#!/usr/bin/env Rscript # # Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. library(RUnit) library(Matrix) # for sparse matrices source('tests/gen_counts.R') TestGenerateCounts <- function() { report_params <- list(k = 4, m = 2) # 2 cohorts, 4 bits each map <- Matrix(0, nrow = 8, ncol = 3, sparse = TRUE) # 3 possible values map[1,] <- c(1, 0, 0) map[2,] <- c(0, 1, 0) map[3,] <- c(0, 0, 1) map[4,] <- c(1, 1, 1) # 4th bit of the first cohort gets signal from all map[5,] <- c(0, 0, 1) # 1st bit of the second cohort gets signal from v3 colnames(map) <- c('v1', 'v2', 'v3') partition <- c(3, 2, 1) * 10000 v <- 100 # reports per client noise0 <- list(p = 0, q = 1, f = 0) # no noise at all counts0 <- GenerateCounts(c(report_params, noise0), map, partition, v) checkEqualsNumeric(sum(counts0[1,2:4]), counts0[1,1]) checkEqualsNumeric(counts0[1,5], counts0[1,1]) checkEqualsNumeric(partition[3] * v, counts0[1,4] + counts0[2,2]) checkEqualsNumeric(sum(partition) * v, counts0[1,1] + counts0[2,1]) pvalues <- chisq.test(counts0[,1] / v, p = c(.5, .5))$p.value for(i in 2:4) pvalues <- c(pvalues, chisq.test( c(counts0[1,i] / v, partition[i - 1] - counts0[1,i] / v), p = c(.5, .5))$p.value) noise1 <- list(p = .5, q = .5, f = 0) # truly random IRRs counts1 <- GenerateCounts(c(report_params, noise1), map, partition, v) for(i in 2:5) for(j in 1:2) pvalues <- c(pvalues, chisq.test(c(counts1[j,1] - counts1[j,i], counts1[j,i]), p = c(.5, .5))$p.value) noise2 <- list(p = 0, q = 1, f = 1.0) # truly random PRRs counts2 <- GenerateCounts(c(report_params, noise2), map, partition, v) checkEqualsNumeric(0, max(counts2 %% v)) # all entries must be divisible by v counts2 <- counts2 / v for(i in 2:5) for(j in 1:2) pvalues <- c(pvalues, chisq.test(c(counts2[j,1] - counts2[j,i], counts2[j,i]), p = c(.5, .5))$p.value) checkTrue(min(pvalues) > 1E-9, "Chi-squared test failed") } TestRandomPartition <- function() { p1 <- RandomPartition(total = 100, dgeom(0:999, prob = .1)) p2 <- RandomPartition(total = 1000, dnorm(1:1000, mean = 500, sd = 1000 / 6)) p3 <- RandomPartition(total = 10000, dunif(1:1000)) # Totals must check out. checkEqualsNumeric(100, sum(p1)) checkEqualsNumeric(1000, sum(p2)) checkEqualsNumeric(10000, sum(p3)) # Initialize the weights vector to 1 0 1 0 1 0 ... weights <- rep(c(1, 0), 100) p4 <- RandomPartition(total = 10000, weights) # Check that all mass is allocated to non-zero weights. checkEqualsNumeric(10000, sum(p4[weights == 1])) checkTrue(all(p4[weights == 0] == 0)) p5 <- RandomPartition(total = 1000000, c(1, 2, 3, 4)) p.value <- chisq.test(p5, p = c(.1, .2, .3, .4))$p.value # Apply the chi squared test and fail if p.value is too high or too low. # Probability of failure is 2 * 1E-9, which should never happen. checkTrue(p.value > 1E-9) } TestAll <- function(){ TestRandomPartition() TestGenerateCounts() } TestAll()