// Generated from vec.rs.tera template. Edit the template, not the generated file. use crate::{BVec4, DVec2, DVec3}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::{f32, ops::*}; #[cfg(feature = "libm")] #[allow(unused_imports)] use num_traits::Float; /// Creates a 4-dimensional vector. #[inline(always)] pub const fn dvec4(x: f64, y: f64, z: f64, w: f64) -> DVec4 { DVec4::new(x, y, z, w) } /// A 4-dimensional vector. #[derive(Clone, Copy, PartialEq)] #[cfg_attr(feature = "cuda", repr(align(16)))] #[cfg_attr(not(target_arch = "spirv"), repr(C))] #[cfg_attr(target_arch = "spirv", repr(simd))] pub struct DVec4 { pub x: f64, pub y: f64, pub z: f64, pub w: f64, } impl DVec4 { /// All zeroes. pub const ZERO: Self = Self::splat(0.0); /// All ones. pub const ONE: Self = Self::splat(1.0); /// All negative ones. pub const NEG_ONE: Self = Self::splat(-1.0); /// All NAN. pub const NAN: Self = Self::splat(f64::NAN); /// A unit-length vector pointing along the positive X axis. pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0); /// A unit-length vector pointing along the positive Y axis. pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0); /// A unit-length vector pointing along the positive Z axis. pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0); /// A unit-length vector pointing along the positive W axis. pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0); /// A unit-length vector pointing along the negative X axis. pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0); /// A unit-length vector pointing along the negative Y axis. pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0); /// A unit-length vector pointing along the negative Z axis. pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0); /// A unit-length vector pointing along the negative W axis. pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0); /// The unit axes. pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W]; /// Creates a new vector. #[inline(always)] pub const fn new(x: f64, y: f64, z: f64, w: f64) -> Self { Self { x, y, z, w } } /// Creates a vector with all elements set to `v`. #[inline] pub const fn splat(v: f64) -> Self { Self { x: v, y: v, z: v, w: v, } } /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use /// for each element of `self`. /// /// A true element in the mask uses the corresponding element from `if_true`, and false /// uses the element from `if_false`. #[inline] pub fn select(mask: BVec4, if_true: Self, if_false: Self) -> Self { Self { x: if mask.x { if_true.x } else { if_false.x }, y: if mask.y { if_true.y } else { if_false.y }, z: if mask.z { if_true.z } else { if_false.z }, w: if mask.w { if_true.w } else { if_false.w }, } } /// Creates a new vector from an array. #[inline] pub const fn from_array(a: [f64; 4]) -> Self { Self::new(a[0], a[1], a[2], a[3]) } /// `[x, y, z, w]` #[inline] pub const fn to_array(&self) -> [f64; 4] { [self.x, self.y, self.z, self.w] } /// Creates a vector from the first 4 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] pub const fn from_slice(slice: &[f64]) -> Self { Self::new(slice[0], slice[1], slice[2], slice[3]) } /// Writes the elements of `self` to the first 4 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] pub fn write_to_slice(self, slice: &mut [f64]) { slice[0] = self.x; slice[1] = self.y; slice[2] = self.z; slice[3] = self.w; } /// Creates a 2D vector from the `x`, `y` and `z` elements of `self`, discarding `w`. /// /// Truncation to `DVec3` may also be performed by using `self.xyz()` or `DVec3::from()`. #[inline] pub fn truncate(self) -> DVec3 { use crate::swizzles::Vec4Swizzles; self.xyz() } /// Computes the dot product of `self` and `rhs`. #[inline] pub fn dot(self, rhs: Self) -> f64 { (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w) } /// Returns a vector where every component is the dot product of `self` and `rhs`. #[inline] pub fn dot_into_vec(self, rhs: Self) -> Self { Self::splat(self.dot(rhs)) } /// Returns a vector containing the minimum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. #[inline] pub fn min(self, rhs: Self) -> Self { Self { x: self.x.min(rhs.x), y: self.y.min(rhs.y), z: self.z.min(rhs.z), w: self.w.min(rhs.w), } } /// Returns a vector containing the maximum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. #[inline] pub fn max(self, rhs: Self) -> Self { Self { x: self.x.max(rhs.x), y: self.y.max(rhs.y), z: self.z.max(rhs.z), w: self.w.max(rhs.w), } } /// Component-wise clamping of values, similar to [`f64::clamp`]. /// /// Each element in `min` must be less-or-equal to the corresponding element in `max`. /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] pub fn clamp(self, min: Self, max: Self) -> Self { glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); self.max(min).min(max) } /// Returns the horizontal minimum of `self`. /// /// In other words this computes `min(x, y, ..)`. #[inline] pub fn min_element(self) -> f64 { self.x.min(self.y.min(self.z.min(self.w))) } /// Returns the horizontal maximum of `self`. /// /// In other words this computes `max(x, y, ..)`. #[inline] pub fn max_element(self) -> f64 { self.x.max(self.y.max(self.z.max(self.w))) } /// Returns a vector mask containing the result of a `==` comparison for each element of /// `self` and `rhs`. /// /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all /// elements. #[inline] pub fn cmpeq(self, rhs: Self) -> BVec4 { BVec4::new( self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z), self.w.eq(&rhs.w), ) } /// Returns a vector mask containing the result of a `!=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all /// elements. #[inline] pub fn cmpne(self, rhs: Self) -> BVec4 { BVec4::new( self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z), self.w.ne(&rhs.w), ) } /// Returns a vector mask containing the result of a `>=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all /// elements. #[inline] pub fn cmpge(self, rhs: Self) -> BVec4 { BVec4::new( self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z), self.w.ge(&rhs.w), ) } /// Returns a vector mask containing the result of a `>` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all /// elements. #[inline] pub fn cmpgt(self, rhs: Self) -> BVec4 { BVec4::new( self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z), self.w.gt(&rhs.w), ) } /// Returns a vector mask containing the result of a `<=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all /// elements. #[inline] pub fn cmple(self, rhs: Self) -> BVec4 { BVec4::new( self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z), self.w.le(&rhs.w), ) } /// Returns a vector mask containing the result of a `<` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all /// elements. #[inline] pub fn cmplt(self, rhs: Self) -> BVec4 { BVec4::new( self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z), self.w.lt(&rhs.w), ) } /// Returns a vector containing the absolute value of each element of `self`. #[inline] pub fn abs(self) -> Self { Self { x: self.x.abs(), y: self.y.abs(), z: self.z.abs(), w: self.w.abs(), } } /// Returns a vector with elements representing the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` #[inline] pub fn signum(self) -> Self { Self { x: self.x.signum(), y: self.y.signum(), z: self.z.signum(), w: self.w.signum(), } } /// Returns a vector with signs of `rhs` and the magnitudes of `self`. #[inline] pub fn copysign(self, rhs: Self) -> Self { Self { x: self.x.copysign(rhs.x), y: self.y.copysign(rhs.y), z: self.z.copysign(rhs.z), w: self.w.copysign(rhs.w), } } /// Returns a bitmask with the lowest 4 bits set to the sign bits from the elements of `self`. /// /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] pub fn is_negative_bitmask(self) -> u32 { (self.x.is_sign_negative() as u32) | (self.y.is_sign_negative() as u32) << 1 | (self.z.is_sign_negative() as u32) << 2 | (self.w.is_sign_negative() as u32) << 3 } /// Returns `true` if, and only if, all elements are finite. If any element is either /// `NaN`, positive or negative infinity, this will return `false`. #[inline] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() && self.z.is_finite() && self.w.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] pub fn is_nan(self) -> bool { self.x.is_nan() || self.y.is_nan() || self.z.is_nan() || self.w.is_nan() } /// Performs `is_nan` on each element of self, returning a vector mask of the results. /// /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`. #[inline] pub fn is_nan_mask(self) -> BVec4 { BVec4::new( self.x.is_nan(), self.y.is_nan(), self.z.is_nan(), self.w.is_nan(), ) } /// Computes the length of `self`. #[doc(alias = "magnitude")] #[inline] pub fn length(self) -> f64 { self.dot(self).sqrt() } /// Computes the squared length of `self`. /// /// This is faster than `length()` as it avoids a square root operation. #[doc(alias = "magnitude2")] #[inline] pub fn length_squared(self) -> f64 { self.dot(self) } /// Computes `1.0 / length()`. /// /// For valid results, `self` must _not_ be of length zero. #[inline] pub fn length_recip(self) -> f64 { self.length().recip() } /// Computes the Euclidean distance between two points in space. #[inline] pub fn distance(self, rhs: Self) -> f64 { (self - rhs).length() } /// Compute the squared euclidean distance between two points in space. #[inline] pub fn distance_squared(self, rhs: Self) -> f64 { (self - rhs).length_squared() } /// Returns `self` normalized to length 1.0. /// /// For valid results, `self` must _not_ be of length zero, nor very close to zero. /// /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`]. /// /// Panics /// /// Will panic if `self` is zero length when `glam_assert` is enabled. #[must_use] #[inline] pub fn normalize(self) -> Self { #[allow(clippy::let_and_return)] let normalized = self.mul(self.length_recip()); glam_assert!(normalized.is_finite()); normalized } /// Returns `self` normalized to length 1.0 if possible, else returns `None`. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be `None`. /// /// See also [`Self::normalize_or_zero`]. #[must_use] #[inline] pub fn try_normalize(self) -> Option { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { Some(self * rcp) } else { None } } /// Returns `self` normalized to length 1.0 if possible, else returns zero. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be zero. /// /// See also [`Self::try_normalize`]. #[must_use] #[inline] pub fn normalize_or_zero(self) -> Self { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { self * rcp } else { Self::ZERO } } /// Returns whether `self` is length `1.0` or not. /// /// Uses a precision threshold of `1e-6`. #[inline] pub fn is_normalized(self) -> bool { // TODO: do something with epsilon (self.length_squared() - 1.0).abs() <= 1e-4 } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` is zero length when `glam_assert` is enabled. #[must_use] #[inline] pub fn project_onto(self, rhs: Self) -> Self { let other_len_sq_rcp = rhs.dot(rhs).recip(); glam_assert!(other_len_sq_rcp.is_finite()); rhs * self.dot(rhs) * other_len_sq_rcp } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled. #[must_use] #[inline] pub fn reject_from(self, rhs: Self) -> Self { self - self.project_onto(rhs) } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[must_use] #[inline] pub fn project_onto_normalized(self, rhs: Self) -> Self { glam_assert!(rhs.is_normalized()); rhs * self.dot(rhs) } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[must_use] #[inline] pub fn reject_from_normalized(self, rhs: Self) -> Self { self - self.project_onto_normalized(rhs) } /// Returns a vector containing the nearest integer to a number for each element of `self`. /// Round half-way cases away from 0.0. #[inline] pub fn round(self) -> Self { Self { x: self.x.round(), y: self.y.round(), z: self.z.round(), w: self.w.round(), } } /// Returns a vector containing the largest integer less than or equal to a number for each /// element of `self`. #[inline] pub fn floor(self) -> Self { Self { x: self.x.floor(), y: self.y.floor(), z: self.z.floor(), w: self.w.floor(), } } /// Returns a vector containing the smallest integer greater than or equal to a number for /// each element of `self`. #[inline] pub fn ceil(self) -> Self { Self { x: self.x.ceil(), y: self.y.ceil(), z: self.z.ceil(), w: self.w.ceil(), } } /// Returns a vector containing the fractional part of the vector, e.g. `self - /// self.floor()`. /// /// Note that this is fast but not precise for large numbers. #[inline] pub fn fract(self) -> Self { self - self.floor() } /// Returns a vector containing `e^self` (the exponential function) for each element of /// `self`. #[inline] pub fn exp(self) -> Self { Self::new(self.x.exp(), self.y.exp(), self.z.exp(), self.w.exp()) } /// Returns a vector containing each element of `self` raised to the power of `n`. #[inline] pub fn powf(self, n: f64) -> Self { Self::new( self.x.powf(n), self.y.powf(n), self.z.powf(n), self.w.powf(n), ) } /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`. #[inline] pub fn recip(self) -> Self { Self { x: self.x.recip(), y: self.y.recip(), z: self.z.recip(), w: self.w.recip(), } } /// Performs a linear interpolation between `self` and `rhs` based on the value `s`. /// /// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly /// extrapolated. #[doc(alias = "mix")] #[inline] pub fn lerp(self, rhs: Self, s: f64) -> Self { self + ((rhs - self) * s) } /// Returns true if the absolute difference of all elements between `self` and `rhs` is /// less than or equal to `max_abs_diff`. /// /// This can be used to compare if two vectors contain similar elements. It works best when /// comparing with a known value. The `max_abs_diff` that should be used used depends on /// the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool { self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all() } /// Returns a vector with a length no less than `min` and no more than `max` /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] pub fn clamp_length(self, min: f64, max: f64) -> Self { glam_assert!(min <= max); let length_sq = self.length_squared(); if length_sq < min * min { self * (length_sq.sqrt().recip() * min) } else if length_sq > max * max { self * (length_sq.sqrt().recip() * max) } else { self } } /// Returns a vector with a length no more than `max` pub fn clamp_length_max(self, max: f64) -> Self { let length_sq = self.length_squared(); if length_sq > max * max { self * (length_sq.sqrt().recip() * max) } else { self } } /// Returns a vector with a length no less than `min` pub fn clamp_length_min(self, min: f64) -> Self { let length_sq = self.length_squared(); if length_sq < min * min { self * (length_sq.sqrt().recip() * min) } else { self } } /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding /// error, yielding a more accurate result than an unfused multiply-add. /// /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target /// architecture has a dedicated fma CPU instruction. However, this is not always true, /// and will be heavily dependant on designing algorithms with specific target hardware in /// mind. #[inline] pub fn mul_add(self, a: Self, b: Self) -> Self { Self::new( self.x.mul_add(a.x, b.x), self.y.mul_add(a.y, b.y), self.z.mul_add(a.z, b.z), self.w.mul_add(a.w, b.w), ) } /// Casts all elements of `self` to `f32`. #[inline] pub fn as_vec4(&self) -> crate::Vec4 { crate::Vec4::new(self.x as f32, self.y as f32, self.z as f32, self.w as f32) } /// Casts all elements of `self` to `i32`. #[inline] pub fn as_ivec4(&self) -> crate::IVec4 { crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32) } /// Casts all elements of `self` to `u32`. #[inline] pub fn as_uvec4(&self) -> crate::UVec4 { crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32) } } impl Default for DVec4 { #[inline(always)] fn default() -> Self { Self::ZERO } } impl Div for DVec4 { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self { Self { x: self.x.div(rhs.x), y: self.y.div(rhs.y), z: self.z.div(rhs.z), w: self.w.div(rhs.w), } } } impl DivAssign for DVec4 { #[inline] fn div_assign(&mut self, rhs: Self) { self.x.div_assign(rhs.x); self.y.div_assign(rhs.y); self.z.div_assign(rhs.z); self.w.div_assign(rhs.w); } } impl Div for DVec4 { type Output = Self; #[inline] fn div(self, rhs: f64) -> Self { Self { x: self.x.div(rhs), y: self.y.div(rhs), z: self.z.div(rhs), w: self.w.div(rhs), } } } impl DivAssign for DVec4 { #[inline] fn div_assign(&mut self, rhs: f64) { self.x.div_assign(rhs); self.y.div_assign(rhs); self.z.div_assign(rhs); self.w.div_assign(rhs); } } impl Div for f64 { type Output = DVec4; #[inline] fn div(self, rhs: DVec4) -> DVec4 { DVec4 { x: self.div(rhs.x), y: self.div(rhs.y), z: self.div(rhs.z), w: self.div(rhs.w), } } } impl Mul for DVec4 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self { x: self.x.mul(rhs.x), y: self.y.mul(rhs.y), z: self.z.mul(rhs.z), w: self.w.mul(rhs.w), } } } impl MulAssign for DVec4 { #[inline] fn mul_assign(&mut self, rhs: Self) { self.x.mul_assign(rhs.x); self.y.mul_assign(rhs.y); self.z.mul_assign(rhs.z); self.w.mul_assign(rhs.w); } } impl Mul for DVec4 { type Output = Self; #[inline] fn mul(self, rhs: f64) -> Self { Self { x: self.x.mul(rhs), y: self.y.mul(rhs), z: self.z.mul(rhs), w: self.w.mul(rhs), } } } impl MulAssign for DVec4 { #[inline] fn mul_assign(&mut self, rhs: f64) { self.x.mul_assign(rhs); self.y.mul_assign(rhs); self.z.mul_assign(rhs); self.w.mul_assign(rhs); } } impl Mul for f64 { type Output = DVec4; #[inline] fn mul(self, rhs: DVec4) -> DVec4 { DVec4 { x: self.mul(rhs.x), y: self.mul(rhs.y), z: self.mul(rhs.z), w: self.mul(rhs.w), } } } impl Add for DVec4 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { Self { x: self.x.add(rhs.x), y: self.y.add(rhs.y), z: self.z.add(rhs.z), w: self.w.add(rhs.w), } } } impl AddAssign for DVec4 { #[inline] fn add_assign(&mut self, rhs: Self) { self.x.add_assign(rhs.x); self.y.add_assign(rhs.y); self.z.add_assign(rhs.z); self.w.add_assign(rhs.w); } } impl Add for DVec4 { type Output = Self; #[inline] fn add(self, rhs: f64) -> Self { Self { x: self.x.add(rhs), y: self.y.add(rhs), z: self.z.add(rhs), w: self.w.add(rhs), } } } impl AddAssign for DVec4 { #[inline] fn add_assign(&mut self, rhs: f64) { self.x.add_assign(rhs); self.y.add_assign(rhs); self.z.add_assign(rhs); self.w.add_assign(rhs); } } impl Add for f64 { type Output = DVec4; #[inline] fn add(self, rhs: DVec4) -> DVec4 { DVec4 { x: self.add(rhs.x), y: self.add(rhs.y), z: self.add(rhs.z), w: self.add(rhs.w), } } } impl Sub for DVec4 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self { Self { x: self.x.sub(rhs.x), y: self.y.sub(rhs.y), z: self.z.sub(rhs.z), w: self.w.sub(rhs.w), } } } impl SubAssign for DVec4 { #[inline] fn sub_assign(&mut self, rhs: DVec4) { self.x.sub_assign(rhs.x); self.y.sub_assign(rhs.y); self.z.sub_assign(rhs.z); self.w.sub_assign(rhs.w); } } impl Sub for DVec4 { type Output = Self; #[inline] fn sub(self, rhs: f64) -> Self { Self { x: self.x.sub(rhs), y: self.y.sub(rhs), z: self.z.sub(rhs), w: self.w.sub(rhs), } } } impl SubAssign for DVec4 { #[inline] fn sub_assign(&mut self, rhs: f64) { self.x.sub_assign(rhs); self.y.sub_assign(rhs); self.z.sub_assign(rhs); self.w.sub_assign(rhs); } } impl Sub for f64 { type Output = DVec4; #[inline] fn sub(self, rhs: DVec4) -> DVec4 { DVec4 { x: self.sub(rhs.x), y: self.sub(rhs.y), z: self.sub(rhs.z), w: self.sub(rhs.w), } } } impl Rem for DVec4 { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self { Self { x: self.x.rem(rhs.x), y: self.y.rem(rhs.y), z: self.z.rem(rhs.z), w: self.w.rem(rhs.w), } } } impl RemAssign for DVec4 { #[inline] fn rem_assign(&mut self, rhs: Self) { self.x.rem_assign(rhs.x); self.y.rem_assign(rhs.y); self.z.rem_assign(rhs.z); self.w.rem_assign(rhs.w); } } impl Rem for DVec4 { type Output = Self; #[inline] fn rem(self, rhs: f64) -> Self { Self { x: self.x.rem(rhs), y: self.y.rem(rhs), z: self.z.rem(rhs), w: self.w.rem(rhs), } } } impl RemAssign for DVec4 { #[inline] fn rem_assign(&mut self, rhs: f64) { self.x.rem_assign(rhs); self.y.rem_assign(rhs); self.z.rem_assign(rhs); self.w.rem_assign(rhs); } } impl Rem for f64 { type Output = DVec4; #[inline] fn rem(self, rhs: DVec4) -> DVec4 { DVec4 { x: self.rem(rhs.x), y: self.rem(rhs.y), z: self.rem(rhs.z), w: self.rem(rhs.w), } } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f64; 4]> for DVec4 { #[inline] fn as_ref(&self) -> &[f64; 4] { unsafe { &*(self as *const DVec4 as *const [f64; 4]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[f64; 4]> for DVec4 { #[inline] fn as_mut(&mut self) -> &mut [f64; 4] { unsafe { &mut *(self as *mut DVec4 as *mut [f64; 4]) } } } impl Sum for DVec4 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for DVec4 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for DVec4 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, Self::mul) } } impl<'a> Product<&'a Self> for DVec4 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) } } impl Neg for DVec4 { type Output = Self; #[inline] fn neg(self) -> Self { Self { x: self.x.neg(), y: self.y.neg(), z: self.z.neg(), w: self.w.neg(), } } } impl Index for DVec4 { type Output = f64; #[inline] fn index(&self, index: usize) -> &Self::Output { match index { 0 => &self.x, 1 => &self.y, 2 => &self.z, 3 => &self.w, _ => panic!("index out of bounds"), } } } impl IndexMut for DVec4 { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { match index { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, 3 => &mut self.w, _ => panic!("index out of bounds"), } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for DVec4 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for DVec4 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(DVec4)) .field(&self.x) .field(&self.y) .field(&self.z) .field(&self.w) .finish() } } impl From<[f64; 4]> for DVec4 { #[inline] fn from(a: [f64; 4]) -> Self { Self::new(a[0], a[1], a[2], a[3]) } } impl From for [f64; 4] { #[inline] fn from(v: DVec4) -> Self { [v.x, v.y, v.z, v.w] } } impl From<(f64, f64, f64, f64)> for DVec4 { #[inline] fn from(t: (f64, f64, f64, f64)) -> Self { Self::new(t.0, t.1, t.2, t.3) } } impl From for (f64, f64, f64, f64) { #[inline] fn from(v: DVec4) -> Self { (v.x, v.y, v.z, v.w) } } impl From<(DVec3, f64)> for DVec4 { #[inline] fn from((v, w): (DVec3, f64)) -> Self { Self::new(v.x, v.y, v.z, w) } } impl From<(f64, DVec3)> for DVec4 { #[inline] fn from((x, v): (f64, DVec3)) -> Self { Self::new(x, v.x, v.y, v.z) } } impl From<(DVec2, f64, f64)> for DVec4 { #[inline] fn from((v, z, w): (DVec2, f64, f64)) -> Self { Self::new(v.x, v.y, z, w) } } impl From<(DVec2, DVec2)> for DVec4 { #[inline] fn from((v, u): (DVec2, DVec2)) -> Self { Self::new(v.x, v.y, u.x, u.y) } }