/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/base/SkQuads.h" #include "include/private/base/SkFloatingPoint.h" #include // Solve 0 = M * x + B. If M is 0, there are no solutions, unless B is also 0, // in which case there are infinite solutions, so we just return 1 of them. static int solve_linear(const double M, const double B, double solution[2]) { if (sk_double_nearly_zero(M)) { solution[0] = 0; if (sk_double_nearly_zero(B)) { return 1; } return 0; } solution[0] = -B / M; if (!std::isfinite(solution[0])) { return 0; } return 1; } // When the A coefficient of a quadratic is close to 0, there can be floating point error // that arises from computing a very large root. In those cases, we would rather be // precise about the one smaller root, so we have this arbitrary cutoff for when A is // really small or small compared to B. static bool close_to_linear(double A, double B) { if (sk_double_nearly_zero(B)) { return sk_double_nearly_zero(A); } // This is a different threshold (tighter) than the close_to_a_quadratic in SkCubics.cpp // because the SkQuads::RootsReal gives better answers for longer as A/B -> 0. return std::abs(A / B) < 1.0e-16; } int SkQuads::RootsReal(const double A, const double B, const double C, double solution[2]) { if (close_to_linear(A, B)) { return solve_linear(B, C, solution); } // If A is zero (e.g. B was nan and thus close_to_linear was false), we will // temporarily have infinities rolling about, but will catch that when checking // p2 - q. const double p = sk_ieee_double_divide(B, 2 * A); const double q = sk_ieee_double_divide(C, A); /* normal form: x^2 + px + q = 0 */ const double p2 = p * p; if (!std::isfinite(p2 - q) || (!sk_double_nearly_zero(p2 - q) && p2 < q)) { return 0; } double sqrt_D = 0; if (p2 > q) { sqrt_D = sqrt(p2 - q); } solution[0] = sqrt_D - p; solution[1] = -sqrt_D - p; if (sk_double_nearly_zero(sqrt_D) || sk_doubles_nearly_equal_ulps(solution[0], solution[1])) { return 1; } return 2; }