// Generated from mat.rs.tera template. Edit the template, not the generated file. use crate::{swizzles::*, DMat3, EulerRot, Mat2, Mat3A, Mat4, Quat, Vec2, Vec3, Vec3A}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}; #[cfg(feature = "libm")] #[allow(unused_imports)] use num_traits::Float; /// Creates a 3x3 matrix from column vectors. #[inline(always)] pub const fn mat3(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Mat3 { Mat3::from_cols(x_axis, y_axis, z_axis) } /// A 3x3 column major matrix. /// /// This 3x3 matrix type features convenience methods for creating and using linear and /// affine transformations. If you are primarily dealing with 2D affine transformations the /// [`Affine2`](crate::Affine2) type is much faster and more space efficient than /// using a 3x3 matrix. /// /// Linear transformations including 3D rotation and scale can be created using methods /// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`], /// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or /// [`Self::from_rotation_z()`]. /// /// The resulting matrices can be use to transform 3D vectors using regular vector /// multiplication. /// /// Affine transformations including 2D translation, rotation and scale can be created /// using methods such as [`Self::from_translation()`], [`Self::from_angle()`], /// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`]. /// /// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods /// are provided for performing affine transforms on 2D vectors and points. These multiply /// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for /// vectors respectively. These methods assume that `Self` contains a valid affine /// transform. #[derive(Clone, Copy)] #[repr(C)] pub struct Mat3 { pub x_axis: Vec3, pub y_axis: Vec3, pub z_axis: Vec3, } impl Mat3 { /// A 3x3 matrix with all elements set to `0.0`. pub const ZERO: Self = Self::from_cols(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO); /// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`. pub const IDENTITY: Self = Self::from_cols(Vec3::X, Vec3::Y, Vec3::Z); /// All NAN:s. pub const NAN: Self = Self::from_cols(Vec3::NAN, Vec3::NAN, Vec3::NAN); #[allow(clippy::too_many_arguments)] #[inline(always)] const fn new( m00: f32, m01: f32, m02: f32, m10: f32, m11: f32, m12: f32, m20: f32, m21: f32, m22: f32, ) -> Self { Self { x_axis: Vec3::new(m00, m01, m02), y_axis: Vec3::new(m10, m11, m12), z_axis: Vec3::new(m20, m21, m22), } } /// Creates a 3x3 matrix from two column vectors. #[inline(always)] pub const fn from_cols(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self { Self { x_axis, y_axis, z_axis, } } /// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order. /// If your data is stored in row major you will need to `transpose` the returned /// matrix. #[inline] pub const fn from_cols_array(m: &[f32; 9]) -> Self { Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]) } /// Creates a `[f32; 9]` array storing data in column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] pub const fn to_cols_array(&self) -> [f32; 9] { [ self.x_axis.x, self.x_axis.y, self.x_axis.z, self.y_axis.x, self.y_axis.y, self.y_axis.z, self.z_axis.x, self.z_axis.y, self.z_axis.z, ] } /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order. /// If your data is in row major order you will need to `transpose` the returned /// matrix. #[inline] pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self { Self::from_cols( Vec3::from_array(m[0]), Vec3::from_array(m[1]), Vec3::from_array(m[2]), ) } /// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] { [ self.x_axis.to_array(), self.y_axis.to_array(), self.z_axis.to_array(), ] } /// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0. #[doc(alias = "scale")] #[inline] pub const fn from_diagonal(diagonal: Vec3) -> Self { Self::new( diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z, ) } /// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column. pub fn from_mat4(m: Mat4) -> Self { Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.z_axis.xyz()) } /// Creates a 3D rotation matrix from the given quaternion. /// /// # Panics /// /// Will panic if `rotation` is not normalized when `glam_assert` is enabled. #[inline] pub fn from_quat(rotation: Quat) -> Self { glam_assert!(rotation.is_normalized()); let x2 = rotation.x + rotation.x; let y2 = rotation.y + rotation.y; let z2 = rotation.z + rotation.z; let xx = rotation.x * x2; let xy = rotation.x * y2; let xz = rotation.x * z2; let yy = rotation.y * y2; let yz = rotation.y * z2; let zz = rotation.z * z2; let wx = rotation.w * x2; let wy = rotation.w * y2; let wz = rotation.w * z2; Self::from_cols( Vec3::new(1.0 - (yy + zz), xy + wz, xz - wy), Vec3::new(xy - wz, 1.0 - (xx + zz), yz + wx), Vec3::new(xz + wy, yz - wx, 1.0 - (xx + yy)), ) } /// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in /// radians). /// /// # Panics /// /// Will panic if `axis` is not normalized when `glam_assert` is enabled. #[inline] pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self { glam_assert!(axis.is_normalized()); let (sin, cos) = angle.sin_cos(); let (xsin, ysin, zsin) = axis.mul(sin).into(); let (x, y, z) = axis.into(); let (x2, y2, z2) = axis.mul(axis).into(); let omc = 1.0 - cos; let xyomc = x * y * omc; let xzomc = x * z * omc; let yzomc = y * z * omc; Self::from_cols( Vec3::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin), Vec3::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin), Vec3::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos), ) } #[inline] /// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in /// radians). pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self { let quat = Quat::from_euler(order, a, b, c); Self::from_quat(quat) } /// Creates a 3D rotation matrix from `angle` (in radians) around the x axis. #[inline] pub fn from_rotation_x(angle: f32) -> Self { let (sina, cosa) = angle.sin_cos(); Self::from_cols( Vec3::X, Vec3::new(0.0, cosa, sina), Vec3::new(0.0, -sina, cosa), ) } /// Creates a 3D rotation matrix from `angle` (in radians) around the y axis. #[inline] pub fn from_rotation_y(angle: f32) -> Self { let (sina, cosa) = angle.sin_cos(); Self::from_cols( Vec3::new(cosa, 0.0, -sina), Vec3::Y, Vec3::new(sina, 0.0, cosa), ) } /// Creates a 3D rotation matrix from `angle` (in radians) around the z axis. #[inline] pub fn from_rotation_z(angle: f32) -> Self { let (sina, cosa) = angle.sin_cos(); Self::from_cols( Vec3::new(cosa, sina, 0.0), Vec3::new(-sina, cosa, 0.0), Vec3::Z, ) } /// Creates an affine transformation matrix from the given 2D `translation`. /// /// The resulting matrix can be used to transform 2D points and vectors. See /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. #[inline] pub fn from_translation(translation: Vec2) -> Self { Self::from_cols( Vec3::X, Vec3::Y, Vec3::new(translation.x, translation.y, 1.0), ) } /// Creates an affine transformation matrix from the given 2D rotation `angle` (in /// radians). /// /// The resulting matrix can be used to transform 2D points and vectors. See /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. #[inline] pub fn from_angle(angle: f32) -> Self { let (sin, cos) = angle.sin_cos(); Self::from_cols(Vec3::new(cos, sin, 0.0), Vec3::new(-sin, cos, 0.0), Vec3::Z) } /// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in /// radians) and `translation`. /// /// The resulting matrix can be used to transform 2D points and vectors. See /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. #[inline] pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self { let (sin, cos) = angle.sin_cos(); Self::from_cols( Vec3::new(cos * scale.x, sin * scale.x, 0.0), Vec3::new(-sin * scale.y, cos * scale.y, 0.0), Vec3::new(translation.x, translation.y, 1.0), ) } /// Creates an affine transformation matrix from the given non-uniform 2D `scale`. /// /// The resulting matrix can be used to transform 2D points and vectors. See /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. /// /// # Panics /// /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled. #[inline] pub fn from_scale(scale: Vec2) -> Self { // Do not panic as long as any component is non-zero glam_assert!(scale.cmpne(Vec2::ZERO).any()); Self::from_cols( Vec3::new(scale.x, 0.0, 0.0), Vec3::new(0.0, scale.y, 0.0), Vec3::Z, ) } /// Creates an affine transformation matrix from the given 2x2 matrix. /// /// The resulting matrix can be used to transform 2D points and vectors. See /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. #[inline] pub fn from_mat2(m: Mat2) -> Self { Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3::Z) } /// Creates a 3x3 matrix from the first 9 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 9 elements long. #[inline] pub const fn from_cols_slice(slice: &[f32]) -> Self { Self::new( slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7], slice[8], ) } /// Writes the columns of `self` to the first 9 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 9 elements long. #[inline] pub fn write_cols_to_slice(self, slice: &mut [f32]) { slice[0] = self.x_axis.x; slice[1] = self.x_axis.y; slice[2] = self.x_axis.z; slice[3] = self.y_axis.x; slice[4] = self.y_axis.y; slice[5] = self.y_axis.z; slice[6] = self.z_axis.x; slice[7] = self.z_axis.y; slice[8] = self.z_axis.z; } /// Returns the matrix column for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 2. #[inline] pub fn col(&self, index: usize) -> Vec3 { match index { 0 => self.x_axis, 1 => self.y_axis, 2 => self.z_axis, _ => panic!("index out of bounds"), } } /// Returns a mutable reference to the matrix column for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 2. #[inline] pub fn col_mut(&mut self, index: usize) -> &mut Vec3 { match index { 0 => &mut self.x_axis, 1 => &mut self.y_axis, 2 => &mut self.z_axis, _ => panic!("index out of bounds"), } } /// Returns the matrix row for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 2. #[inline] pub fn row(&self, index: usize) -> Vec3 { match index { 0 => Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x), 1 => Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y), 2 => Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z), _ => panic!("index out of bounds"), } } /// Returns `true` if, and only if, all elements are finite. /// If any element is either `NaN`, positive or negative infinity, this will return `false`. #[inline] pub fn is_finite(&self) -> bool { self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] pub fn is_nan(&self) -> bool { self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan() } /// Returns the transpose of `self`. #[must_use] #[inline] pub fn transpose(&self) -> Self { Self { x_axis: Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x), y_axis: Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y), z_axis: Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z), } } /// Returns the determinant of `self`. #[inline] pub fn determinant(&self) -> f32 { self.z_axis.dot(self.x_axis.cross(self.y_axis)) } /// Returns the inverse of `self`. /// /// If the matrix is not invertible the returned matrix will be invalid. /// /// # Panics /// /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled. #[must_use] #[inline] pub fn inverse(&self) -> Self { let tmp0 = self.y_axis.cross(self.z_axis); let tmp1 = self.z_axis.cross(self.x_axis); let tmp2 = self.x_axis.cross(self.y_axis); let det = self.z_axis.dot(tmp2); glam_assert!(det != 0.0); let inv_det = Vec3::splat(det.recip()); Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose() } /// Transforms the given 2D vector as a point. /// /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`. /// /// This method assumes that `self` contains a valid affine transform. /// /// # Panics /// /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled. #[inline] pub fn transform_point2(&self, rhs: Vec2) -> Vec2 { glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6)); Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy() } /// Rotates the given 2D vector. /// /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`. /// /// This method assumes that `self` contains a valid affine transform. /// /// # Panics /// /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled. #[inline] pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 { glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6)); Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs } /// Transforms a 3D vector. #[inline] pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 { let mut res = self.x_axis.mul(rhs.x); res = res.add(self.y_axis.mul(rhs.y)); res = res.add(self.z_axis.mul(rhs.z)); res } /// Transforms a `Vec3A`. #[inline] pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A { self.mul_vec3(rhs.into()).into() } /// Multiplies two 3x3 matrices. #[inline] pub fn mul_mat3(&self, rhs: &Self) -> Self { Self::from_cols( self.mul(rhs.x_axis), self.mul(rhs.y_axis), self.mul(rhs.z_axis), ) } /// Adds two 3x3 matrices. #[inline] pub fn add_mat3(&self, rhs: &Self) -> Self { Self::from_cols( self.x_axis.add(rhs.x_axis), self.y_axis.add(rhs.y_axis), self.z_axis.add(rhs.z_axis), ) } /// Subtracts two 3x3 matrices. #[inline] pub fn sub_mat3(&self, rhs: &Self) -> Self { Self::from_cols( self.x_axis.sub(rhs.x_axis), self.y_axis.sub(rhs.y_axis), self.z_axis.sub(rhs.z_axis), ) } /// Multiplies a 3x3 matrix by a scalar. #[inline] pub fn mul_scalar(&self, rhs: f32) -> Self { Self::from_cols( self.x_axis.mul(rhs), self.y_axis.mul(rhs), self.z_axis.mul(rhs), ) } /// Returns true if the absolute difference of all elements between `self` and `rhs` /// is less than or equal to `max_abs_diff`. /// /// This can be used to compare if two matrices contain similar elements. It works best /// when comparing with a known value. The `max_abs_diff` that should be used used /// depends on the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool { self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff) && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff) && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff) } #[inline] pub fn as_dmat3(&self) -> DMat3 { DMat3::from_cols( self.x_axis.as_dvec3(), self.y_axis.as_dvec3(), self.z_axis.as_dvec3(), ) } } impl Default for Mat3 { #[inline] fn default() -> Self { Self::IDENTITY } } impl Add for Mat3 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self::Output { self.add_mat3(&rhs) } } impl AddAssign for Mat3 { #[inline] fn add_assign(&mut self, rhs: Self) { *self = self.add_mat3(&rhs); } } impl Sub for Mat3 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self::Output { self.sub_mat3(&rhs) } } impl SubAssign for Mat3 { #[inline] fn sub_assign(&mut self, rhs: Self) { *self = self.sub_mat3(&rhs); } } impl Neg for Mat3 { type Output = Self; #[inline] fn neg(self) -> Self::Output { Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg()) } } impl Mul for Mat3 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self::Output { self.mul_mat3(&rhs) } } impl MulAssign for Mat3 { #[inline] fn mul_assign(&mut self, rhs: Self) { *self = self.mul_mat3(&rhs); } } impl Mul for Mat3 { type Output = Vec3; #[inline] fn mul(self, rhs: Vec3) -> Self::Output { self.mul_vec3(rhs) } } impl Mul for f32 { type Output = Mat3; #[inline] fn mul(self, rhs: Mat3) -> Self::Output { rhs.mul_scalar(self) } } impl Mul for Mat3 { type Output = Self; #[inline] fn mul(self, rhs: f32) -> Self::Output { self.mul_scalar(rhs) } } impl MulAssign for Mat3 { #[inline] fn mul_assign(&mut self, rhs: f32) { *self = self.mul_scalar(rhs); } } impl Mul for Mat3 { type Output = Vec3A; #[inline] fn mul(self, rhs: Vec3A) -> Vec3A { self.mul_vec3a(rhs) } } impl From for Mat3 { #[inline] fn from(m: Mat3A) -> Self { Self { x_axis: m.x_axis.into(), y_axis: m.y_axis.into(), z_axis: m.z_axis.into(), } } } impl Sum for Mat3 { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for Mat3 { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for Mat3 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, Self::mul) } } impl<'a> Product<&'a Self> for Mat3 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b)) } } impl PartialEq for Mat3 { #[inline] fn eq(&self, rhs: &Self) -> bool { self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis) } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f32; 9]> for Mat3 { #[inline] fn as_ref(&self) -> &[f32; 9] { unsafe { &*(self as *const Self as *const [f32; 9]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[f32; 9]> for Mat3 { #[inline] fn as_mut(&mut self) -> &mut [f32; 9] { unsafe { &mut *(self as *mut Self as *mut [f32; 9]) } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for Mat3 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct(stringify!(Mat3)) .field("x_axis", &self.x_axis) .field("y_axis", &self.y_axis) .field("z_axis", &self.z_axis) .finish() } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for Mat3 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis) } }