/* * Copyright (C) 2019 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors (Collabora): * Alyssa Rosenzweig */ #include #include #include #include #include #include "util/macros.h" #include "util/u_math.h" #include "lcra.h" /* This module is the reference implementation of "Linearly Constrained * Register Allocation". The paper is available in PDF form * (https://people.collabora.com/~alyssa/LCRA.pdf) as well as Markdown+LaTeX * (https://gitlab.freedesktop.org/alyssa/lcra/blob/master/LCRA.md) */ struct lcra_state * lcra_alloc_equations( unsigned node_count, unsigned class_count) { struct lcra_state *l = calloc(1, sizeof(*l)); l->node_count = node_count; l->class_count = class_count; l->alignment = calloc(sizeof(l->alignment[0]), node_count); l->linear = calloc(sizeof(l->linear[0]), node_count * node_count); l->modulus = calloc(sizeof(l->modulus[0]), node_count); l->class = calloc(sizeof(l->class[0]), node_count); l->class_start = calloc(sizeof(l->class_start[0]), class_count); l->class_disjoint = calloc(sizeof(l->class_disjoint[0]), class_count * class_count); l->class_size = calloc(sizeof(l->class_size[0]), class_count); l->spill_cost = calloc(sizeof(l->spill_cost[0]), node_count); l->solutions = calloc(sizeof(l->solutions[0]), node_count); memset(l->solutions, ~0, sizeof(l->solutions[0]) * node_count); return l; } void lcra_free(struct lcra_state *l) { if (!l) return; free(l->alignment); free(l->linear); free(l->modulus); free(l->class); free(l->class_start); free(l->class_disjoint); free(l->class_size); free(l->spill_cost); free(l->solutions); free(l); } void lcra_set_alignment(struct lcra_state *l, unsigned node, unsigned align_log2, unsigned bound) { l->alignment[node] = (align_log2 + 1) | (bound << 16); } void lcra_set_disjoint_class(struct lcra_state *l, unsigned c1, unsigned c2) { l->class_disjoint[(c1 * l->class_count) + c2] = true; l->class_disjoint[(c2 * l->class_count) + c1] = true; } void lcra_restrict_range(struct lcra_state *l, unsigned node, unsigned len) { if (node < l->node_count && l->alignment[node]) { unsigned BA = l->alignment[node]; unsigned alignment = (BA & 0xffff) - 1; unsigned bound = BA >> 16; l->modulus[node] = DIV_ROUND_UP(bound - len + 1, 1 << alignment); } } void lcra_add_node_interference(struct lcra_state *l, unsigned i, unsigned cmask_i, unsigned j, unsigned cmask_j) { if (i == j) return; if (l->class_disjoint[(l->class[i] * l->class_count) + l->class[j]]) return; uint32_t constraint_fw = 0; uint32_t constraint_bw = 0; for (unsigned D = 0; D < 16; ++D) { if (cmask_i & (cmask_j << D)) { constraint_bw |= (1 << (15 + D)); constraint_fw |= (1 << (15 - D)); } if (cmask_i & (cmask_j >> D)) { constraint_fw |= (1 << (15 + D)); constraint_bw |= (1 << (15 - D)); } } l->linear[j * l->node_count + i] |= constraint_fw; l->linear[i * l->node_count + j] |= constraint_bw; } static bool lcra_test_linear(struct lcra_state *l, unsigned *solutions, unsigned i) { unsigned *row = &l->linear[i * l->node_count]; signed constant = solutions[i]; for (unsigned j = 0; j < l->node_count; ++j) { if (solutions[j] == ~0) continue; signed lhs = solutions[j] - constant; if (lhs < -15 || lhs > 15) continue; if (row[j] & (1 << (lhs + 15))) return false; } return true; } bool lcra_solve(struct lcra_state *l) { for (unsigned step = 0; step < l->node_count; ++step) { if (l->solutions[step] != ~0) continue; if (l->alignment[step] == 0) continue; unsigned _class = l->class[step]; unsigned class_start = l->class_start[_class]; unsigned BA = l->alignment[step]; unsigned shift = (BA & 0xffff) - 1; unsigned bound = BA >> 16; unsigned P = bound >> shift; unsigned Q = l->modulus[step]; unsigned r_max = l->class_size[_class]; unsigned k_max = r_max >> shift; unsigned m_max = k_max / P; bool succ = false; for (unsigned m = 0; m < m_max; ++m) { for (unsigned n = 0; n < Q; ++n) { l->solutions[step] = ((m * P + n) << shift) + class_start; succ = lcra_test_linear(l, l->solutions, step); if (succ) break; } if (succ) break; } /* Out of registers - prepare to spill */ if (!succ) { l->spill_class = l->class[step]; return false; } } return true; } /* Register spilling is implemented with a cost-benefit system. Costs are set * by the user. Benefits are calculated from the constraints. */ void lcra_set_node_spill_cost(struct lcra_state *l, unsigned node, signed cost) { if (node < l->node_count) l->spill_cost[node] = cost; } /* Count along the lower triangle */ static unsigned lcra_count_constraints(struct lcra_state *l, unsigned i) { unsigned count = 0; unsigned *constraints = &l->linear[i * l->node_count]; for (unsigned j = 0; j < i; ++j) count += util_bitcount(constraints[j]); return count; } signed lcra_get_best_spill_node(struct lcra_state *l) { float best_benefit = -1.0; signed best_node = -1; for (unsigned i = 0; i < l->node_count; ++i) { /* Find spillable nodes */ if (l->class[i] != l->spill_class) continue; if (l->spill_cost[i] < 0) continue; /* Adapted from Chaitin's heuristic */ float constraints = lcra_count_constraints(l, i); float cost = (l->spill_cost[i] + 1); float benefit = constraints / cost; if (benefit > best_benefit) { best_benefit = benefit; best_node = i; } } return best_node; }