/* * Copyright (C) 2020 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors (Collabora): * Alyssa Rosenzweig */ /** * Implements framebuffer format conversions in software for Midgard/Bifrost * blend shaders. This pass is designed for a single render target; Midgard * duplicates blend shaders for MRT to simplify everything. A particular * framebuffer format may be categorized as 1) typed load available, 2) typed * unpack available, or 3) software unpack only, and likewise for stores. The * first two types are handled in the compiler backend directly, so this module * is responsible for identifying type 3 formats (hardware dependent) and * inserting appropriate ALU code to perform the conversion from the packed * type to a designated unpacked type, and vice versa. * * The unpacked type depends on the format: * * - For 32-bit float formats, 32-bit floats. * - For other floats, 16-bit floats. * - For 32-bit ints, 32-bit ints. * - For 8-bit ints, 8-bit ints. * - For other ints, 16-bit ints. * * The rationale is to optimize blending and logic op instructions by using the * smallest precision necessary to store the pixel losslessly. */ #include "compiler/nir/nir.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir/nir_format_convert.h" #include "util/format/u_format.h" #include "pan_lower_framebuffer.h" #include "panfrost-quirks.h" /* Determines the unpacked type best suiting a given format, so the rest of the * pipeline may be adjusted accordingly */ nir_alu_type pan_unpacked_type_for_format(const struct util_format_description *desc) { int c = util_format_get_first_non_void_channel(desc->format); if (c == -1) unreachable("Void format not renderable"); bool large = (desc->channel[c].size > 16); bool bit8 = (desc->channel[c].size == 8); assert(desc->channel[c].size <= 32); if (desc->channel[c].normalized) return large ? nir_type_float32 : nir_type_float16; switch (desc->channel[c].type) { case UTIL_FORMAT_TYPE_UNSIGNED: return bit8 ? nir_type_uint8 : large ? nir_type_uint32 : nir_type_uint16; case UTIL_FORMAT_TYPE_SIGNED: return bit8 ? nir_type_int8 : large ? nir_type_int32 : nir_type_int16; case UTIL_FORMAT_TYPE_FLOAT: return large ? nir_type_float32 : nir_type_float16; default: unreachable("Format not renderable"); } } enum pan_format_class pan_format_class_load(const struct util_format_description *desc, unsigned quirks) { /* Pure integers can be loaded via EXT_framebuffer_fetch and should be * handled as a raw load with a size conversion (it's cheap). Likewise, * since float framebuffers are internally implemented as raw (i.e. * integer) framebuffers with blend shaders to go back and forth, they * should be s/w as well */ if (util_format_is_pure_integer(desc->format) || util_format_is_float(desc->format)) return PAN_FORMAT_SOFTWARE; /* Check if we can do anything better than software architecturally */ if (quirks & MIDGARD_NO_TYPED_BLEND_LOADS) { return (quirks & NO_BLEND_PACKS) ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK; } /* Some formats are missing as typed on some GPUs but have unpacks */ if (quirks & MIDGARD_MISSING_LOADS) { switch (desc->format) { case PIPE_FORMAT_R11G11B10_FLOAT: case PIPE_FORMAT_R10G10B10A2_UNORM: case PIPE_FORMAT_B10G10R10A2_UNORM: case PIPE_FORMAT_R10G10B10X2_UNORM: case PIPE_FORMAT_B10G10R10X2_UNORM: case PIPE_FORMAT_R10G10B10A2_UINT: return PAN_FORMAT_PACK; default: return PAN_FORMAT_NATIVE; } } /* Otherwise, we can do native */ return PAN_FORMAT_NATIVE; } enum pan_format_class pan_format_class_store(const struct util_format_description *desc, unsigned quirks) { /* Check if we can do anything better than software architecturally */ if (quirks & MIDGARD_NO_TYPED_BLEND_STORES) { return (quirks & NO_BLEND_PACKS) ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK; } return PAN_FORMAT_NATIVE; } /* Convenience method */ static enum pan_format_class pan_format_class(const struct util_format_description *desc, unsigned quirks, bool is_store) { if (is_store) return pan_format_class_store(desc, quirks); else return pan_format_class_load(desc, quirks); } /* Software packs/unpacks, by format class. Packs take in the pixel value typed * as `pan_unpacked_type_for_format` of the format and return an i32vec4 * suitable for storing (with components replicated to fill). Unpacks do the * reverse but cannot rely on replication. * * Pure 32 formats (R32F ... RGBA32F) are 32 unpacked, so just need to * replicate to fill */ static nir_ssa_def * pan_pack_pure_32(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *replicated[4]; for (unsigned i = 0; i < 4; ++i) replicated[i] = nir_channel(b, v, i % v->num_components); return nir_vec(b, replicated, 4); } static nir_ssa_def * pan_unpack_pure_32(nir_builder *b, nir_ssa_def *pack, unsigned num_components) { return nir_channels(b, pack, (1 << num_components) - 1); } /* Pure x16 formats are x16 unpacked, so it's similar, but we need to pack * upper/lower halves of course */ static nir_ssa_def * pan_pack_pure_16(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *replicated[4]; for (unsigned i = 0; i < 4; ++i) { unsigned c = 2 * i; nir_ssa_def *parts[2] = { nir_channel(b, v, (c + 0) % v->num_components), nir_channel(b, v, (c + 1) % v->num_components) }; replicated[i] = nir_pack_32_2x16(b, nir_vec(b, parts, 2)); } return nir_vec(b, replicated, 4); } static nir_ssa_def * pan_unpack_pure_16(nir_builder *b, nir_ssa_def *pack, unsigned num_components) { nir_ssa_def *unpacked[4]; assert(num_components <= 4); for (unsigned i = 0; i < num_components; i += 2) { nir_ssa_def *halves = nir_unpack_32_2x16(b, nir_channel(b, pack, i >> 1)); unpacked[i + 0] = nir_channel(b, halves, 0); unpacked[i + 1] = nir_channel(b, halves, 1); } for (unsigned i = num_components; i < 4; ++i) unpacked[i] = nir_imm_intN_t(b, 0, 16); return nir_vec(b, unpacked, 4); } /* And likewise for x8. pan_fill_4 fills a 4-channel vector with a n-channel * vector (n <= 4), replicating as needed. pan_replicate_4 constructs a * 4-channel vector from a scalar via replication */ static nir_ssa_def * pan_fill_4(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *q[4]; assert(v->num_components <= 4); for (unsigned j = 0; j < 4; ++j) q[j] = nir_channel(b, v, j % v->num_components); return nir_vec(b, q, 4); } static nir_ssa_def * pan_extend(nir_builder *b, nir_ssa_def *v, unsigned N) { nir_ssa_def *q[4]; assert(v->num_components <= 4); assert(N <= 4); for (unsigned j = 0; j < v->num_components; ++j) q[j] = nir_channel(b, v, j); for (unsigned j = v->num_components; j < N; ++j) q[j] = nir_imm_int(b, 0); return nir_vec(b, q, N); } static nir_ssa_def * pan_replicate_4(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *replicated[4] = { v, v, v, v }; return nir_vec(b, replicated, 4); } static nir_ssa_def * pan_pack_pure_8(nir_builder *b, nir_ssa_def *v) { return pan_replicate_4(b, nir_pack_32_4x8(b, pan_fill_4(b, v))); } static nir_ssa_def * pan_unpack_pure_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components) { assert(num_components <= 4); nir_ssa_def *unpacked = nir_unpack_32_4x8(b, nir_channel(b, pack, 0)); return nir_channels(b, unpacked, (1 << num_components) - 1); } /* UNORM 8 is unpacked to f16 vec4. We could directly use the un/pack_unorm_4x8 * ops provided we replicate appropriately, but for packing we'd rather stay in * 8/16-bit whereas the NIR op forces 32-bit, so we do it manually */ static nir_ssa_def * pan_pack_unorm_8(nir_builder *b, nir_ssa_def *v) { return pan_replicate_4(b, nir_pack_32_4x8(b, nir_f2u8(b, nir_fround_even(b, nir_fmul(b, nir_fsat(b, pan_fill_4(b, v)), nir_imm_float16(b, 255.0)))))); } static nir_ssa_def * pan_unpack_unorm_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components) { assert(num_components <= 4); nir_ssa_def *unpacked = nir_unpack_unorm_4x8(b, nir_channel(b, pack, 0)); return nir_f2fmp(b, unpacked); } /* UNORM 4 is also unpacked to f16, which prevents us from using the shared * unpack which strongly assumes fp32. However, on the tilebuffer it is actually packed as: * * [AAAA] [0000] [BBBB] [0000] [GGGG] [0000] [RRRR] [0000] * * In other words, spacing it out so we're aligned to bytes and on top. So * pack as: * * pack_32_4x8(f2u8_rte(v * 15.0) << 4) */ static nir_ssa_def * pan_pack_unorm_small(nir_builder *b, nir_ssa_def *v, nir_ssa_def *scales, nir_ssa_def *shifts) { nir_ssa_def *f = nir_fmul(b, nir_fsat(b, pan_fill_4(b, v)), scales); nir_ssa_def *u8 = nir_f2u8(b, nir_fround_even(b, f)); nir_ssa_def *s = nir_ishl(b, u8, shifts); nir_ssa_def *repl = nir_pack_32_4x8(b, s); return pan_replicate_4(b, repl); } static nir_ssa_def * pan_unpack_unorm_small(nir_builder *b, nir_ssa_def *pack, nir_ssa_def *scales, nir_ssa_def *shifts) { nir_ssa_def *channels = nir_unpack_32_4x8(b, nir_channel(b, pack, 0)); nir_ssa_def *raw = nir_ushr(b, nir_i2imp(b, channels), shifts); return nir_fmul(b, nir_u2f16(b, raw), scales); } static nir_ssa_def * pan_pack_unorm_4(nir_builder *b, nir_ssa_def *v) { return pan_pack_unorm_small(b, v, nir_imm_vec4_16(b, 15.0, 15.0, 15.0, 15.0), nir_imm_ivec4(b, 4, 4, 4, 4)); } static nir_ssa_def * pan_unpack_unorm_4(nir_builder *b, nir_ssa_def *v) { return pan_unpack_unorm_small(b, v, nir_imm_vec4_16(b, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0), nir_imm_ivec4(b, 4, 4, 4, 4)); } /* UNORM RGB5_A1 and RGB565 are similar */ static nir_ssa_def * pan_pack_unorm_5551(nir_builder *b, nir_ssa_def *v) { return pan_pack_unorm_small(b, v, nir_imm_vec4_16(b, 31.0, 31.0, 31.0, 1.0), nir_imm_ivec4(b, 3, 3, 3, 7)); } static nir_ssa_def * pan_unpack_unorm_5551(nir_builder *b, nir_ssa_def *v) { return pan_unpack_unorm_small(b, v, nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 31.0, 1.0 / 31.0, 1.0), nir_imm_ivec4(b, 3, 3, 3, 7)); } static nir_ssa_def * pan_pack_unorm_565(nir_builder *b, nir_ssa_def *v) { return pan_pack_unorm_small(b, v, nir_imm_vec4_16(b, 31.0, 63.0, 31.0, 0.0), nir_imm_ivec4(b, 3, 2, 3, 0)); } static nir_ssa_def * pan_unpack_unorm_565(nir_builder *b, nir_ssa_def *v) { return pan_unpack_unorm_small(b, v, nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 63.0, 1.0 / 31.0, 0.0), nir_imm_ivec4(b, 3, 2, 3, 0)); } /* RGB10_A2 is packed in the tilebuffer as the bottom 3 bytes being the top * 8-bits of RGB and the top byte being RGBA as 2-bits packed. As imirkin * pointed out, this means free conversion to RGBX8 */ static nir_ssa_def * pan_pack_unorm_1010102(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *scale = nir_imm_vec4_16(b, 1023.0, 1023.0, 1023.0, 3.0); nir_ssa_def *s = nir_f2u32(b, nir_fround_even(b, nir_f2f32(b, nir_fmul(b, nir_fsat(b, v), scale)))); nir_ssa_def *top8 = nir_ushr(b, s, nir_imm_ivec4(b, 0x2, 0x2, 0x2, 0x2)); nir_ssa_def *top8_rgb = nir_pack_32_4x8(b, nir_u2u8(b, top8)); nir_ssa_def *bottom2 = nir_iand(b, s, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3)); nir_ssa_def *top = nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, bottom2, 0), nir_imm_int(b, 24 + 0)), nir_ishl(b, nir_channel(b, bottom2, 1), nir_imm_int(b, 24 + 2))), nir_ior(b, nir_ishl(b, nir_channel(b, bottom2, 2), nir_imm_int(b, 24 + 4)), nir_ishl(b, nir_channel(b, bottom2, 3), nir_imm_int(b, 24 + 6)))); nir_ssa_def *p = nir_ior(b, top, top8_rgb); return pan_replicate_4(b, p); } static nir_ssa_def * pan_unpack_unorm_1010102(nir_builder *b, nir_ssa_def *packed) { nir_ssa_def *p = nir_channel(b, packed, 0); nir_ssa_def *bytes = nir_unpack_32_4x8(b, p); nir_ssa_def *ubytes = nir_i2imp(b, bytes); nir_ssa_def *shifts = nir_ushr(b, pan_replicate_4(b, nir_channel(b, ubytes, 3)), nir_imm_ivec4(b, 0, 2, 4, 6)); nir_ssa_def *precision = nir_iand(b, shifts, nir_i2imp(b, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3))); nir_ssa_def *top_rgb = nir_ishl(b, nir_channels(b, ubytes, 0x7), nir_imm_int(b, 2)); top_rgb = nir_ior(b, nir_channels(b, precision, 0x7), top_rgb); nir_ssa_def *chans [4] = { nir_channel(b, top_rgb, 0), nir_channel(b, top_rgb, 1), nir_channel(b, top_rgb, 2), nir_channel(b, precision, 3) }; nir_ssa_def *scale = nir_imm_vec4(b, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 3.0); return nir_f2fmp(b, nir_fmul(b, nir_u2f32(b, nir_vec(b, chans, 4)), scale)); } /* On the other hand, the pure int RGB10_A2 is identical to the spec */ static nir_ssa_def * pan_pack_uint_1010102(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *shift = nir_ishl(b, nir_u2u32(b, v), nir_imm_ivec4(b, 0, 10, 20, 30)); nir_ssa_def *p = nir_ior(b, nir_ior(b, nir_channel(b, shift, 0), nir_channel(b, shift, 1)), nir_ior(b, nir_channel(b, shift, 2), nir_channel(b, shift, 3))); return pan_replicate_4(b, p); } static nir_ssa_def * pan_unpack_uint_1010102(nir_builder *b, nir_ssa_def *packed) { nir_ssa_def *chan = nir_channel(b, packed, 0); nir_ssa_def *shift = nir_ushr(b, pan_replicate_4(b, chan), nir_imm_ivec4(b, 0, 10, 20, 30)); nir_ssa_def *mask = nir_iand(b, shift, nir_imm_ivec4(b, 0x3ff, 0x3ff, 0x3ff, 0x3)); return nir_i2imp(b, mask); } /* NIR means we can *finally* catch a break */ static nir_ssa_def * pan_pack_r11g11b10(nir_builder *b, nir_ssa_def *v) { return pan_replicate_4(b, nir_format_pack_11f11f10f(b, nir_f2f32(b, v))); } static nir_ssa_def * pan_unpack_r11g11b10(nir_builder *b, nir_ssa_def *v) { nir_ssa_def *f32 = nir_format_unpack_11f11f10f(b, nir_channel(b, v, 0)); nir_ssa_def *f16 = nir_f2fmp(b, f32); /* Extend to vec4 with alpha */ nir_ssa_def *components[4] = { nir_channel(b, f16, 0), nir_channel(b, f16, 1), nir_channel(b, f16, 2), nir_imm_float16(b, 1.0) }; return nir_vec(b, components, 4); } /* Wrapper around sRGB conversion */ static nir_ssa_def * pan_linear_to_srgb(nir_builder *b, nir_ssa_def *linear) { nir_ssa_def *rgb = nir_channels(b, linear, 0x7); /* TODO: fp16 native conversion */ nir_ssa_def *srgb = nir_f2fmp(b, nir_format_linear_to_srgb(b, nir_f2f32(b, rgb))); nir_ssa_def *comp[4] = { nir_channel(b, srgb, 0), nir_channel(b, srgb, 1), nir_channel(b, srgb, 2), nir_channel(b, linear, 3), }; return nir_vec(b, comp, 4); } static nir_ssa_def * pan_srgb_to_linear(nir_builder *b, nir_ssa_def *srgb) { nir_ssa_def *rgb = nir_channels(b, srgb, 0x7); /* TODO: fp16 native conversion */ nir_ssa_def *linear = nir_f2fmp(b, nir_format_srgb_to_linear(b, nir_f2f32(b, rgb))); nir_ssa_def *comp[4] = { nir_channel(b, linear, 0), nir_channel(b, linear, 1), nir_channel(b, linear, 2), nir_channel(b, srgb, 3), }; return nir_vec(b, comp, 4); } /* Generic dispatches for un/pack regardless of format */ static bool pan_is_unorm4(const struct util_format_description *desc) { switch (desc->format) { case PIPE_FORMAT_B4G4R4A4_UNORM: case PIPE_FORMAT_B4G4R4X4_UNORM: case PIPE_FORMAT_A4R4_UNORM: case PIPE_FORMAT_R4A4_UNORM: case PIPE_FORMAT_A4B4G4R4_UNORM: case PIPE_FORMAT_R4G4B4A4_UNORM: return true; default: return false; } } static nir_ssa_def * pan_unpack(nir_builder *b, const struct util_format_description *desc, nir_ssa_def *packed) { if (util_format_is_unorm8(desc)) return pan_unpack_unorm_8(b, packed, desc->nr_channels); if (pan_is_unorm4(desc)) return pan_unpack_unorm_4(b, packed); if (desc->is_array) { int c = util_format_get_first_non_void_channel(desc->format); assert(c >= 0); struct util_format_channel_description d = desc->channel[c]; if (d.size == 32 || d.size == 16) { assert(!d.normalized); assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer); return d.size == 32 ? pan_unpack_pure_32(b, packed, desc->nr_channels) : pan_unpack_pure_16(b, packed, desc->nr_channels); } else if (d.size == 8) { assert(d.pure_integer); return pan_unpack_pure_8(b, packed, desc->nr_channels); } else { unreachable("Unrenderable size"); } } switch (desc->format) { case PIPE_FORMAT_B5G5R5A1_UNORM: case PIPE_FORMAT_R5G5B5A1_UNORM: return pan_unpack_unorm_5551(b, packed); case PIPE_FORMAT_B5G6R5_UNORM: return pan_unpack_unorm_565(b, packed); case PIPE_FORMAT_R10G10B10A2_UNORM: return pan_unpack_unorm_1010102(b, packed); case PIPE_FORMAT_R10G10B10A2_UINT: return pan_unpack_uint_1010102(b, packed); case PIPE_FORMAT_R11G11B10_FLOAT: return pan_unpack_r11g11b10(b, packed); default: break; } fprintf(stderr, "%s\n", desc->name); unreachable("Unknown format"); } static nir_ssa_def * pan_pack(nir_builder *b, const struct util_format_description *desc, nir_ssa_def *unpacked) { if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) unpacked = pan_linear_to_srgb(b, unpacked); if (util_format_is_unorm8(desc)) return pan_pack_unorm_8(b, unpacked); if (pan_is_unorm4(desc)) return pan_pack_unorm_4(b, unpacked); if (desc->is_array) { int c = util_format_get_first_non_void_channel(desc->format); assert(c >= 0); struct util_format_channel_description d = desc->channel[c]; if (d.size == 32 || d.size == 16) { assert(!d.normalized); assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer); return d.size == 32 ? pan_pack_pure_32(b, unpacked) : pan_pack_pure_16(b, unpacked); } else if (d.size == 8) { assert(d.pure_integer); return pan_pack_pure_8(b, unpacked); } else { unreachable("Unrenderable size"); } } switch (desc->format) { case PIPE_FORMAT_B5G5R5A1_UNORM: case PIPE_FORMAT_R5G5B5A1_UNORM: return pan_pack_unorm_5551(b, unpacked); case PIPE_FORMAT_B5G6R5_UNORM: return pan_pack_unorm_565(b, unpacked); case PIPE_FORMAT_R10G10B10A2_UNORM: return pan_pack_unorm_1010102(b, unpacked); case PIPE_FORMAT_R10G10B10A2_UINT: return pan_pack_uint_1010102(b, unpacked); case PIPE_FORMAT_R11G11B10_FLOAT: return pan_pack_r11g11b10(b, unpacked); default: break; } fprintf(stderr, "%s\n", desc->name); unreachable("Unknown format"); } static void pan_lower_fb_store(nir_shader *shader, nir_builder *b, nir_intrinsic_instr *intr, const struct util_format_description *desc, unsigned quirks) { /* For stores, add conversion before */ nir_ssa_def *unpacked = nir_ssa_for_src(b, intr->src[1], 4); nir_ssa_def *packed = pan_pack(b, desc, unpacked); nir_intrinsic_instr *new = nir_intrinsic_instr_create(shader, nir_intrinsic_store_raw_output_pan); new->src[0] = nir_src_for_ssa(packed); new->num_components = 4; nir_builder_instr_insert(b, &new->instr); } static nir_ssa_def * pan_sample_id(nir_builder *b, int sample) { return (sample >= 0) ? nir_imm_int(b, sample) : nir_load_sample_id(b); } static void pan_lower_fb_load(nir_shader *shader, nir_builder *b, nir_intrinsic_instr *intr, const struct util_format_description *desc, unsigned base, int sample, unsigned quirks) { nir_intrinsic_instr *new = nir_intrinsic_instr_create(shader, nir_intrinsic_load_raw_output_pan); new->num_components = 4; new->src[0] = nir_src_for_ssa(pan_sample_id(b, sample)); nir_intrinsic_set_base(new, base); nir_ssa_dest_init(&new->instr, &new->dest, 4, 32, NULL); nir_builder_instr_insert(b, &new->instr); /* Convert the raw value */ nir_ssa_def *packed = &new->dest.ssa; nir_ssa_def *unpacked = pan_unpack(b, desc, packed); if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) unpacked = pan_srgb_to_linear(b, unpacked); /* Convert to the size of the load intrinsic. * * We can assume that the type will match with the framebuffer format: * * Page 170 of the PDF of the OpenGL ES 3.0.6 spec says: * * If [UNORM or SNORM, convert to fixed-point]; otherwise no type * conversion is applied. If the values written by the fragment shader * do not match the format(s) of the corresponding color buffer(s), * the result is undefined. */ unsigned bits = nir_dest_bit_size(intr->dest); nir_alu_type src_type; if (desc->channel[0].pure_integer) { if (desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) src_type = nir_type_int; else src_type = nir_type_uint; } else { src_type = nir_type_float; } unpacked = nir_convert_to_bit_size(b, unpacked, src_type, bits); unpacked = pan_extend(b, unpacked, nir_dest_num_components(intr->dest)); nir_src rewritten = nir_src_for_ssa(unpacked); nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, rewritten, &intr->instr); } bool pan_lower_framebuffer(nir_shader *shader, const enum pipe_format *rt_fmts, bool is_blend, unsigned quirks) { if (shader->info.stage != MESA_SHADER_FRAGMENT) return false; bool progress = false; nir_foreach_function(func, shader) { nir_foreach_block(block, func->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); bool is_load = intr->intrinsic == nir_intrinsic_load_deref; bool is_store = intr->intrinsic == nir_intrinsic_store_deref; if (!(is_load || (is_store && is_blend))) continue; nir_variable *var = nir_intrinsic_get_var(intr, 0); if (var->data.mode != nir_var_shader_out) continue; unsigned base = var->data.driver_location; unsigned rt; if (var->data.location == FRAG_RESULT_COLOR) rt = 0; else if (var->data.location >= FRAG_RESULT_DATA0) rt = var->data.location - FRAG_RESULT_DATA0; else continue; if (rt_fmts[rt] == PIPE_FORMAT_NONE) continue; const struct util_format_description *desc = util_format_description(rt_fmts[rt]); enum pan_format_class fmt_class = pan_format_class(desc, quirks, is_store); /* Don't lower */ if (fmt_class == PAN_FORMAT_NATIVE) continue; /* EXT_shader_framebuffer_fetch requires * per-sample loads. * MSAA blend shaders are not yet handled, so * for now always load sample 0. */ int sample = is_blend ? 0 : -1; nir_builder b; nir_builder_init(&b, func->impl); if (is_store) { b.cursor = nir_before_instr(instr); pan_lower_fb_store(shader, &b, intr, desc, quirks); } else { b.cursor = nir_after_instr(instr); pan_lower_fb_load(shader, &b, intr, desc, base, sample, quirks); } nir_instr_remove(instr); progress = true; } } nir_metadata_preserve(func->impl, nir_metadata_block_index | nir_metadata_dominance); } return progress; }