// Copyright 2014 The PDFium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fpdfapi/parser/cpdf_crypto_handler.h" #include #include #include #include #include "constants/form_fields.h" #include "core/fdrm/fx_crypt.h" #include "core/fpdfapi/parser/cpdf_dictionary.h" #include "core/fpdfapi/parser/cpdf_number.h" #include "core/fpdfapi/parser/cpdf_object_walker.h" #include "core/fpdfapi/parser/cpdf_parser.h" #include "core/fpdfapi/parser/cpdf_security_handler.h" #include "core/fpdfapi/parser/cpdf_simple_parser.h" #include "core/fpdfapi/parser/cpdf_stream.h" #include "core/fpdfapi/parser/cpdf_stream_acc.h" #include "core/fpdfapi/parser/cpdf_string.h" #include "third_party/base/check.h" #include "third_party/base/check_op.h" namespace { constexpr char kContentsKey[] = "Contents"; constexpr char kTypeKey[] = "Type"; } // namespace // static bool CPDF_CryptoHandler::IsSignatureDictionary( const CPDF_Dictionary* dictionary) { if (!dictionary) return false; RetainPtr type_obj = dictionary->GetDirectObjectFor(kTypeKey); if (!type_obj) type_obj = dictionary->GetDirectObjectFor(pdfium::form_fields::kFT); return type_obj && type_obj->GetString() == pdfium::form_fields::kSig; } void CPDF_CryptoHandler::EncryptContent(uint32_t objnum, uint32_t gennum, pdfium::span source, uint8_t* dest_buf, size_t& dest_size) const { if (m_Cipher == Cipher::kNone) { memcpy(dest_buf, source.data(), source.size()); return; } uint8_t realkey[16]; size_t realkeylen = sizeof(realkey); if (m_Cipher != Cipher::kAES || m_KeyLen != 32) { uint8_t key1[32]; PopulateKey(objnum, gennum, key1); if (m_Cipher == Cipher::kAES) memcpy(key1 + m_KeyLen + 5, "sAlT", 4); size_t len = m_Cipher == Cipher::kAES ? m_KeyLen + 9 : m_KeyLen + 5; CRYPT_MD5Generate({key1, len}, realkey); realkeylen = std::min(m_KeyLen + 5, sizeof(realkey)); } if (m_Cipher == Cipher::kAES) { CRYPT_AESSetKey(m_pAESContext.get(), m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen); uint8_t iv[16]; for (int i = 0; i < 16; i++) { iv[i] = (uint8_t)rand(); } CRYPT_AESSetIV(m_pAESContext.get(), iv); memcpy(dest_buf, iv, 16); int nblocks = source.size() / 16; CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + 16, source.data(), nblocks * 16); uint8_t padding[16]; memcpy(padding, source.data() + nblocks * 16, source.size() % 16); memset(padding + source.size() % 16, 16 - source.size() % 16, 16 - source.size() % 16); CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + nblocks * 16 + 16, padding, 16); dest_size = 32 + nblocks * 16; } else { DCHECK_EQ(dest_size, source.size()); if (dest_buf != source.data()) memcpy(dest_buf, source.data(), source.size()); CRYPT_ArcFourCryptBlock({dest_buf, dest_size}, {realkey, realkeylen}); } } struct AESCryptContext { bool m_bIV; uint32_t m_BlockOffset; CRYPT_aes_context m_Context; uint8_t m_Block[16]; }; void* CPDF_CryptoHandler::DecryptStart(uint32_t objnum, uint32_t gennum) { if (m_Cipher == Cipher::kNone) return this; if (m_Cipher == Cipher::kAES && m_KeyLen == 32) { AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1); pContext->m_bIV = true; pContext->m_BlockOffset = 0; CRYPT_AESSetKey(&pContext->m_Context, m_EncryptKey, 32); return pContext; } uint8_t key1[48]; PopulateKey(objnum, gennum, key1); if (m_Cipher == Cipher::kAES) memcpy(key1 + m_KeyLen + 5, "sAlT", 4); uint8_t realkey[16]; size_t len = m_Cipher == Cipher::kAES ? m_KeyLen + 9 : m_KeyLen + 5; CRYPT_MD5Generate({key1, len}, realkey); size_t realkeylen = std::min(m_KeyLen + 5, sizeof(realkey)); if (m_Cipher == Cipher::kAES) { AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1); pContext->m_bIV = true; pContext->m_BlockOffset = 0; CRYPT_AESSetKey(&pContext->m_Context, realkey, 16); return pContext; } CRYPT_rc4_context* pContext = FX_Alloc(CRYPT_rc4_context, 1); CRYPT_ArcFourSetup(pContext, {realkey, realkeylen}); return pContext; } bool CPDF_CryptoHandler::DecryptStream(void* context, pdfium::span source, BinaryBuffer& dest_buf) { if (!context) return false; if (m_Cipher == Cipher::kNone) { dest_buf.AppendSpan(source); return true; } if (m_Cipher == Cipher::kRC4) { size_t old_size = dest_buf.GetSize(); dest_buf.AppendSpan(source); CRYPT_ArcFourCrypt( static_cast(context), dest_buf.GetMutableSpan().subspan(old_size, source.size())); return true; } AESCryptContext* pContext = static_cast(context); uint32_t src_off = 0; uint32_t src_left = source.size(); while (true) { uint32_t copy_size = 16 - pContext->m_BlockOffset; if (copy_size > src_left) { copy_size = src_left; } memcpy(pContext->m_Block + pContext->m_BlockOffset, source.data() + src_off, copy_size); src_off += copy_size; src_left -= copy_size; pContext->m_BlockOffset += copy_size; if (pContext->m_BlockOffset == 16) { if (pContext->m_bIV) { CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block); pContext->m_bIV = false; pContext->m_BlockOffset = 0; } else if (src_off < source.size()) { uint8_t block_buf[16]; CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); dest_buf.AppendSpan(block_buf); pContext->m_BlockOffset = 0; } } if (!src_left) { break; } } return true; } bool CPDF_CryptoHandler::DecryptFinish(void* context, BinaryBuffer& dest_buf) { if (!context) return false; if (m_Cipher == Cipher::kNone) return true; if (m_Cipher == Cipher::kRC4) { FX_Free(context); return true; } auto* pContext = static_cast(context); if (pContext->m_BlockOffset == 16) { uint8_t block_buf[16]; CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); if (block_buf[15] < 16) { dest_buf.AppendSpan( pdfium::make_span(block_buf).first(16 - block_buf[15])); } } FX_Free(pContext); return true; } ByteString CPDF_CryptoHandler::Decrypt(uint32_t objnum, uint32_t gennum, const ByteString& str) { BinaryBuffer dest_buf; void* context = DecryptStart(objnum, gennum); DecryptStream(context, str.raw_span(), dest_buf); DecryptFinish(context, dest_buf); return ByteString(dest_buf.GetSpan()); } size_t CPDF_CryptoHandler::DecryptGetSize(size_t src_size) { return m_Cipher == Cipher::kAES ? src_size - 16 : src_size; } bool CPDF_CryptoHandler::IsCipherAES() const { return m_Cipher == Cipher::kAES; } bool CPDF_CryptoHandler::DecryptObjectTree(RetainPtr object) { if (!object) return false; struct MayBeSignature { const CPDF_Dictionary* parent; RetainPtr contents; }; std::stack may_be_sign_dictionaries; const uint32_t obj_num = object->GetObjNum(); const uint32_t gen_num = object->GetGenNum(); RetainPtr object_to_decrypt = object; while (object_to_decrypt) { CPDF_NonConstObjectWalker walker(std::move(object_to_decrypt)); while (RetainPtr child = walker.GetNext()) { RetainPtr parent_dict = walker.GetParent() ? walker.GetParent()->GetDict() : nullptr; if (walker.dictionary_key() == kContentsKey && (parent_dict->KeyExist(kTypeKey) || parent_dict->KeyExist(pdfium::form_fields::kFT))) { // This object may be contents of signature dictionary. // But now values of 'Type' and 'FT' of dictionary keys are encrypted, // and we can not check this. // Temporary skip it, to prevent signature corruption. // It will be decrypted on next interations, if this is not contents of // signature dictionary. may_be_sign_dictionaries.push({parent_dict.Get(), std::move(child)}); walker.SkipWalkIntoCurrentObject(); continue; } // Strings decryption. if (child->IsString()) { // TODO(art-snake): Move decryption into the CPDF_String class. CPDF_String* str = child->AsMutableString(); str->SetString(Decrypt(obj_num, gen_num, str->GetString())); } // Stream decryption. if (child->IsStream()) { // TODO(art-snake): Move decryption into the CPDF_Stream class. CPDF_Stream* stream = child->AsMutableStream(); auto stream_access = pdfium::MakeRetain(pdfium::WrapRetain(stream)); stream_access->LoadAllDataRaw(); if (IsCipherAES() && stream_access->GetSize() < 16) { stream->SetData({}); continue; } BinaryBuffer decrypted_buf; decrypted_buf.EstimateSize(DecryptGetSize(stream_access->GetSize())); void* context = DecryptStart(obj_num, gen_num); bool decrypt_result = DecryptStream(context, stream_access->GetSpan(), decrypted_buf); decrypt_result &= DecryptFinish(context, decrypted_buf); if (decrypt_result) { stream->TakeData(decrypted_buf.DetachBuffer()); } else { // Decryption failed, set the stream to empty stream->SetData({}); } } } // Signature dictionaries check. while (!may_be_sign_dictionaries.empty()) { auto dict_and_contents = may_be_sign_dictionaries.top(); may_be_sign_dictionaries.pop(); if (!IsSignatureDictionary(dict_and_contents.parent)) { // This is not signature dictionary. Do decrypt its contents. object_to_decrypt = dict_and_contents.contents; break; } } } return true; } size_t CPDF_CryptoHandler::EncryptGetSize( pdfium::span source) const { return m_Cipher == Cipher::kAES ? source.size() + 32 : source.size(); } CPDF_CryptoHandler::CPDF_CryptoHandler(Cipher cipher, const uint8_t* key, size_t keylen) : m_KeyLen(std::min(keylen, 32)), m_Cipher(cipher) { DCHECK(cipher != Cipher::kAES || keylen == 16 || keylen == 24 || keylen == 32); DCHECK(cipher != Cipher::kAES2 || keylen == 32); DCHECK(cipher != Cipher::kRC4 || (keylen >= 5 && keylen <= 16)); if (m_Cipher != Cipher::kNone) memcpy(m_EncryptKey, key, m_KeyLen); if (m_Cipher == Cipher::kAES) m_pAESContext.reset(FX_Alloc(CRYPT_aes_context, 1)); } CPDF_CryptoHandler::~CPDF_CryptoHandler() = default; void CPDF_CryptoHandler::PopulateKey(uint32_t objnum, uint32_t gennum, uint8_t* key) const { memcpy(key, m_EncryptKey, m_KeyLen); key[m_KeyLen + 0] = (uint8_t)objnum; key[m_KeyLen + 1] = (uint8_t)(objnum >> 8); key[m_KeyLen + 2] = (uint8_t)(objnum >> 16); key[m_KeyLen + 3] = (uint8_t)gennum; key[m_KeyLen + 4] = (uint8_t)(gennum >> 8); }