/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR * Copyright (c) 2012, CS Systemes d'Information, France * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if defined(__SSE__) && !defined(_M_IX86) && !defined(__i386) #define USE_SSE #include #endif #if defined(__SSE2__) && !defined(_M_IX86) && !defined(__i386) #define USE_SSE2 #include #endif #if defined(__SSE4_1__) && !defined(_M_IX86) && !defined(__i386) #include #endif #include "opj_includes.h" /* */ /* This table contains the norms of the basis function of the reversible MCT. */ /* */ static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 }; /* */ /* This table contains the norms of the basis function of the irreversible MCT. */ /* */ static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 }; const OPJ_FLOAT64 * opj_mct_get_mct_norms() { return opj_mct_norms; } const OPJ_FLOAT64 * opj_mct_get_mct_norms_real() { return opj_mct_norms_real; } /* */ /* Forward reversible MCT. */ /* */ #ifdef USE_SSE2 void opj_mct_encode( OPJ_INT32* OPJ_RESTRICT c0, OPJ_INT32* OPJ_RESTRICT c1, OPJ_INT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; /* buffer are aligned on 16 bytes */ assert(((size_t)c0 & 0xf) == 0); assert(((size_t)c1 & 0xf) == 0); assert(((size_t)c2 & 0xf) == 0); for (i = 0; i < (len & ~3U); i += 4) { __m128i y, u, v; __m128i r = _mm_load_si128((const __m128i *) & (c0[i])); __m128i g = _mm_load_si128((const __m128i *) & (c1[i])); __m128i b = _mm_load_si128((const __m128i *) & (c2[i])); y = _mm_add_epi32(g, g); y = _mm_add_epi32(y, b); y = _mm_add_epi32(y, r); y = _mm_srai_epi32(y, 2); u = _mm_sub_epi32(b, g); v = _mm_sub_epi32(r, g); _mm_store_si128((__m128i *) & (c0[i]), y); _mm_store_si128((__m128i *) & (c1[i]), u); _mm_store_si128((__m128i *) & (c2[i]), v); } for (; i < len; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = (r + (g * 2) + b) >> 2; OPJ_INT32 u = b - g; OPJ_INT32 v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #else void opj_mct_encode( OPJ_INT32* OPJ_RESTRICT c0, OPJ_INT32* OPJ_RESTRICT c1, OPJ_INT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; for (i = 0; i < len; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = (r + (g * 2) + b) >> 2; OPJ_INT32 u = b - g; OPJ_INT32 v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #endif /* */ /* Inverse reversible MCT. */ /* */ #ifdef USE_SSE2 void opj_mct_decode( OPJ_INT32* OPJ_RESTRICT c0, OPJ_INT32* OPJ_RESTRICT c1, OPJ_INT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; for (i = 0; i < (len & ~3U); i += 4) { __m128i r, g, b; __m128i y = _mm_load_si128((const __m128i *) & (c0[i])); __m128i u = _mm_load_si128((const __m128i *) & (c1[i])); __m128i v = _mm_load_si128((const __m128i *) & (c2[i])); g = y; g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2)); r = _mm_add_epi32(v, g); b = _mm_add_epi32(u, g); _mm_store_si128((__m128i *) & (c0[i]), r); _mm_store_si128((__m128i *) & (c1[i]), g); _mm_store_si128((__m128i *) & (c2[i]), b); } for (; i < len; ++i) { OPJ_INT32 y = c0[i]; OPJ_INT32 u = c1[i]; OPJ_INT32 v = c2[i]; OPJ_INT32 g = y - ((u + v) >> 2); OPJ_INT32 r = v + g; OPJ_INT32 b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #else void opj_mct_decode( OPJ_INT32* OPJ_RESTRICT c0, OPJ_INT32* OPJ_RESTRICT c1, OPJ_INT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; for (i = 0; i < n; ++i) { OPJ_INT32 y = c0[i]; OPJ_INT32 u = c1[i]; OPJ_INT32 v = c2[i]; OPJ_INT32 g = y - ((u + v) >> 2); OPJ_INT32 r = v + g; OPJ_INT32 b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #endif /* */ /* Get norm of basis function of reversible MCT. */ /* */ OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) { return opj_mct_norms[compno]; } /* */ /* Forward irreversible MCT. */ /* */ void opj_mct_encode_real( OPJ_FLOAT32* OPJ_RESTRICT c0, OPJ_FLOAT32* OPJ_RESTRICT c1, OPJ_FLOAT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; #ifdef USE_SSE const __m128 YR = _mm_set1_ps(0.299f); const __m128 YG = _mm_set1_ps(0.587f); const __m128 YB = _mm_set1_ps(0.114f); const __m128 UR = _mm_set1_ps(-0.16875f); const __m128 UG = _mm_set1_ps(-0.331260f); const __m128 UB = _mm_set1_ps(0.5f); const __m128 VR = _mm_set1_ps(0.5f); const __m128 VG = _mm_set1_ps(-0.41869f); const __m128 VB = _mm_set1_ps(-0.08131f); for (i = 0; i < (n >> 3); i ++) { __m128 r, g, b, y, u, v; r = _mm_load_ps(c0); g = _mm_load_ps(c1); b = _mm_load_ps(c2); y = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, YR), _mm_mul_ps(g, YG)), _mm_mul_ps(b, YB)); u = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, UR), _mm_mul_ps(g, UG)), _mm_mul_ps(b, UB)); v = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, VR), _mm_mul_ps(g, VG)), _mm_mul_ps(b, VB)); _mm_store_ps(c0, y); _mm_store_ps(c1, u); _mm_store_ps(c2, v); c0 += 4; c1 += 4; c2 += 4; r = _mm_load_ps(c0); g = _mm_load_ps(c1); b = _mm_load_ps(c2); y = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, YR), _mm_mul_ps(g, YG)), _mm_mul_ps(b, YB)); u = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, UR), _mm_mul_ps(g, UG)), _mm_mul_ps(b, UB)); v = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, VR), _mm_mul_ps(g, VG)), _mm_mul_ps(b, VB)); _mm_store_ps(c0, y); _mm_store_ps(c1, u); _mm_store_ps(c2, v); c0 += 4; c1 += 4; c2 += 4; } n &= 7; #endif for (i = 0; i < n; ++i) { OPJ_FLOAT32 r = c0[i]; OPJ_FLOAT32 g = c1[i]; OPJ_FLOAT32 b = c2[i]; OPJ_FLOAT32 y = 0.299f * r + 0.587f * g + 0.114f * b; OPJ_FLOAT32 u = -0.16875f * r - 0.331260f * g + 0.5f * b; OPJ_FLOAT32 v = 0.5f * r - 0.41869f * g - 0.08131f * b; c0[i] = y; c1[i] = u; c2[i] = v; } } /* */ /* Inverse irreversible MCT. */ /* */ void opj_mct_decode_real( OPJ_FLOAT32* OPJ_RESTRICT c0, OPJ_FLOAT32* OPJ_RESTRICT c1, OPJ_FLOAT32* OPJ_RESTRICT c2, OPJ_SIZE_T n) { OPJ_SIZE_T i; #ifdef USE_SSE __m128 vrv, vgu, vgv, vbu; vrv = _mm_set1_ps(1.402f); vgu = _mm_set1_ps(0.34413f); vgv = _mm_set1_ps(0.71414f); vbu = _mm_set1_ps(1.772f); for (i = 0; i < (n >> 3); ++i) { __m128 vy, vu, vv; __m128 vr, vg, vb; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; } n &= 7; #endif for (i = 0; i < n; ++i) { OPJ_FLOAT32 y = c0[i]; OPJ_FLOAT32 u = c1[i]; OPJ_FLOAT32 v = c2[i]; OPJ_FLOAT32 r = y + (v * 1.402f); OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f)); OPJ_FLOAT32 b = y + (u * 1.772f); c0[i] = r; c1[i] = g; c2[i] = b; } } /* */ /* Get norm of basis function of irreversible MCT. */ /* */ OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) { return opj_mct_norms_real[compno]; } OPJ_BOOL opj_mct_encode_custom( OPJ_BYTE * pCodingdata, OPJ_SIZE_T n, OPJ_BYTE ** pData, OPJ_UINT32 pNbComp, OPJ_UINT32 isSigned) { OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata; OPJ_SIZE_T i; OPJ_UINT32 j; OPJ_UINT32 k; OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp; OPJ_INT32 * lCurrentData = 00; OPJ_INT32 * lCurrentMatrix = 00; OPJ_INT32 ** lData = (OPJ_INT32 **) pData; OPJ_UINT32 lMultiplicator = 1 << 13; OPJ_INT32 * lMctPtr; OPJ_ARG_NOT_USED(isSigned); lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof( OPJ_INT32)); if (! lCurrentData) { return OPJ_FALSE; } lCurrentMatrix = lCurrentData + pNbComp; for (i = 0; i < lNbMatCoeff; ++i) { lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator); } for (i = 0; i < n; ++i) { lMctPtr = lCurrentMatrix; for (j = 0; j < pNbComp; ++j) { lCurrentData[j] = (*(lData[j])); } for (j = 0; j < pNbComp; ++j) { *(lData[j]) = 0; for (k = 0; k < pNbComp; ++k) { *(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]); ++lMctPtr; } ++lData[j]; } } opj_free(lCurrentData); return OPJ_TRUE; } OPJ_BOOL opj_mct_decode_custom( OPJ_BYTE * pDecodingData, OPJ_SIZE_T n, OPJ_BYTE ** pData, OPJ_UINT32 pNbComp, OPJ_UINT32 isSigned) { OPJ_FLOAT32 * lMct; OPJ_SIZE_T i; OPJ_UINT32 j; OPJ_UINT32 k; OPJ_FLOAT32 * lCurrentData = 00; OPJ_FLOAT32 * lCurrentResult = 00; OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData; OPJ_ARG_NOT_USED(isSigned); lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32)); if (! lCurrentData) { return OPJ_FALSE; } lCurrentResult = lCurrentData + pNbComp; for (i = 0; i < n; ++i) { lMct = (OPJ_FLOAT32 *) pDecodingData; for (j = 0; j < pNbComp; ++j) { lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j])); } for (j = 0; j < pNbComp; ++j) { lCurrentResult[j] = 0; for (k = 0; k < pNbComp; ++k) { lCurrentResult[j] += *(lMct++) * lCurrentData[k]; } *(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]); } } opj_free(lCurrentData); return OPJ_TRUE; } void opj_calculate_norms(OPJ_FLOAT64 * pNorms, OPJ_UINT32 pNbComps, OPJ_FLOAT32 * pMatrix) { OPJ_UINT32 i, j, lIndex; OPJ_FLOAT32 lCurrentValue; OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms; OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix; for (i = 0; i < pNbComps; ++i) { lNorms[i] = 0; lIndex = i; for (j = 0; j < pNbComps; ++j) { lCurrentValue = lMatrix[lIndex]; lIndex += pNbComps; lNorms[i] += (OPJ_FLOAT64) lCurrentValue * lCurrentValue; } lNorms[i] = sqrt(lNorms[i]); } }