir_intrinsic_load_invocation_id: return SYSTEM_VALUE_INVOCATION_ID; case nir_intrinsic_load_frag_coord: return SYSTEM_VALUE_FRAG_COORD; case nir_intrinsic_load_point_coord: return SYSTEM_VALUE_POINT_COORD; case nir_intrinsic_load_line_coord: return SYSTEM_VALUE_LINE_COORD; case nir_intrinsic_load_front_face: return SYSTEM_VALUE_FRONT_FACE; case nir_intrinsic_load_sample_id: return SYSTEM_VALUE_SAMPLE_ID; case nir_intrinsic_load_sample_pos: return SYSTEM_VALUE_SAMPLE_POS; case nir_intrinsic_load_sample_mask_in: return SYSTEM_VALUE_SAMPLE_MASK_IN; case nir_intrinsic_load_local_invocation_id: return SYSTEM_VALUE_LOCAL_INVOCATION_ID; case nir_intrinsic_load_local_invocation_index: return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; case nir_intrinsic_load_num_work_groups: return SYSTEM_VALUE_NUM_WORK_GROUPS; case nir_intrinsic_load_work_group_id: return SYSTEM_VALUE_WORK_GROUP_ID; case nir_intrinsic_load_primitive_id: return SYSTEM_VALUE_PRIMITIVE_ID; case nir_intrinsic_load_tess_coord: return SYSTEM_VALUE_TESS_COORD; case nir_intrinsic_load_tess_level_outer: return SYSTEM_VALUE_TESS_LEVEL_OUTER; case nir_intrinsic_load_tess_level_inner: return SYSTEM_VALUE_TESS_LEVEL_INNER; case nir_intrinsic_load_tess_level_outer_default: return SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT; case nir_intrinsic_load_tess_level_inner_default: return SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT; case nir_intrinsic_load_patch_vertices_in: return SYSTEM_VALUE_VERTICES_IN; case nir_intrinsic_load_helper_invocation: return SYSTEM_VALUE_HELPER_INVOCATION; case nir_intrinsic_load_color0: return SYSTEM_VALUE_COLOR0; case nir_intrinsic_load_color1: return SYSTEM_VALUE_COLOR1; case nir_intrinsic_load_view_index: return SYSTEM_VALUE_VIEW_INDEX; case nir_intrinsic_load_subgroup_size: return SYSTEM_VALUE_SUBGROUP_SIZE; case nir_intrinsic_load_subgroup_invocation: return SYSTEM_VALUE_SUBGROUP_INVOCATION; case nir_intrinsic_load_subgroup_eq_mask: return SYSTEM_VALUE_SUBGROUP_EQ_MASK; case nir_intrinsic_load_subgroup_ge_mask: return SYSTEM_VALUE_SUBGROUP_GE_MASK; case nir_intrinsic_load_subgroup_gt_mask: return SYSTEM_VALUE_SUBGROUP_GT_MASK; case nir_intrinsic_load_subgroup_le_mask: return SYSTEM_VALUE_SUBGROUP_LE_MASK; case nir_intrinsic_load_subgroup_lt_mask: return SYSTEM_VALUE_SUBGROUP_LT_MASK; case nir_intrinsic_load_num_subgroups: return SYSTEM_VALUE_NUM_SUBGROUPS; case nir_intrinsic_load_subgroup_id: return SYSTEM_VALUE_SUBGROUP_ID; case nir_intrinsic_load_local_group_size: return SYSTEM_VALUE_LOCAL_GROUP_SIZE; case nir_intrinsic_load_global_invocation_id: return SYSTEM_VALUE_GLOBAL_INVOCATION_ID; case nir_intrinsic_load_base_global_invocation_id: return SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID; case nir_intrinsic_load_global_invocation_index: return SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX; case nir_intrinsic_load_work_dim: return SYSTEM_VALUE_WORK_DIM; case nir_intrinsic_load_user_data_amd: return SYSTEM_VALUE_USER_DATA_AMD; case nir_intrinsic_load_barycentric_model: return SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL; case nir_intrinsic_load_gs_header_ir3: return SYSTEM_VALUE_GS_HEADER_IR3; case nir_intrinsic_load_tcs_header_ir3: return SYSTEM_VALUE_TCS_HEADER_IR3; case nir_intrinsic_load_ray_launch_id: return SYSTEM_VALUE_RAY_LAUNCH_ID; case nir_intrinsic_load_ray_launch_size: return SYSTEM_VALUE_RAY_LAUNCH_SIZE; case nir_intrinsic_load_ray_world_origin: return SYSTEM_VALUE_RAY_WORLD_ORIGIN; case nir_intrinsic_load_ray_world_direction: return SYSTEM_VALUE_RAY_WORLD_DIRECTION; case nir_intrinsic_load_ray_object_origin: return SYSTEM_VALUE_RAY_OBJECT_ORIGIN; case nir_intrinsic_load_ray_object_direction: return SYSTEM_VALUE_RAY_OBJECT_DIRECTION; case nir_intrinsic_load_ray_t_min: return SYSTEM_VALUE_RAY_T_MIN; case nir_intrinsic_load_ray_t_max: return SYSTEM_VALUE_RAY_T_MAX; case nir_intrinsic_load_ray_object_to_world: return SYSTEM_VALUE_RAY_OBJECT_TO_WORLD; case nir_intrinsic_load_ray_world_to_object: return SYSTEM_VALUE_RAY_WORLD_TO_OBJECT; case nir_intrinsic_load_ray_hit_kind: return SYSTEM_VALUE_RAY_HIT_KIND; case nir_intrinsic_load_ray_flags: return SYSTEM_VALUE_RAY_FLAGS; case nir_intrinsic_load_ray_geometry_index: return SYSTEM_VALUE_RAY_GEOMETRY_INDEX; case nir_intrinsic_load_ray_instance_custom_index: return SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX; default: unreachable("intrinsic doesn't produce a system value"); } } /* OpenGL utility method that remaps the location attributes if they are * doubles. Not needed for vulkan due the differences on the input location * count for doubles on vulkan vs OpenGL * * The bitfield returned in dual_slot is one bit for each double input slot in * the original OpenGL single-slot input numbering. The mapping from old * locations to new locations is as follows: * * new_loc = loc + util_bitcount(dual_slot & BITFIELD64_MASK(loc)) */ void nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot) { assert(shader->info.stage == MESA_SHADER_VERTEX); *dual_slot = 0; nir_foreach_shader_in_variable(var, shader) { if (glsl_type_is_dual_slot(glsl_without_array(var->type))) { unsigned slots = glsl_count_attribute_slots(var->type, true); *dual_slot |= BITFIELD64_MASK(slots) << var->data.location; } } nir_foreach_shader_in_variable(var, shader) { var->data.location += util_bitcount64(*dual_slot & BITFIELD64_MASK(var->data.location)); } } /* Returns an attribute mask that has been re-compacted using the given * dual_slot mask. */ uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot) { while (dual_slot) { unsigned loc = u_bit_scan64(&dual_slot); /* mask of all bits up to and including loc */ uint64_t mask = BITFIELD64_MASK(loc + 1); attribs = (attribs & mask) | ((attribs & ~mask) >> 1); } return attribs; } void nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin, nir_ssa_def *src, bool bindless) { enum gl_access_qualifier access = nir_intrinsic_access(intrin); /* Image intrinsics only have one of these */ assert(!nir_intrinsic_has_src_type(intrin) || !nir_intrinsic_has_dest_type(intrin)); nir_alu_type data_type = nir_type_invalid; if (nir_intrinsic_has_src_type(intrin)) data_type = nir_intrinsic_src_type(intrin); if (nir_intrinsic_has_dest_type(intrin)) data_type = nir_intrinsic_dest_type(intrin); switch (intrin->intrinsic) { #define CASE(op) \ case nir_intrinsic_image_deref_##op: \ intrin->intrinsic = bindless ? nir_intrinsic_bindless_image_##op \ : nir_intrinsic_image_##op; \ break; CASE(load) CASE(store) CASE(atomic_add) CASE(atomic_imin) CASE(atomic_umin) CASE(atomic_imax) CASE(atomic_umax) CASE(atomic_and) CASE(atomic_or) CASE(atomic_xor) CASE(atomic_exchange) CASE(atomic_comp_swap) CASE(atomic_fadd) CASE(atomic_inc_wrap) CASE(atomic_dec_wrap) CASE(size) CASE(samples) CASE(load_raw_intel) CASE(store_raw_intel) #undef CASE default: unreachable("Unhanded image intrinsic"); } nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); nir_variable *var = nir_deref_instr_get_variable(deref); nir_intrinsic_set_image_dim(intrin, glsl_get_sampler_dim(deref->type)); nir_intrinsic_set_image_array(intrin, glsl_sampler_type_is_array(deref->type)); nir_intrinsic_set_access(intrin, access | var->data.access); nir_intrinsic_set_format(intrin, var->data.image.format); if (nir_intrinsic_has_src_type(intrin)) nir_intrinsic_set_src_type(intrin, data_type); if (nir_intrinsic_has_dest_type(intrin)) nir_intrinsic_set_dest_type(intrin, data_type); nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], nir_src_for_ssa(src)); } unsigned nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr) { enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr); int coords = glsl_get_sampler_dim_coordinate_components(dim); if (dim == GLSL_SAMPLER_DIM_CUBE) return coords; else return coords + nir_intrinsic_image_array(instr); } nir_src * nir_get_shader_call_payload_src(nir_intrinsic_instr *call) { switch (call->intrinsic) { case nir_intrinsic_trace_ray: return &call->src[10]; case nir_intrinsic_execute_callable: return &call->src[1]; default: unreachable("Not a call intrinsic"); return NULL; } }