// Copyright 2019 The PDFium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fpdfapi/render/cpdf_rendershading.h" #include #include #include #include #include #include #include "core/fpdfapi/page/cpdf_colorspace.h" #include "core/fpdfapi/page/cpdf_dib.h" #include "core/fpdfapi/page/cpdf_function.h" #include "core/fpdfapi/page/cpdf_meshstream.h" #include "core/fpdfapi/parser/cpdf_array.h" #include "core/fpdfapi/parser/cpdf_dictionary.h" #include "core/fpdfapi/parser/cpdf_stream.h" #include "core/fpdfapi/parser/fpdf_parser_utility.h" #include "core/fpdfapi/render/cpdf_devicebuffer.h" #include "core/fpdfapi/render/cpdf_renderoptions.h" #include "core/fxcrt/fx_safe_types.h" #include "core/fxcrt/fx_system.h" #include "core/fxcrt/span_util.h" #include "core/fxge/cfx_defaultrenderdevice.h" #include "core/fxge/cfx_fillrenderoptions.h" #include "core/fxge/cfx_path.h" #include "core/fxge/dib/cfx_dibitmap.h" #include "core/fxge/dib/fx_dib.h" #include "third_party/base/check.h" #include "third_party/base/check_op.h" #include "third_party/base/cxx17_backports.h" #include "third_party/base/span.h" namespace { constexpr int kShadingSteps = 256; uint32_t CountOutputsFromFunctions( const std::vector>& funcs) { FX_SAFE_UINT32 total = 0; for (const auto& func : funcs) { if (func) total += func->CountOutputs(); } return total.ValueOrDefault(0); } uint32_t GetValidatedOutputsCount( const std::vector>& funcs, const RetainPtr& pCS) { uint32_t funcs_outputs = CountOutputsFromFunctions(funcs); return funcs_outputs ? std::max(funcs_outputs, pCS->CountComponents()) : 0; } std::array GetShadingSteps( float t_min, float t_max, const std::vector>& funcs, const RetainPtr& pCS, int alpha, size_t results_count) { DCHECK(results_count >= CountOutputsFromFunctions(funcs)); DCHECK(results_count >= pCS->CountComponents()); std::array shading_steps; std::vector result_array(results_count); float diff = t_max - t_min; for (int i = 0; i < kShadingSteps; ++i) { float input = diff * i / kShadingSteps + t_min; pdfium::span result_span = pdfium::make_span(result_array); for (const auto& func : funcs) { if (!func) continue; absl::optional nresults = func->Call(pdfium::make_span(&input, 1), result_span); if (nresults.has_value()) result_span = result_span.subspan(nresults.value()); } float R = 0.0f; float G = 0.0f; float B = 0.0f; pCS->GetRGB(result_array, &R, &G, &B); shading_steps[i] = ArgbEncode(alpha, FXSYS_roundf(R * 255), FXSYS_roundf(G * 255), FXSYS_roundf(B * 255)); } return shading_steps; } void DrawAxialShading(const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, const CPDF_Dictionary* pDict, const std::vector>& funcs, const RetainPtr& pCS, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); if (total_results == 0) return; RetainPtr pCoords = pDict->GetArrayFor("Coords"); if (!pCoords) return; float start_x = pCoords->GetFloatAt(0); float start_y = pCoords->GetFloatAt(1); float end_x = pCoords->GetFloatAt(2); float end_y = pCoords->GetFloatAt(3); float t_min = 0; float t_max = 1.0f; RetainPtr pArray = pDict->GetArrayFor("Domain"); if (pArray) { t_min = pArray->GetFloatAt(0); t_max = pArray->GetFloatAt(1); } pArray = pDict->GetArrayFor("Extend"); const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); int width = pBitmap->GetWidth(); int height = pBitmap->GetHeight(); float x_span = end_x - start_x; float y_span = end_y - start_y; float axis_len_square = (x_span * x_span) + (y_span * y_span); std::array shading_steps = GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results); CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); for (int row = 0; row < height; row++) { uint32_t* dib_buf = reinterpret_cast(pBitmap->GetWritableScanline(row).data()); for (int column = 0; column < width; column++) { CFX_PointF pos = matrix.Transform( CFX_PointF(static_cast(column), static_cast(row))); float scale = (((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) / axis_len_square; int index = static_cast(scale * (kShadingSteps - 1)); if (index < 0) { if (!bStartExtend) continue; index = 0; } else if (index >= kShadingSteps) { if (!bEndExtend) continue; index = kShadingSteps - 1; } dib_buf[column] = shading_steps[index]; } } } void DrawRadialShading(const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, const CPDF_Dictionary* pDict, const std::vector>& funcs, const RetainPtr& pCS, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); if (total_results == 0) return; RetainPtr pCoords = pDict->GetArrayFor("Coords"); if (!pCoords) return; float start_x = pCoords->GetFloatAt(0); float start_y = pCoords->GetFloatAt(1); float start_r = pCoords->GetFloatAt(2); float end_x = pCoords->GetFloatAt(3); float end_y = pCoords->GetFloatAt(4); float end_r = pCoords->GetFloatAt(5); float t_min = 0; float t_max = 1.0f; RetainPtr pArray = pDict->GetArrayFor("Domain"); if (pArray) { t_min = pArray->GetFloatAt(0); t_max = pArray->GetFloatAt(1); } pArray = pDict->GetArrayFor("Extend"); const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); std::array shading_steps = GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results); const float dx = end_x - start_x; const float dy = end_y - start_y; const float dr = end_r - start_r; const float a = dx * dx + dy * dy - dr * dr; const bool a_is_float_zero = FXSYS_IsFloatZero(a); int width = pBitmap->GetWidth(); int height = pBitmap->GetHeight(); bool bDecreasing = dr < 0 && static_cast(FXSYS_sqrt2(dx, dy)) < -dr; CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); for (int row = 0; row < height; row++) { uint32_t* dib_buf = reinterpret_cast(pBitmap->GetWritableScanline(row).data()); for (int column = 0; column < width; column++) { CFX_PointF pos = matrix.Transform( CFX_PointF(static_cast(column), static_cast(row))); float pos_dx = pos.x - start_x; float pos_dy = pos.y - start_y; float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr); float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r; float s; if (FXSYS_IsFloatZero(b)) { s = sqrt(-c / a); } else if (a_is_float_zero) { s = -c / b; } else { float b2_4ac = (b * b) - 4 * (a * c); if (b2_4ac < 0) continue; float root = sqrt(b2_4ac); float s1 = (-b - root) / (2 * a); float s2 = (-b + root) / (2 * a); if (a <= 0) std::swap(s1, s2); if (bDecreasing) s = (s1 >= 0 || bStartExtend) ? s1 : s2; else s = (s2 <= 1.0f || bEndExtend) ? s2 : s1; if (start_r + s * dr < 0) continue; } int index = static_cast(s * (kShadingSteps - 1)); if (index < 0) { if (!bStartExtend) continue; index = 0; } else if (index >= kShadingSteps) { if (!bEndExtend) continue; index = kShadingSteps - 1; } dib_buf[column] = shading_steps[index]; } } } void DrawFuncShading(const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, const CPDF_Dictionary* pDict, const std::vector>& funcs, const RetainPtr& pCS, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); if (total_results == 0) return; RetainPtr pDomain = pDict->GetArrayFor("Domain"); float xmin = 0.0f; float ymin = 0.0f; float xmax = 1.0f; float ymax = 1.0f; if (pDomain) { xmin = pDomain->GetFloatAt(0); xmax = pDomain->GetFloatAt(1); ymin = pDomain->GetFloatAt(2); ymax = pDomain->GetFloatAt(3); } CFX_Matrix mtDomain2Target = pDict->GetMatrixFor("Matrix"); CFX_Matrix matrix = mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse(); int width = pBitmap->GetWidth(); int height = pBitmap->GetHeight(); DCHECK(total_results >= CountOutputsFromFunctions(funcs)); DCHECK(total_results >= pCS->CountComponents()); std::vector result_array(total_results); for (int row = 0; row < height; ++row) { uint32_t* dib_buf = reinterpret_cast(pBitmap->GetWritableScanline(row).data()); for (int column = 0; column < width; column++) { CFX_PointF pos = matrix.Transform( CFX_PointF(static_cast(column), static_cast(row))); if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax) continue; float input[2] = {pos.x, pos.y}; pdfium::span result_span = pdfium::make_span(result_array); for (const auto& func : funcs) { if (!func) continue; absl::optional nresults = func->Call(input, result_span); if (nresults.has_value()) result_span = result_span.subspan(nresults.value()); } float R = 0.0f; float G = 0.0f; float B = 0.0f; pCS->GetRGB(result_array, &R, &G, &B); dib_buf[column] = ArgbEncode(alpha, static_cast(R * 255), static_cast(G * 255), static_cast(B * 255)); } } } bool GetScanlineIntersect(int y, const CFX_PointF& first, const CFX_PointF& second, float* x) { if (first.y == second.y) return false; if (first.y < second.y) { if (y < first.y || y > second.y) return false; } else if (y < second.y || y > first.y) { return false; } *x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y)); return true; } void DrawGouraud(const RetainPtr& pBitmap, int alpha, CPDF_MeshVertex triangle[3]) { float min_y = triangle[0].position.y; float max_y = triangle[0].position.y; for (int i = 1; i < 3; i++) { min_y = std::min(min_y, triangle[i].position.y); max_y = std::max(max_y, triangle[i].position.y); } if (min_y == max_y) return; int min_yi = std::max(static_cast(floorf(min_y)), 0); int max_yi = static_cast(ceilf(max_y)); if (max_yi >= pBitmap->GetHeight()) max_yi = pBitmap->GetHeight() - 1; for (int y = min_yi; y <= max_yi; y++) { int nIntersects = 0; float inter_x[3]; float r[3]; float g[3]; float b[3]; for (int i = 0; i < 3; i++) { CPDF_MeshVertex& vertex1 = triangle[i]; CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3]; CFX_PointF& position1 = vertex1.position; CFX_PointF& position2 = vertex2.position; bool bIntersect = GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]); if (!bIntersect) continue; float y_dist = (y - position1.y) / (position2.y - position1.y); r[nIntersects] = vertex1.r + ((vertex2.r - vertex1.r) * y_dist); g[nIntersects] = vertex1.g + ((vertex2.g - vertex1.g) * y_dist); b[nIntersects] = vertex1.b + ((vertex2.b - vertex1.b) * y_dist); nIntersects++; } if (nIntersects != 2) continue; int min_x; int max_x; int start_index; int end_index; if (inter_x[0] < inter_x[1]) { min_x = static_cast(floorf(inter_x[0])); max_x = static_cast(ceilf(inter_x[1])); start_index = 0; end_index = 1; } else { min_x = static_cast(floorf(inter_x[1])); max_x = static_cast(ceilf(inter_x[0])); start_index = 1; end_index = 0; } int start_x = pdfium::clamp(min_x, 0, pBitmap->GetWidth()); int end_x = pdfium::clamp(max_x, 0, pBitmap->GetWidth()); float r_unit = (r[end_index] - r[start_index]) / (max_x - min_x); float g_unit = (g[end_index] - g[start_index]) / (max_x - min_x); float b_unit = (b[end_index] - b[start_index]) / (max_x - min_x); float r_result = r[start_index] + (start_x - min_x) * r_unit; float g_result = g[start_index] + (start_x - min_x) * g_unit; float b_result = b[start_index] + (start_x - min_x) * b_unit; pdfium::span dib_span = pBitmap->GetWritableScanline(y).subspan(start_x * 4); for (int x = start_x; x < end_x; x++) { uint8_t* dib_buf = dib_span.data(); r_result += r_unit; g_result += g_unit; b_result += b_unit; FXARGB_SETDIB(dib_buf, ArgbEncode(alpha, static_cast(r_result * 255), static_cast(g_result * 255), static_cast(b_result * 255))); dib_span = dib_span.subspan(4); } } } void DrawFreeGouraudShading( const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, RetainPtr pShadingStream, const std::vector>& funcs, RetainPtr pCS, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs, std::move(pShadingStream), std::move(pCS)); if (!stream.Load()) return; CPDF_MeshVertex triangle[3]; while (!stream.IsEOF()) { CPDF_MeshVertex vertex; uint32_t flag; if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag)) return; if (flag == 0) { triangle[0] = vertex; for (int i = 1; i < 3; ++i) { uint32_t dummy_flag; if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag)) return; } } else { if (flag == 1) triangle[0] = triangle[1]; triangle[1] = triangle[2]; triangle[2] = vertex; } DrawGouraud(pBitmap, alpha, triangle); } } void DrawLatticeGouraudShading( const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, RetainPtr pShadingStream, const std::vector>& funcs, RetainPtr pCS, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow"); if (row_verts < 2) return; CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs, std::move(pShadingStream), std::move(pCS)); if (!stream.Load()) return; std::vector vertices[2]; vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); if (vertices[0].empty()) return; int last_index = 0; while (true) { vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); if (vertices[1 - last_index].empty()) return; CPDF_MeshVertex triangle[3]; for (int i = 1; i < row_verts; ++i) { triangle[0] = vertices[last_index][i]; triangle[1] = vertices[1 - last_index][i - 1]; triangle[2] = vertices[last_index][i - 1]; DrawGouraud(pBitmap, alpha, triangle); triangle[2] = vertices[1 - last_index][i]; DrawGouraud(pBitmap, alpha, triangle); } last_index = 1 - last_index; } } struct CoonBezierCoeff { void InitFromPoints(float p0, float p1, float p2, float p3) { a = -p0 + 3 * p1 - 3 * p2 + p3; b = 3 * p0 - 6 * p1 + 3 * p2; c = -3 * p0 + 3 * p1; d = p0; } void InitFromBezierInterpolation(const CoonBezierCoeff& C1, const CoonBezierCoeff& C2, const CoonBezierCoeff& D1, const CoonBezierCoeff& D2) { a = (D1.a + D2.a) / 2; b = (D1.b + D2.b) / 2; c = (D1.c + D2.c) / 2 - (C1.a / 8 + C1.b / 4 + C1.c / 2) + (C2.a / 8 + C2.b / 4) + (-C1.d + D2.d) / 2 - (C2.a + C2.b) / 2; d = C1.a / 8 + C1.b / 4 + C1.c / 2 + C1.d; } CoonBezierCoeff first_half() const { CoonBezierCoeff result; result.a = a / 8; result.b = b / 4; result.c = c / 2; result.d = d; return result; } CoonBezierCoeff second_half() const { CoonBezierCoeff result; result.a = a / 8; result.b = 3 * a / 8 + b / 4; result.c = 3 * a / 8 + b / 2 + c / 2; result.d = a / 8 + b / 4 + c / 2 + d; return result; } void GetPoints(float p[4]) const { p[0] = d; p[1] = c / 3 + p[0]; p[2] = b / 3 - p[0] + 2 * p[1]; p[3] = a + p[0] - 3 * p[1] + 3 * p[2]; } float Distance() const { float dis = a + b + c; return dis < 0 ? -dis : dis; } float a; float b; float c; float d; }; struct CoonBezier { void InitFromPoints(float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3) { x.InitFromPoints(x0, x1, x2, x3); y.InitFromPoints(y0, y1, y2, y3); } void InitFromBezierInterpolation(const CoonBezier& C1, const CoonBezier& C2, const CoonBezier& D1, const CoonBezier& D2) { x.InitFromBezierInterpolation(C1.x, C2.x, D1.x, D2.x); y.InitFromBezierInterpolation(C1.y, C2.y, D1.y, D2.y); } CoonBezier first_half() const { CoonBezier result; result.x = x.first_half(); result.y = y.first_half(); return result; } CoonBezier second_half() const { CoonBezier result; result.x = x.second_half(); result.y = y.second_half(); return result; } void GetPoints(pdfium::span path_points) const { constexpr size_t kPointsCount = 4; float points_x[kPointsCount]; float points_y[kPointsCount]; x.GetPoints(points_x); y.GetPoints(points_y); for (size_t i = 0; i < kPointsCount; ++i) path_points[i].m_Point = {points_x[i], points_y[i]}; } void GetPointsReverse(pdfium::span path_points) const { constexpr size_t kPointsCount = 4; float points_x[kPointsCount]; float points_y[kPointsCount]; x.GetPoints(points_x); y.GetPoints(points_y); for (size_t i = 0; i < kPointsCount; ++i) { size_t reverse_index = kPointsCount - i - 1; path_points[i].m_Point = {points_x[reverse_index], points_y[reverse_index]}; } } float Distance() const { return x.Distance() + y.Distance(); } CoonBezierCoeff x; CoonBezierCoeff y; }; int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) { FX_SAFE_INT32 p = p2; p -= p1; p *= delta1; p /= delta2; p += p1; if (!p.IsValid()) *overflow = true; return p.ValueOrDefault(0); } int BiInterpolImpl(int c0, int c1, int c2, int c3, int x, int y, int x_scale, int y_scale, bool* overflow) { int x1 = Interpolate(c0, c3, x, x_scale, overflow); int x2 = Interpolate(c1, c2, x, x_scale, overflow); return Interpolate(x1, x2, y, y_scale, overflow); } struct CoonColor { CoonColor() = default; // Returns true if successful, false if overflow detected. bool BiInterpol(CoonColor colors[4], int x, int y, int x_scale, int y_scale) { bool overflow = false; for (int i = 0; i < 3; i++) { comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i], colors[2].comp[i], colors[3].comp[i], x, y, x_scale, y_scale, &overflow); } return !overflow; } int Distance(const CoonColor& o) const { return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]), abs(comp[2] - o.comp[2])}); } int comp[3] = {}; }; struct PatchDrawer { static constexpr int kCoonColorThreshold = 4; void Draw(int x_scale, int y_scale, int left, int bottom, CoonBezier C1, CoonBezier C2, CoonBezier D1, CoonBezier D2) { bool bSmall = C1.Distance() < 2 && C2.Distance() < 2 && D1.Distance() < 2 && D2.Distance() < 2; CoonColor div_colors[4]; int d_bottom = 0; int d_left = 0; int d_top = 0; int d_right = 0; if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale, y_scale)) { return; } if (!bSmall) { if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale, y_scale)) { return; } if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale, y_scale)) { return; } if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale, y_scale)) { return; } d_bottom = div_colors[3].Distance(div_colors[0]); d_left = div_colors[1].Distance(div_colors[0]); d_top = div_colors[1].Distance(div_colors[2]); d_right = div_colors[2].Distance(div_colors[3]); } if (bSmall || (d_bottom < kCoonColorThreshold && d_left < kCoonColorThreshold && d_top < kCoonColorThreshold && d_right < kCoonColorThreshold)) { pdfium::span points = path.GetPoints(); C1.GetPoints(points.subspan(0, 4)); D2.GetPoints(points.subspan(3, 4)); C2.GetPointsReverse(points.subspan(6, 4)); D1.GetPointsReverse(points.subspan(9, 4)); CFX_FillRenderOptions fill_options( CFX_FillRenderOptions::WindingOptions()); fill_options.full_cover = true; if (bNoPathSmooth) fill_options.aliased_path = true; pDevice->DrawPath( path, nullptr, nullptr, ArgbEncode(alpha, div_colors[0].comp[0], div_colors[0].comp[1], div_colors[0].comp[2]), 0, fill_options); } else { if (d_bottom < kCoonColorThreshold && d_top < kCoonColorThreshold) { CoonBezier m1; m1.InitFromBezierInterpolation(D1, D2, C1, C2); y_scale *= 2; bottom *= 2; Draw(x_scale, y_scale, left, bottom, C1, m1, D1.first_half(), D2.first_half()); Draw(x_scale, y_scale, left, bottom + 1, m1, C2, D1.second_half(), D2.second_half()); } else if (d_left < kCoonColorThreshold && d_right < kCoonColorThreshold) { CoonBezier m2; m2.InitFromBezierInterpolation(C1, C2, D1, D2); x_scale *= 2; left *= 2; Draw(x_scale, y_scale, left, bottom, C1.first_half(), C2.first_half(), D1, m2); Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), C2.second_half(), m2, D2); } else { CoonBezier m1; CoonBezier m2; m1.InitFromBezierInterpolation(D1, D2, C1, C2); m2.InitFromBezierInterpolation(C1, C2, D1, D2); CoonBezier m1f = m1.first_half(); CoonBezier m1s = m1.second_half(); CoonBezier m2f = m2.first_half(); CoonBezier m2s = m2.second_half(); x_scale *= 2; y_scale *= 2; left *= 2; bottom *= 2; Draw(x_scale, y_scale, left, bottom, C1.first_half(), m1f, D1.first_half(), m2f); Draw(x_scale, y_scale, left, bottom + 1, m1f, C2.first_half(), D1.second_half(), m2s); Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), m1s, m2f, D2.first_half()); Draw(x_scale, y_scale, left + 1, bottom + 1, m1s, C2.second_half(), m2s, D2.second_half()); } } } int max_delta; CFX_Path path; CFX_RenderDevice* pDevice; int bNoPathSmooth; int alpha; CoonColor patch_colors[4]; }; void DrawCoonPatchMeshes( ShadingType type, const RetainPtr& pBitmap, const CFX_Matrix& mtObject2Bitmap, RetainPtr pShadingStream, const std::vector>& funcs, RetainPtr pCS, bool bNoPathSmooth, int alpha) { DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb); DCHECK(type == kCoonsPatchMeshShading || type == kTensorProductPatchMeshShading); CFX_DefaultRenderDevice device; device.Attach(pBitmap); CPDF_MeshStream stream(type, funcs, std::move(pShadingStream), std::move(pCS)); if (!stream.Load()) return; PatchDrawer patch; patch.alpha = alpha; patch.pDevice = &device; patch.bNoPathSmooth = bNoPathSmooth; for (int i = 0; i < 13; i++) { patch.path.AppendPoint(CFX_PointF(), i == 0 ? CFX_Path::Point::Type::kMove : CFX_Path::Point::Type::kBezier); } CFX_PointF coords[16]; int point_count = type == kTensorProductPatchMeshShading ? 16 : 12; while (!stream.IsEOF()) { if (!stream.CanReadFlag()) break; uint32_t flag = stream.ReadFlag(); int iStartPoint = 0; int iStartColor = 0; int i = 0; if (flag) { iStartPoint = 4; iStartColor = 2; CFX_PointF tempCoords[4]; for (i = 0; i < 4; i++) { tempCoords[i] = coords[(flag * 3 + i) % 12]; } fxcrt::spancpy(pdfium::make_span(coords), pdfium::make_span(tempCoords)); CoonColor tempColors[2] = { tempColors[0] = patch.patch_colors[flag], tempColors[1] = patch.patch_colors[(flag + 1) % 4]}; fxcrt::spancpy(pdfium::make_span(patch.patch_colors), pdfium::make_span(tempColors)); } for (i = iStartPoint; i < point_count; i++) { if (!stream.CanReadCoords()) break; coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords()); } for (i = iStartColor; i < 4; i++) { if (!stream.CanReadColor()) break; float r; float g; float b; std::tie(r, g, b) = stream.ReadColor(); patch.patch_colors[i].comp[0] = static_cast(r * 255); patch.patch_colors[i].comp[1] = static_cast(g * 255); patch.patch_colors[i].comp[2] = static_cast(b * 255); } CFX_FloatRect bbox = CFX_FloatRect::GetBBox(pdfium::make_span(coords).first(point_count)); if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() || bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) { continue; } CoonBezier C1; CoonBezier C2; CoonBezier D1; CoonBezier D2; C1.InitFromPoints(coords[0].x, coords[0].y, coords[11].x, coords[11].y, coords[10].x, coords[10].y, coords[9].x, coords[9].y); C2.InitFromPoints(coords[3].x, coords[3].y, coords[4].x, coords[4].y, coords[5].x, coords[5].y, coords[6].x, coords[6].y); D1.InitFromPoints(coords[0].x, coords[0].y, coords[1].x, coords[1].y, coords[2].x, coords[2].y, coords[3].x, coords[3].y); D2.InitFromPoints(coords[9].x, coords[9].y, coords[8].x, coords[8].y, coords[7].x, coords[7].y, coords[6].x, coords[6].y); patch.Draw(1, 1, 0, 0, C1, C2, D1, D2); } } } // namespace // static void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice, CPDF_RenderContext* pContext, const CPDF_PageObject* pCurObj, const CPDF_ShadingPattern* pPattern, const CFX_Matrix& mtMatrix, const FX_RECT& clip_rect, int alpha, const CPDF_RenderOptions& options) { RetainPtr pColorSpace = pPattern->GetCS(); if (!pColorSpace) return; FX_ARGB background = 0; RetainPtr pDict = pPattern->GetShadingObject()->GetDict(); if (!pPattern->IsShadingObject() && pDict->KeyExist("Background")) { RetainPtr pBackColor = pDict->GetArrayFor("Background"); if (pBackColor && pBackColor->size() >= pColorSpace->CountComponents()) { std::vector comps = ReadArrayElementsToVector( pBackColor.Get(), pColorSpace->CountComponents()); float R = 0.0f; float G = 0.0f; float B = 0.0f; pColorSpace->GetRGB(comps, &R, &G, &B); background = ArgbEncode(255, static_cast(R * 255), static_cast(G * 255), static_cast(B * 255)); } } FX_RECT clip_rect_bbox = clip_rect; if (pDict->KeyExist("BBox")) { clip_rect_bbox.Intersect( mtMatrix.TransformRect(pDict->GetRectFor("BBox")).GetOuterRect()); } bool bAlphaMode = options.ColorModeIs(CPDF_RenderOptions::kAlpha); if (pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING && pDevice->DrawShading(pPattern, &mtMatrix, clip_rect_bbox, alpha, bAlphaMode)) { return; } CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150); if (!buffer.Initialize()) return; RetainPtr pBitmap = buffer.GetBitmap(); if (pBitmap->GetBuffer().empty()) return; if (background != 0) { pBitmap->Clear(background); } const CFX_Matrix final_matrix = mtMatrix * buffer.GetMatrix(); const auto& funcs = pPattern->GetFuncs(); switch (pPattern->GetShadingType()) { case kInvalidShading: case kMaxShading: return; case kFunctionBasedShading: DrawFuncShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace, alpha); break; case kAxialShading: DrawAxialShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace, alpha); break; case kRadialShading: DrawRadialShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace, alpha); break; case kFreeFormGouraudTriangleMeshShading: { // The shading object can be a stream or a dictionary. We do not handle // the case of dictionary at the moment. RetainPtr pStream = ToStream(pPattern->GetShadingObject()); if (pStream) { DrawFreeGouraudShading(pBitmap, final_matrix, std::move(pStream), funcs, pColorSpace, alpha); } break; } case kLatticeFormGouraudTriangleMeshShading: { // The shading object can be a stream or a dictionary. We do not handle // the case of dictionary at the moment. RetainPtr pStream = ToStream(pPattern->GetShadingObject()); if (pStream) { DrawLatticeGouraudShading(pBitmap, final_matrix, std::move(pStream), funcs, pColorSpace, alpha); } break; } case kCoonsPatchMeshShading: case kTensorProductPatchMeshShading: { // The shading object can be a stream or a dictionary. We do not handle // the case of dictionary at the moment. RetainPtr pStream = ToStream(pPattern->GetShadingObject()); if (pStream) { DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, final_matrix, std::move(pStream), funcs, pColorSpace, options.GetOptions().bNoPathSmooth, alpha); } break; } } if (bAlphaMode) pBitmap->SetRedFromBitmap(pBitmap); if (options.ColorModeIs(CPDF_RenderOptions::kGray)) pBitmap->ConvertColorScale(0, 0xffffff); buffer.OutputToDevice(); }