/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_fs.h" #include "brw_cfg.h" #include "brw_eu.h" /** @file brw_fs_cmod_propagation.cpp * * Implements a pass that propagates the conditional modifier from a CMP x 0.0 * instruction into the instruction that generated x. For instance, in this * sequence * * add(8) g70<1>F g69<8,8,1>F 4096F * cmp.ge.f0(8) null g70<8,8,1>F 0F * * we can do the comparison as part of the ADD instruction directly: * * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F * * If there had been a use of the flag register and another CMP using g70 * * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F * (+f0) sel(8) g71 g72<8,8,1>F g73<8,8,1>F * cmp.ge.f0(8) null g70<8,8,1>F 0F * * we can recognize that the CMP is generating the flag value that already * exists and therefore remove the instruction. */ using namespace brw; static bool cmod_propagate_cmp_to_add(const gen_device_info *devinfo, bblock_t *block, fs_inst *inst) { bool read_flag = false; const unsigned flags_written = inst->flags_written(); foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { if (scan_inst->opcode == BRW_OPCODE_ADD && !scan_inst->is_partial_write() && scan_inst->exec_size == inst->exec_size) { bool negate; /* A CMP is basically a subtraction. The result of the * subtraction must be the same as the result of the addition. * This means that one of the operands must be negated. So (a + * b) vs (a == -b) or (a + -b) vs (a == b). */ if ((inst->src[0].equals(scan_inst->src[0]) && inst->src[1].negative_equals(scan_inst->src[1])) || (inst->src[0].equals(scan_inst->src[1]) && inst->src[1].negative_equals(scan_inst->src[0]))) { negate = false; } else if ((inst->src[0].negative_equals(scan_inst->src[0]) && inst->src[1].equals(scan_inst->src[1])) || (inst->src[0].negative_equals(scan_inst->src[1]) && inst->src[1].equals(scan_inst->src[0]))) { negate = true; } else { goto not_match; } /* If the scan instruction writes a different flag register than the * instruction we're trying to propagate from, bail. * * FINISHME: The second part of the condition may be too strong. * Perhaps (scan_inst->flags_written() & flags_written) != * flags_written? */ if (scan_inst->flags_written() != 0 && scan_inst->flags_written() != flags_written) goto not_match; /* From the Kaby Lake PRM Vol. 7 "Assigning Conditional Flags": * * * Note that the [post condition signal] bits generated at * the output of a compute are before the .sat. * * Paragraph about post_zero does not mention saturation, but * testing it on actual GPUs shows that conditional modifiers * are applied after saturation. * * * post_zero bit: This bit reflects whether the final * result is zero after all the clamping, normalizing, * or format conversion logic. * * For signed types we don't care about saturation: it won't * change the result of conditional modifier. * * For floating and unsigned types there two special cases, * when we can remove inst even if scan_inst is saturated: G * and LE. Since conditional modifiers are just comparations * against zero, saturating positive values to the upper * limit never changes the result of comparation. * * For negative values: * (sat(x) > 0) == (x > 0) --- false * (sat(x) <= 0) == (x <= 0) --- true */ const enum brw_conditional_mod cond = negate ? brw_swap_cmod(inst->conditional_mod) : inst->conditional_mod; if (scan_inst->saturate && (brw_reg_type_is_floating_point(scan_inst->dst.type) || type_is_unsigned_int(scan_inst->dst.type)) && (cond != BRW_CONDITIONAL_G && cond != BRW_CONDITIONAL_LE)) goto not_match; /* Otherwise, try propagating the conditional. */ if (scan_inst->can_do_cmod() && ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) || scan_inst->conditional_mod == cond)) { scan_inst->conditional_mod = cond; inst->remove(block); return true; } break; } not_match: if ((scan_inst->flags_written() & flags_written) != 0) break; read_flag = read_flag || (scan_inst->flags_read(devinfo) & flags_written) != 0; } return false; } /** * Propagate conditional modifiers from NOT instructions * * Attempt to convert sequences like * * or(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD * ... * not.nz.f0(8) null g78<8,8,1>UD * * into * * or.z.f0(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD */ static bool cmod_propagate_not(const gen_device_info *devinfo, bblock_t *block, fs_inst *inst) { const enum brw_conditional_mod cond = brw_negate_cmod(inst->conditional_mod); bool read_flag = false; const unsigned flags_written = inst->flags_written(); if (cond != BRW_CONDITIONAL_Z && cond != BRW_CONDITIONAL_NZ) return false; foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { if (regions_overlap(scan_inst->dst, scan_inst->size_written, inst->src[0], inst->size_read(0))) { if (scan_inst->opcode != BRW_OPCODE_OR && scan_inst->opcode != BRW_OPCODE_AND) break; if (scan_inst->is_partial_write() || scan_inst->dst.offset != inst->src[0].offset || scan_inst->exec_size != inst->exec_size) break; /* If the scan instruction writes a different flag register than the * instruction we're trying to propagate from, bail. * * FINISHME: The second part of the condition may be too strong. * Perhaps (scan_inst->flags_written() & flags_written) != * flags_written? */ if (scan_inst->flags_written() != 0 && scan_inst->flags_written() != flags_written) break; if (scan_inst->can_do_cmod() && ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) || scan_inst->conditional_mod == cond)) { scan_inst->conditional_mod = cond; inst->remove(block); return true; } break; } if ((scan_inst->flags_written() & flags_written) != 0) break; read_flag = read_flag || (scan_inst->flags_read(devinfo) & flags_written) != 0; } return false; } static bool opt_cmod_propagation_local(const gen_device_info *devinfo, bblock_t *block) { bool progress = false; int ip = block->end_ip + 1; foreach_inst_in_block_reverse_safe(fs_inst, inst, block) { ip--; if ((inst->opcode != BRW_OPCODE_AND && inst->opcode != BRW_OPCODE_CMP && inst->opcode != BRW_OPCODE_MOV && inst->opcode != BRW_OPCODE_NOT) || inst->predicate != BRW_PREDICATE_NONE || !inst->dst.is_null() || (inst->src[0].file != VGRF && inst->src[0].file != ATTR && inst->src[0].file != UNIFORM)) continue; /* An ABS source modifier can only be handled when processing a compare * with a value other than zero. */ if (inst->src[0].abs && (inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero())) continue; /* Only an AND.NZ can be propagated. Many AND.Z instructions are * generated (for ir_unop_not in fs_visitor::emit_bool_to_cond_code). * Propagating those would require inverting the condition on the CMP. * This changes both the flag value and the register destination of the * CMP. That result may be used elsewhere, so we can't change its value * on a whim. */ if (inst->opcode == BRW_OPCODE_AND && !(inst->src[1].is_one() && inst->conditional_mod == BRW_CONDITIONAL_NZ && !inst->src[0].negate)) continue; if (inst->opcode == BRW_OPCODE_MOV && inst->conditional_mod != BRW_CONDITIONAL_NZ) continue; /* A CMP with a second source of zero can match with anything. A CMP * with a second source that is not zero can only match with an ADD * instruction. * * Only apply this optimization to float-point sources. It can fail for * integers. For inputs a = 0x80000000, b = 4, int(0x80000000) < 4, but * int(0x80000000) - 4 overflows and results in 0x7ffffffc. that's not * less than zero, so the flags get set differently than for (a < b). */ if (inst->opcode == BRW_OPCODE_CMP && !inst->src[1].is_zero()) { if (brw_reg_type_is_floating_point(inst->src[0].type) && cmod_propagate_cmp_to_add(devinfo, block, inst)) progress = true; continue; } if (inst->opcode == BRW_OPCODE_NOT) { progress = cmod_propagate_not(devinfo, block, inst) || progress; continue; } bool read_flag = false; const unsigned flags_written = inst->flags_written(); foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { if (regions_overlap(scan_inst->dst, scan_inst->size_written, inst->src[0], inst->size_read(0))) { /* If the scan instruction writes a different flag register than * the instruction we're trying to propagate from, bail. * * FINISHME: The second part of the condition may be too strong. * Perhaps (scan_inst->flags_written() & flags_written) != * flags_written? */ if (scan_inst->flags_written() != 0 && scan_inst->flags_written() != flags_written) break; if (scan_inst->is_partial_write() || scan_inst->dst.offset != inst->src[0].offset || scan_inst->exec_size != inst->exec_size) break; /* CMP's result is the same regardless of dest type. */ if (inst->conditional_mod == BRW_CONDITIONAL_NZ && scan_inst->opcode == BRW_OPCODE_CMP && brw_reg_type_is_integer(inst->dst.type)) { inst->remove(block); progress = true; break; } /* If the AND wasn't handled by the previous case, it isn't safe * to remove it. */ if (inst->opcode == BRW_OPCODE_AND) break; /* Not safe to use inequality operators if the types are different */ if (scan_inst->dst.type != inst->src[0].type && inst->conditional_mod != BRW_CONDITIONAL_Z && inst->conditional_mod != BRW_CONDITIONAL_NZ) break; /* Comparisons operate differently for ints and floats */ if (scan_inst->dst.type != inst->dst.type) { /* Comparison result may be altered if the bit-size changes * since that affects range, denorms, etc */ if (type_sz(scan_inst->dst.type) != type_sz(inst->dst.type)) break; /* We should propagate from a MOV to another instruction in a * sequence like: * * and(16) g31<1>UD g20<8,8,1>UD g22<8,8,1>UD * mov.nz.f0(16) null<1>F g31<8,8,1>D */ if (inst->opcode == BRW_OPCODE_MOV) { if ((inst->src[0].type != BRW_REGISTER_TYPE_D && inst->src[0].type != BRW_REGISTER_TYPE_UD) || (scan_inst->dst.type != BRW_REGISTER_TYPE_D && scan_inst->dst.type != BRW_REGISTER_TYPE_UD)) { break; } } else if (brw_reg_type_is_floating_point(scan_inst->dst.type) != brw_reg_type_is_floating_point(inst->dst.type)) { break; } } /* Knowing following: * - CMP writes to flag register the result of * applying cmod to the `src0 - src1`. * After that it stores the same value to dst. * Other instructions first store their result to * dst, and then store cmod(dst) to the flag * register. * - inst is either CMP or MOV * - inst->dst is null * - inst->src[0] overlaps with scan_inst->dst * - inst->src[1] is zero * - scan_inst wrote to a flag register * * There can be three possible paths: * * - scan_inst is CMP: * * Considering that src0 is either 0x0 (false), * or 0xffffffff (true), and src1 is 0x0: * * - If inst's cmod is NZ, we can always remove * scan_inst: NZ is invariant for false and true. This * holds even if src0 is NaN: .nz is the only cmod, * that returns true for NaN. * * - .g is invariant if src0 has a UD type * * - .l is invariant if src0 has a D type * * - scan_inst and inst have the same cmod: * * If scan_inst is anything than CMP, it already * wrote the appropriate value to the flag register. * * - else: * * We can change cmod of scan_inst to that of inst, * and remove inst. It is valid as long as we make * sure that no instruction uses the flag register * between scan_inst and inst. */ if (!inst->src[0].negate && scan_inst->flags_written()) { if (scan_inst->opcode == BRW_OPCODE_CMP) { if ((inst->conditional_mod == BRW_CONDITIONAL_NZ) || (inst->conditional_mod == BRW_CONDITIONAL_G && inst->src[0].type == BRW_REGISTER_TYPE_UD) || (inst->conditional_mod == BRW_CONDITIONAL_L && inst->src[0].type == BRW_REGISTER_TYPE_D)) { inst->remove(block); progress = true; break; } } else if (scan_inst->conditional_mod == inst->conditional_mod) { inst->remove(block); progress = true; break; } else if (!read_flag) { scan_inst->conditional_mod = inst->conditional_mod; inst->remove(block); progress = true; break; } } /* The conditional mod of the CMP/CMPN instructions behaves * specially because the flag output is not calculated from the * result of the instruction, but the other way around, which * means that even if the condmod to propagate and the condmod * from the CMP instruction are the same they will in general give * different results because they are evaluated based on different * inputs. */ if (scan_inst->opcode == BRW_OPCODE_CMP || scan_inst->opcode == BRW_OPCODE_CMPN) break; /* From the Sky Lake PRM, Vol 2a, "Multiply": * * "When multiplying integer data types, if one of the sources * is a DW, the resulting full precision data is stored in * the accumulator. However, if the destination data type is * either W or DW, the low bits of the result are written to * the destination register and the remaining high bits are * discarded. This results in undefined Overflow and Sign * flags. Therefore, conditional modifiers and saturation * (.sat) cannot be used in this case." * * We just disallow cmod propagation on all integer multiplies. */ if (!brw_reg_type_is_floating_point(scan_inst->dst.type) && scan_inst->opcode == BRW_OPCODE_MUL) break; enum brw_conditional_mod cond = inst->src[0].negate ? brw_swap_cmod(inst->conditional_mod) : inst->conditional_mod; /* From the Sky Lake PRM Vol. 7 "Assigning Conditional Mods": * * * Note that the [post condition signal] bits generated at * the output of a compute are before the .sat. * * This limits the cases where we can propagate the conditional * modifier. If scan_inst has a saturate modifier, then we can * only propagate from inst if inst is 'scan_inst <= 0', * 'scan_inst == 0', 'scan_inst != 0', or 'scan_inst > 0'. If * inst is 'scan_inst == 0', the conditional modifier must be * replace with LE. Likewise, if inst is 'scan_inst != 0', the * conditional modifier must be replace with G. * * The only other cases are 'scan_inst < 0' (which is a * contradiction) and 'scan_inst >= 0' (which is a tautology). */ if (scan_inst->saturate) { if (scan_inst->dst.type != BRW_REGISTER_TYPE_F) break; if (cond != BRW_CONDITIONAL_Z && cond != BRW_CONDITIONAL_NZ && cond != BRW_CONDITIONAL_LE && cond != BRW_CONDITIONAL_G) break; if (inst->opcode != BRW_OPCODE_MOV && inst->opcode != BRW_OPCODE_CMP) break; /* inst->src[1].is_zero() was tested before, but be safe * against possible future changes in this code. */ assert(inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero()); if (cond == BRW_CONDITIONAL_Z) cond = BRW_CONDITIONAL_LE; else if (cond == BRW_CONDITIONAL_NZ) cond = BRW_CONDITIONAL_G; } /* Otherwise, try propagating the conditional. */ if (scan_inst->can_do_cmod() && ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) || scan_inst->conditional_mod == cond)) { scan_inst->conditional_mod = cond; scan_inst->flag_subreg = inst->flag_subreg; inst->remove(block); progress = true; } break; } if ((scan_inst->flags_written() & flags_written) != 0) break; read_flag = read_flag || (scan_inst->flags_read(devinfo) & flags_written) != 0; } } return progress; } bool fs_visitor::opt_cmod_propagation() { bool progress = false; foreach_block_reverse(block, cfg) { progress = opt_cmod_propagation_local(devinfo, block) || progress; } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; }