/* Author : Stephen Smalley, */ /* * Updated: Yuichi Nakamura * Tuned number of hash slots for avtab to reduce memory usage */ /* Updated: Frank Mayer * and Karl MacMillan * * Added conditional policy language extensions * * Updated: Red Hat, Inc. James Morris * * Code cleanup * * Updated: Karl MacMillan * * Copyright (C) 2003 Tresys Technology, LLC * Copyright (C) 2003,2007 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* FLASK */ /* * Implementation of the access vector table type. */ #include #include #include #include #include "debug.h" #include "private.h" /* Based on MurmurHash3, written by Austin Appleby and placed in the * public domain. */ ignore_unsigned_overflow_ static inline int avtab_hash(struct avtab_key *keyp, uint32_t mask) { static const uint32_t c1 = 0xcc9e2d51; static const uint32_t c2 = 0x1b873593; static const uint32_t r1 = 15; static const uint32_t r2 = 13; static const uint32_t m = 5; static const uint32_t n = 0xe6546b64; uint32_t hash = 0; #define mix(input) do { \ uint32_t v = input; \ v *= c1; \ v = (v << r1) | (v >> (32 - r1)); \ v *= c2; \ hash ^= v; \ hash = (hash << r2) | (hash >> (32 - r2)); \ hash = hash * m + n; \ } while (0) mix(keyp->target_class); mix(keyp->target_type); mix(keyp->source_type); #undef mix hash ^= hash >> 16; hash *= 0x85ebca6b; hash ^= hash >> 13; hash *= 0xc2b2ae35; hash ^= hash >> 16; return hash & mask; } static avtab_ptr_t avtab_insert_node(avtab_t * h, int hvalue, avtab_ptr_t prev, avtab_key_t * key, avtab_datum_t * datum) { avtab_ptr_t newnode; avtab_extended_perms_t *xperms; newnode = (avtab_ptr_t) malloc(sizeof(struct avtab_node)); if (newnode == NULL) return NULL; memset(newnode, 0, sizeof(struct avtab_node)); newnode->key = *key; if (key->specified & AVTAB_XPERMS) { xperms = calloc(1, sizeof(avtab_extended_perms_t)); if (xperms == NULL) { free(newnode); return NULL; } if (datum->xperms) /* else caller populates xperms */ *xperms = *(datum->xperms); newnode->datum.xperms = xperms; /* data is usually ignored with xperms, except in the case of * neverallow checking, which requires permission bits to be set. * So copy data so it is set in the avtab */ newnode->datum.data = datum->data; } else { newnode->datum = *datum; } if (prev) { newnode->next = prev->next; prev->next = newnode; } else { newnode->next = h->htable[hvalue]; h->htable[hvalue] = newnode; } h->nel++; return newnode; } int avtab_insert(avtab_t * h, avtab_key_t * key, avtab_datum_t * datum) { int hvalue; avtab_ptr_t prev, cur, newnode; uint16_t specified = key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); if (!h || !h->htable) return SEPOL_ENOMEM; hvalue = avtab_hash(key, h->mask); for (prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) { /* Extended permissions are not necessarily unique */ if (specified & AVTAB_XPERMS) break; return SEPOL_EEXIST; } if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } newnode = avtab_insert_node(h, hvalue, prev, key, datum); if (!newnode) return SEPOL_ENOMEM; return 0; } /* Unlike avtab_insert(), this function allow multiple insertions of the same * key/specified mask into the table, as needed by the conditional avtab. * It also returns a pointer to the node inserted. */ avtab_ptr_t avtab_insert_nonunique(avtab_t * h, avtab_key_t * key, avtab_datum_t * datum) { int hvalue; avtab_ptr_t prev, cur, newnode; uint16_t specified = key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) break; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } newnode = avtab_insert_node(h, hvalue, prev, key, datum); return newnode; } avtab_datum_t *avtab_search(avtab_t * h, avtab_key_t * key) { int hvalue; avtab_ptr_t cur; uint16_t specified = key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (cur = h->htable[hvalue]; cur; cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) return &cur->datum; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } return NULL; } /* This search function returns a node pointer, and can be used in * conjunction with avtab_search_next_node() */ avtab_ptr_t avtab_search_node(avtab_t * h, avtab_key_t * key) { int hvalue; avtab_ptr_t cur; uint16_t specified = key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (cur = h->htable[hvalue]; cur; cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) return cur; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } return NULL; } avtab_ptr_t avtab_search_node_next(avtab_ptr_t node, int specified) { avtab_ptr_t cur; if (!node) return NULL; specified &= ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); for (cur = node->next; cur; cur = cur->next) { if (node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class == cur->key.target_class && (specified & cur->key.specified)) return cur; if (node->key.source_type < cur->key.source_type) break; if (node->key.source_type == cur->key.source_type && node->key.target_type < cur->key.target_type) break; if (node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class < cur->key.target_class) break; } return NULL; } void avtab_destroy(avtab_t * h) { unsigned int i; avtab_ptr_t cur, temp; if (!h || !h->htable) return; for (i = 0; i < h->nslot; i++) { cur = h->htable[i]; while (cur != NULL) { if (cur->key.specified & AVTAB_XPERMS) { free(cur->datum.xperms); } temp = cur; cur = cur->next; free(temp); } h->htable[i] = NULL; } free(h->htable); h->htable = NULL; h->nslot = 0; h->mask = 0; } int avtab_map(const avtab_t * h, int (*apply) (avtab_key_t * k, avtab_datum_t * d, void *args), void *args) { unsigned int i; int ret; avtab_ptr_t cur; if (!h) return 0; for (i = 0; i < h->nslot; i++) { cur = h->htable[i]; while (cur != NULL) { ret = apply(&cur->key, &cur->datum, args); if (ret) return ret; cur = cur->next; } } return 0; } int avtab_init(avtab_t * h) { h->htable = NULL; h->nel = 0; return 0; } int avtab_alloc(avtab_t *h, uint32_t nrules) { uint32_t mask = 0; uint32_t shift = 0; uint32_t work = nrules; uint32_t nslot = 0; if (nrules == 0) goto out; while (work) { work = work >> 1; shift++; } if (shift > 2) shift = shift - 2; nslot = UINT32_C(1) << shift; if (nslot > MAX_AVTAB_HASH_BUCKETS) nslot = MAX_AVTAB_HASH_BUCKETS; mask = nslot - 1; h->htable = calloc(nslot, sizeof(avtab_ptr_t)); if (!h->htable) return -1; out: h->nel = 0; h->nslot = nslot; h->mask = mask; return 0; } void avtab_hash_eval(avtab_t * h, char *tag) { unsigned int i, chain_len, slots_used, max_chain_len; avtab_ptr_t cur; slots_used = 0; max_chain_len = 0; for (i = 0; i < h->nslot; i++) { cur = h->htable[i]; if (cur) { slots_used++; chain_len = 0; while (cur) { chain_len++; cur = cur->next; } if (chain_len > max_chain_len) max_chain_len = chain_len; } } printf ("%s: %d entries and %d/%d buckets used, longest chain length %d\n", tag, h->nel, slots_used, h->nslot, max_chain_len); } /* Ordering of datums in the original avtab format in the policy file. */ static const uint16_t spec_order[] = { AVTAB_ALLOWED, AVTAB_AUDITDENY, AVTAB_AUDITALLOW, AVTAB_TRANSITION, AVTAB_CHANGE, AVTAB_MEMBER, AVTAB_XPERMS_ALLOWED, AVTAB_XPERMS_AUDITALLOW, AVTAB_XPERMS_DONTAUDIT }; int avtab_read_item(struct policy_file *fp, uint32_t vers, avtab_t * a, int (*insertf) (avtab_t * a, avtab_key_t * k, avtab_datum_t * d, void *p), void *p) { uint8_t buf8; uint16_t buf16[4], enabled; uint32_t buf32[8], items, items2, val; avtab_key_t key; avtab_datum_t datum; avtab_extended_perms_t xperms; unsigned set; unsigned int i; int rc; memset(&key, 0, sizeof(avtab_key_t)); memset(&datum, 0, sizeof(avtab_datum_t)); memset(&xperms, 0, sizeof(avtab_extended_perms_t)); if (vers < POLICYDB_VERSION_AVTAB) { rc = next_entry(buf32, fp, sizeof(uint32_t)); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } items2 = le32_to_cpu(buf32[0]); if (items2 < 5 || items2 > ARRAY_SIZE(buf32)) { ERR(fp->handle, "invalid item count"); return -1; } rc = next_entry(buf32, fp, sizeof(uint32_t) * items2); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } items = 0; val = le32_to_cpu(buf32[items++]); key.source_type = (uint16_t) val; if (key.source_type != val) { ERR(fp->handle, "truncated source type"); return -1; } val = le32_to_cpu(buf32[items++]); key.target_type = (uint16_t) val; if (key.target_type != val) { ERR(fp->handle, "truncated target type"); return -1; } val = le32_to_cpu(buf32[items++]); key.target_class = (uint16_t) val; if (key.target_class != val) { ERR(fp->handle, "truncated target class"); return -1; } val = le32_to_cpu(buf32[items++]); enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0; if (!(val & (AVTAB_AV | AVTAB_TYPE))) { ERR(fp->handle, "null entry"); return -1; } if ((val & AVTAB_AV) && (val & AVTAB_TYPE)) { ERR(fp->handle, "entry has both access " "vectors and types"); return -1; } for (i = 0; i < ARRAY_SIZE(spec_order); i++) { if (val & spec_order[i]) { if (items >= items2) { /* items is index, items2 is total number */ ERR(fp->handle, "entry has too many items (%d/%d)", items + 1, items2); return -1; } key.specified = spec_order[i] | enabled; datum.data = le32_to_cpu(buf32[items++]); rc = insertf(a, &key, &datum, p); if (rc) return rc; } } if (items != items2) { ERR(fp->handle, "entry only had %d items, " "expected %d", items2, items); return -1; } return 0; } rc = next_entry(buf16, fp, sizeof(uint16_t) * 4); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } items = 0; key.source_type = le16_to_cpu(buf16[items++]); key.target_type = le16_to_cpu(buf16[items++]); key.target_class = le16_to_cpu(buf16[items++]); key.specified = le16_to_cpu(buf16[items++]); set = 0; for (i = 0; i < ARRAY_SIZE(spec_order); i++) { if (key.specified & spec_order[i]) set++; } if (!set || set > 1) { ERR(fp->handle, "more than one specifier"); return -1; } if ((vers < POLICYDB_VERSION_XPERMS_IOCTL) && (key.specified & AVTAB_XPERMS)) { ERR(fp->handle, "policy version %u does not support extended " "permissions rules and one was specified", vers); return -1; } else if (key.specified & AVTAB_XPERMS) { rc = next_entry(&buf8, fp, sizeof(uint8_t)); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } xperms.specified = buf8; rc = next_entry(&buf8, fp, sizeof(uint8_t)); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } xperms.driver = buf8; rc = next_entry(buf32, fp, sizeof(uint32_t)*8); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } for (i = 0; i < ARRAY_SIZE(xperms.perms); i++) xperms.perms[i] = le32_to_cpu(buf32[i]); datum.xperms = &xperms; } else { rc = next_entry(buf32, fp, sizeof(uint32_t)); if (rc < 0) { ERR(fp->handle, "truncated entry"); return -1; } datum.data = le32_to_cpu(*buf32); } return insertf(a, &key, &datum, p); } static int avtab_insertf(avtab_t * a, avtab_key_t * k, avtab_datum_t * d, void *p __attribute__ ((unused))) { return avtab_insert(a, k, d); } int avtab_read(avtab_t * a, struct policy_file *fp, uint32_t vers) { unsigned int i; int rc; uint32_t buf[1]; uint32_t nel; rc = next_entry(buf, fp, sizeof(uint32_t)); if (rc < 0) { ERR(fp->handle, "truncated table"); goto bad; } nel = le32_to_cpu(buf[0]); if (!nel) { ERR(fp->handle, "table is empty"); goto bad; } rc = avtab_alloc(a, nel); if (rc) { ERR(fp->handle, "out of memory"); goto bad; } for (i = 0; i < nel; i++) { rc = avtab_read_item(fp, vers, a, avtab_insertf, NULL); if (rc) { if (rc == SEPOL_ENOMEM) ERR(fp->handle, "out of memory"); if (rc == SEPOL_EEXIST) ERR(fp->handle, "duplicate entry"); ERR(fp->handle, "failed on entry %d of %u", i, nel); goto bad; } } return 0; bad: avtab_destroy(a); return -1; }