/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkAAClip.h" #include "include/core/SkPath.h" #include "include/private/SkColorData.h" #include "include/private/base/SkMacros.h" #include "include/private/base/SkTDArray.h" #include "include/private/base/SkTo.h" #include "src/core/SkBlitter.h" #include "src/core/SkRectPriv.h" #include "src/core/SkScan.h" #include #include namespace { class AutoAAClipValidate { public: AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) { fClip.validate(); } ~AutoAAClipValidate() { fClip.validate(); } private: const SkAAClip& fClip; }; #ifdef SK_DEBUG #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip) #else #define AUTO_AACLIP_VALIDATE(clip) #endif /////////////////////////////////////////////////////////////////////////////// static constexpr int32_t kMaxInt32 = 0x7FFFFFFF; #ifdef SK_DEBUG // assert we're exactly width-wide, and then return the number of bytes used static size_t compute_row_length(const uint8_t row[], int width) { const uint8_t* origRow = row; while (width > 0) { int n = row[0]; SkASSERT(n > 0); SkASSERT(n <= width); row += 2; width -= n; } SkASSERT(0 == width); return row - origRow; } #endif /* * Data runs are packed [count, alpha] */ struct YOffset { int32_t fY; uint32_t fOffset; }; class RowIter { public: RowIter(const uint8_t* row, const SkIRect& bounds) { fRow = row; fLeft = bounds.fLeft; fBoundsRight = bounds.fRight; if (row) { fRight = bounds.fLeft + row[0]; SkASSERT(fRight <= fBoundsRight); fAlpha = row[1]; fDone = false; } else { fDone = true; fRight = kMaxInt32; fAlpha = 0; } } bool done() const { return fDone; } int left() const { return fLeft; } int right() const { return fRight; } U8CPU alpha() const { return fAlpha; } void next() { if (!fDone) { fLeft = fRight; if (fRight == fBoundsRight) { fDone = true; fRight = kMaxInt32; fAlpha = 0; } else { fRow += 2; fRight += fRow[0]; fAlpha = fRow[1]; SkASSERT(fRight <= fBoundsRight); } } } private: const uint8_t* fRow; int fLeft; int fRight; int fBoundsRight; bool fDone; uint8_t fAlpha; }; class Iter { public: Iter() = default; Iter(int y, const uint8_t* data, const YOffset* start, const YOffset* end) : fCurrYOff(start) , fStopYOff(end) , fData(data + start->fOffset) , fTop(y) , fBottom(y + start->fY + 1) , fDone(false) {} bool done() const { return fDone; } int top() const { return fTop; } int bottom() const { return fBottom; } const uint8_t* data() const { return fData; } void next() { if (!fDone) { const YOffset* prev = fCurrYOff; const YOffset* curr = prev + 1; SkASSERT(curr <= fStopYOff); fTop = fBottom; if (curr >= fStopYOff) { fDone = true; fBottom = kMaxInt32; fData = nullptr; } else { fBottom += curr->fY - prev->fY; fData += curr->fOffset - prev->fOffset; fCurrYOff = curr; } } } private: const YOffset* fCurrYOff = nullptr; const YOffset* fStopYOff = nullptr; const uint8_t* fData = nullptr; int fTop = kMaxInt32; int fBottom = kMaxInt32; bool fDone = true; }; } // namespace /////////////////////////////////////////////////////////////////////////////// struct SkAAClip::RunHead { std::atomic fRefCnt; int32_t fRowCount; size_t fDataSize; YOffset* yoffsets() { return (YOffset*)((char*)this + sizeof(RunHead)); } const YOffset* yoffsets() const { return (const YOffset*)((const char*)this + sizeof(RunHead)); } uint8_t* data() { return (uint8_t*)(this->yoffsets() + fRowCount); } const uint8_t* data() const { return (const uint8_t*)(this->yoffsets() + fRowCount); } static RunHead* Alloc(int rowCount, size_t dataSize) { size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize; RunHead* head = (RunHead*)sk_malloc_throw(size); head->fRefCnt.store(1); head->fRowCount = rowCount; head->fDataSize = dataSize; return head; } static int ComputeRowSizeForWidth(int width) { // 2 bytes per segment, where each segment can store up to 255 for count int segments = 0; while (width > 0) { segments += 1; int n = std::min(width, 255); width -= n; } return segments * 2; // each segment is row[0] + row[1] (n + alpha) } static RunHead* AllocRect(const SkIRect& bounds) { SkASSERT(!bounds.isEmpty()); int width = bounds.width(); size_t rowSize = ComputeRowSizeForWidth(width); RunHead* head = RunHead::Alloc(1, rowSize); YOffset* yoff = head->yoffsets(); yoff->fY = bounds.height() - 1; yoff->fOffset = 0; uint8_t* row = head->data(); while (width > 0) { int n = std::min(width, 255); row[0] = n; row[1] = 0xFF; width -= n; row += 2; } return head; } static Iter Iterate(const SkAAClip& clip) { const RunHead* head = clip.fRunHead; if (!clip.fRunHead) { // A null run head is an empty clip, so return aan already finished iterator. return Iter(); } return Iter(clip.getBounds().fTop, head->data(), head->yoffsets(), head->yoffsets() + head->fRowCount); } }; /////////////////////////////////////////////////////////////////////////////// class SkAAClip::Builder { class Blitter; SkIRect fBounds; struct Row { int fY; int fWidth; SkTDArray* fData; }; SkTDArray fRows; Row* fCurrRow; int fPrevY; int fWidth; int fMinY; public: Builder(const SkIRect& bounds) : fBounds(bounds) { fPrevY = -1; fWidth = bounds.width(); fCurrRow = nullptr; fMinY = bounds.fTop; } ~Builder() { Row* row = fRows.begin(); Row* stop = fRows.end(); while (row < stop) { delete row->fData; row += 1; } } bool applyClipOp(SkAAClip* target, const SkAAClip& other, SkClipOp op); bool blitPath(SkAAClip* target, const SkPath& path, bool doAA); private: using AlphaProc = U8CPU (*)(U8CPU alphaA, U8CPU alphaB); void operateX(int lastY, RowIter& iterA, RowIter& iterB, AlphaProc proc); void operateY(const SkAAClip& A, const SkAAClip& B, SkClipOp op); void addRun(int x, int y, U8CPU alpha, int count) { SkASSERT(count > 0); SkASSERT(fBounds.contains(x, y)); SkASSERT(fBounds.contains(x + count - 1, y)); x -= fBounds.left(); y -= fBounds.top(); Row* row = fCurrRow; if (y != fPrevY) { SkASSERT(y > fPrevY); fPrevY = y; row = this->flushRow(true); row->fY = y; row->fWidth = 0; SkASSERT(row->fData); SkASSERT(row->fData->empty()); fCurrRow = row; } SkASSERT(row->fWidth <= x); SkASSERT(row->fWidth < fBounds.width()); SkTDArray& data = *row->fData; int gap = x - row->fWidth; if (gap) { AppendRun(data, 0, gap); row->fWidth += gap; SkASSERT(row->fWidth < fBounds.width()); } AppendRun(data, alpha, count); row->fWidth += count; SkASSERT(row->fWidth <= fBounds.width()); } void addColumn(int x, int y, U8CPU alpha, int height) { SkASSERT(fBounds.contains(x, y + height - 1)); this->addRun(x, y, alpha, 1); this->flushRowH(fCurrRow); y -= fBounds.fTop; SkASSERT(y == fCurrRow->fY); fCurrRow->fY = y + height - 1; } void addRectRun(int x, int y, int width, int height) { SkASSERT(fBounds.contains(x + width - 1, y + height - 1)); this->addRun(x, y, 0xFF, width); // we assum the rect must be all we'll see for these scanlines // so we ensure our row goes all the way to our right this->flushRowH(fCurrRow); y -= fBounds.fTop; SkASSERT(y == fCurrRow->fY); fCurrRow->fY = y + height - 1; } void addAntiRectRun(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive, // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width] // as the rect with full alpha. SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0), y + height - 1)); SkASSERT(width >= 0); // Conceptually we're always adding 3 runs, but we should // merge or omit them if possible. if (leftAlpha == 0xFF) { width++; } else if (leftAlpha > 0) { this->addRun(x++, y, leftAlpha, 1); } else { // leftAlpha is 0, ignore the left column x++; } if (rightAlpha == 0xFF) { width++; } if (width > 0) { this->addRun(x, y, 0xFF, width); } if (rightAlpha > 0 && rightAlpha < 255) { this->addRun(x + width, y, rightAlpha, 1); } // if we never called addRun, we might not have a fCurrRow yet if (fCurrRow) { // we assume the rect must be all we'll see for these scanlines // so we ensure our row goes all the way to our right this->flushRowH(fCurrRow); y -= fBounds.fTop; SkASSERT(y == fCurrRow->fY); fCurrRow->fY = y + height - 1; } } bool finish(SkAAClip* target) { this->flushRow(false); const Row* row = fRows.begin(); const Row* stop = fRows.end(); size_t dataSize = 0; while (row < stop) { dataSize += row->fData->size(); row += 1; } if (0 == dataSize) { return target->setEmpty(); } SkASSERT(fMinY >= fBounds.fTop); SkASSERT(fMinY < fBounds.fBottom); int adjustY = fMinY - fBounds.fTop; fBounds.fTop = fMinY; RunHead* head = RunHead::Alloc(fRows.size(), dataSize); YOffset* yoffset = head->yoffsets(); uint8_t* data = head->data(); uint8_t* baseData = data; row = fRows.begin(); SkDEBUGCODE(int prevY = row->fY - 1;) while (row < stop) { SkASSERT(prevY < row->fY); // must be monotonic SkDEBUGCODE(prevY = row->fY); yoffset->fY = row->fY - adjustY; yoffset->fOffset = SkToU32(data - baseData); yoffset += 1; size_t n = row->fData->size(); memcpy(data, row->fData->begin(), n); SkASSERT(compute_row_length(data, fBounds.width()) == n); data += n; row += 1; } target->freeRuns(); target->fBounds = fBounds; target->fRunHead = head; return target->trimBounds(); } void dump() { this->validate(); int y; for (y = 0; y < fRows.size(); ++y) { const Row& row = fRows[y]; SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth); const SkTDArray& data = *row.fData; int count = data.size(); SkASSERT(!(count & 1)); const uint8_t* ptr = data.begin(); for (int x = 0; x < count; x += 2) { SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]); ptr += 2; } SkDebugf("\n"); } } void validate() { #ifdef SK_DEBUG int prevY = -1; for (int i = 0; i < fRows.size(); ++i) { const Row& row = fRows[i]; SkASSERT(prevY < row.fY); SkASSERT(fWidth == row.fWidth); int count = row.fData->size(); const uint8_t* ptr = row.fData->begin(); SkASSERT(!(count & 1)); int w = 0; for (int x = 0; x < count; x += 2) { int n = ptr[0]; SkASSERT(n > 0); w += n; SkASSERT(w <= fWidth); ptr += 2; } SkASSERT(w == fWidth); prevY = row.fY; } #endif } void flushRowH(Row* row) { // flush current row if needed if (row->fWidth < fWidth) { AppendRun(*row->fData, 0, fWidth - row->fWidth); row->fWidth = fWidth; } } Row* flushRow(bool readyForAnother) { Row* next = nullptr; int count = fRows.size(); if (count > 0) { this->flushRowH(&fRows[count - 1]); } if (count > 1) { // are our last two runs the same? Row* prev = &fRows[count - 2]; Row* curr = &fRows[count - 1]; SkASSERT(prev->fWidth == fWidth); SkASSERT(curr->fWidth == fWidth); if (*prev->fData == *curr->fData) { prev->fY = curr->fY; if (readyForAnother) { curr->fData->clear(); next = curr; } else { delete curr->fData; fRows.removeShuffle(count - 1); } } else { if (readyForAnother) { next = fRows.append(); next->fData = new SkTDArray; } } } else { if (readyForAnother) { next = fRows.append(); next->fData = new SkTDArray; } } return next; } static void AppendRun(SkTDArray& data, U8CPU alpha, int count) { do { int n = count; if (n > 255) { n = 255; } uint8_t* ptr = data.append(2); ptr[0] = n; ptr[1] = alpha; count -= n; } while (count > 0); } }; void SkAAClip::Builder::operateX(int lastY, RowIter& iterA, RowIter& iterB, AlphaProc proc) { auto advanceRowIter = [](RowIter& iter, int& iterLeft, int& iterRite, int rite) { if (rite == iterRite) { iter.next(); iterLeft = iter.left(); iterRite = iter.right(); } }; int leftA = iterA.left(); int riteA = iterA.right(); int leftB = iterB.left(); int riteB = iterB.right(); int prevRite = fBounds.fLeft; do { U8CPU alphaA = 0; U8CPU alphaB = 0; int left, rite; if (leftA < leftB) { left = leftA; alphaA = iterA.alpha(); if (riteA <= leftB) { rite = riteA; } else { rite = leftA = leftB; } } else if (leftB < leftA) { left = leftB; alphaB = iterB.alpha(); if (riteB <= leftA) { rite = riteB; } else { rite = leftB = leftA; } } else { left = leftA; // or leftB, since leftA == leftB rite = leftA = leftB = std::min(riteA, riteB); alphaA = iterA.alpha(); alphaB = iterB.alpha(); } if (left >= fBounds.fRight) { break; } if (rite > fBounds.fRight) { rite = fBounds.fRight; } if (left >= fBounds.fLeft) { SkASSERT(rite > left); this->addRun(left, lastY, proc(alphaA, alphaB), rite - left); prevRite = rite; } advanceRowIter(iterA, leftA, riteA, rite); advanceRowIter(iterB, leftB, riteB, rite); } while (!iterA.done() || !iterB.done()); if (prevRite < fBounds.fRight) { this->addRun(prevRite, lastY, 0, fBounds.fRight - prevRite); } } void SkAAClip::Builder::operateY(const SkAAClip& A, const SkAAClip& B, SkClipOp op) { static const AlphaProc kDiff = [](U8CPU a, U8CPU b) { return SkMulDiv255Round(a, 0xFF - b); }; static const AlphaProc kIntersect = [](U8CPU a, U8CPU b) { return SkMulDiv255Round(a, b); }; AlphaProc proc = (op == SkClipOp::kDifference) ? kDiff : kIntersect; Iter iterA = RunHead::Iterate(A); Iter iterB = RunHead::Iterate(B); SkASSERT(!iterA.done()); int topA = iterA.top(); int botA = iterA.bottom(); SkASSERT(!iterB.done()); int topB = iterB.top(); int botB = iterB.bottom(); auto advanceIter = [](Iter& iter, int& iterTop, int& iterBot, int bot) { if (bot == iterBot) { iter.next(); iterTop = iterBot; SkASSERT(iterBot == iter.top()); iterBot = iter.bottom(); } }; #if defined(SK_BUILD_FOR_FUZZER) if ((botA - topA) > 100000 || (botB - topB) > 100000) { return; } #endif do { const uint8_t* rowA = nullptr; const uint8_t* rowB = nullptr; int top, bot; if (topA < topB) { top = topA; rowA = iterA.data(); if (botA <= topB) { bot = botA; } else { bot = topA = topB; } } else if (topB < topA) { top = topB; rowB = iterB.data(); if (botB <= topA) { bot = botB; } else { bot = topB = topA; } } else { top = topA; // or topB, since topA == topB bot = topA = topB = std::min(botA, botB); rowA = iterA.data(); rowB = iterB.data(); } if (top >= fBounds.fBottom) { break; } if (bot > fBounds.fBottom) { bot = fBounds.fBottom; } SkASSERT(top < bot); if (!rowA && !rowB) { this->addRun(fBounds.fLeft, bot - 1, 0, fBounds.width()); } else if (top >= fBounds.fTop) { SkASSERT(bot <= fBounds.fBottom); RowIter rowIterA(rowA, rowA ? A.getBounds() : fBounds); RowIter rowIterB(rowB, rowB ? B.getBounds() : fBounds); this->operateX(bot - 1, rowIterA, rowIterB, proc); } advanceIter(iterA, topA, botA, bot); advanceIter(iterB, topB, botB, bot); } while (!iterA.done() || !iterB.done()); } class SkAAClip::Builder::Blitter final : public SkBlitter { int fLastY; /* If we see a gap of 1 or more empty scanlines while building in Y-order, we inject an explicit empty scanline (alpha==0) See AAClipTest.cpp : test_path_with_hole() */ void checkForYGap(int y) { SkASSERT(y >= fLastY); if (fLastY > -SK_MaxS32) { int gap = y - fLastY; if (gap > 1) { fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft); } } fLastY = y; } public: Blitter(Builder* builder) { fBuilder = builder; fLeft = builder->fBounds.fLeft; fRight = builder->fBounds.fRight; fMinY = SK_MaxS32; fLastY = -SK_MaxS32; // sentinel } void finish() { if (fMinY < SK_MaxS32) { fBuilder->fMinY = fMinY; } } /** Must evaluate clips in scan-line order, so don't want to allow blitV(), but an AAClip can be clipped down to a single pixel wide, so we must support it (given AntiRect semantics: minimum width is 2). Instead we'll rely on the runtime asserts to guarantee Y monotonicity; any failure cases that misses may have minor artifacts. */ void blitV(int x, int y, int height, SkAlpha alpha) override { if (height == 1) { // We're still in scan-line order if height is 1 // This is useful for Analytic AA const SkAlpha alphas[2] = {alpha, 0}; const int16_t runs[2] = {1, 0}; this->blitAntiH(x, y, alphas, runs); } else { this->recordMinY(y); fBuilder->addColumn(x, y, alpha, height); fLastY = y + height - 1; } } void blitRect(int x, int y, int width, int height) override { this->recordMinY(y); this->checkForYGap(y); fBuilder->addRectRun(x, y, width, height); fLastY = y + height - 1; } void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) override { this->recordMinY(y); this->checkForYGap(y); fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha); fLastY = y + height - 1; } void blitMask(const SkMask&, const SkIRect& clip) override { unexpected(); } const SkPixmap* justAnOpaqueColor(uint32_t*) override { return nullptr; } void blitH(int x, int y, int width) override { this->recordMinY(y); this->checkForYGap(y); fBuilder->addRun(x, y, 0xFF, width); } void blitAntiH(int x, int y, const SkAlpha alpha[], const int16_t runs[]) override { this->recordMinY(y); this->checkForYGap(y); for (;;) { int count = *runs; if (count <= 0) { return; } // The supersampler's buffer can be the width of the device, so // we may have to trim the run to our bounds. Previously, we assert that // the extra spans are always alpha==0. // However, the analytic AA is too sensitive to precision errors // so it may have extra spans with very tiny alpha because after several // arithmatic operations, the edge may bleed the path boundary a little bit. // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10. int localX = x; int localCount = count; if (x < fLeft) { SkASSERT(0x10 > *alpha); int gap = fLeft - x; SkASSERT(gap <= count); localX += gap; localCount -= gap; } int right = x + count; if (right > fRight) { SkASSERT(0x10 > *alpha); localCount -= right - fRight; SkASSERT(localCount >= 0); } if (localCount) { fBuilder->addRun(localX, y, *alpha, localCount); } // Next run runs += count; alpha += count; x += count; } } private: Builder* fBuilder; int fLeft; // cache of builder's bounds' left edge int fRight; int fMinY; /* * We track this, in case the scan converter skipped some number of * scanlines at the (relative to the bounds it was given). This allows * the builder, during its finish, to trip its bounds down to the "real" * top. */ void recordMinY(int y) { if (y < fMinY) { fMinY = y; } } void unexpected() { SK_ABORT("---- did not expect to get called here"); } }; bool SkAAClip::Builder::applyClipOp(SkAAClip* target, const SkAAClip& other, SkClipOp op) { this->operateY(*target, other, op); return this->finish(target); } bool SkAAClip::Builder::blitPath(SkAAClip* target, const SkPath& path, bool doAA) { Blitter blitter(this); SkRegion clip(fBounds); if (doAA) { SkScan::AntiFillPath(path, clip, &blitter, true); } else { SkScan::FillPath(path, clip, &blitter); } blitter.finish(); return this->finish(target); } /////////////////////////////////////////////////////////////////////////////// void SkAAClip::copyToMask(SkMask* mask) const { auto expandRowToMask = [](uint8_t* dst, const uint8_t* row, int width) { while (width > 0) { int n = row[0]; SkASSERT(width >= n); memset(dst, row[1], n); dst += n; row += 2; width -= n; } SkASSERT(0 == width); }; mask->fFormat = SkMask::kA8_Format; if (this->isEmpty()) { mask->fBounds.setEmpty(); mask->fImage = nullptr; mask->fRowBytes = 0; return; } mask->fBounds = fBounds; mask->fRowBytes = fBounds.width(); size_t size = mask->computeImageSize(); mask->fImage = SkMask::AllocImage(size); Iter iter = RunHead::Iterate(*this); uint8_t* dst = mask->fImage; const int width = fBounds.width(); int y = fBounds.fTop; while (!iter.done()) { do { expandRowToMask(dst, iter.data(), width); dst += mask->fRowBytes; } while (++y < iter.bottom()); iter.next(); } } #ifdef SK_DEBUG void SkAAClip::validate() const { if (nullptr == fRunHead) { SkASSERT(fBounds.isEmpty()); return; } SkASSERT(!fBounds.isEmpty()); const RunHead* head = fRunHead; SkASSERT(head->fRefCnt.load() > 0); SkASSERT(head->fRowCount > 0); const YOffset* yoff = head->yoffsets(); const YOffset* ystop = yoff + head->fRowCount; const int lastY = fBounds.height() - 1; // Y and offset must be monotonic int prevY = -1; int32_t prevOffset = -1; while (yoff < ystop) { SkASSERT(prevY < yoff->fY); SkASSERT(yoff->fY <= lastY); prevY = yoff->fY; SkASSERT(prevOffset < (int32_t)yoff->fOffset); prevOffset = yoff->fOffset; const uint8_t* row = head->data() + yoff->fOffset; size_t rowLength = compute_row_length(row, fBounds.width()); SkASSERT(yoff->fOffset + rowLength <= head->fDataSize); yoff += 1; } // check the last entry; --yoff; SkASSERT(yoff->fY == lastY); } static void dump_one_row(const uint8_t* SK_RESTRICT row, int width, int leading_num) { if (leading_num) { SkDebugf( "%03d ", leading_num ); } while (width > 0) { int n = row[0]; int val = row[1]; char out = '.'; if (val == 0xff) { out = '*'; } else if (val > 0) { out = '+'; } for (int i = 0 ; i < n ; i++) { SkDebugf( "%c", out ); } row += 2; width -= n; } SkDebugf( "\n" ); } void SkAAClip::debug(bool compress_y) const { Iter iter = RunHead::Iterate(*this); const int width = fBounds.width(); int y = fBounds.fTop; while (!iter.done()) { if (compress_y) { dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1); } else { do { dump_one_row(iter.data(), width, 0); } while (++y < iter.bottom()); } iter.next(); } } #endif /////////////////////////////////////////////////////////////////////////////// // Count the number of zeros on the left and right edges of the passed in // RLE row. If 'row' is all zeros return 'width' in both variables. static void count_left_right_zeros(const uint8_t* row, int width, int* leftZ, int* riteZ) { int zeros = 0; do { if (row[1]) { break; } int n = row[0]; SkASSERT(n > 0); SkASSERT(n <= width); zeros += n; row += 2; width -= n; } while (width > 0); *leftZ = zeros; if (0 == width) { // this line is completely empty return 'width' in both variables *riteZ = *leftZ; return; } zeros = 0; while (width > 0) { int n = row[0]; SkASSERT(n > 0); if (0 == row[1]) { zeros += n; } else { zeros = 0; } row += 2; width -= n; } *riteZ = zeros; } // modify row in place, trimming off (zeros) from the left and right sides. // return the number of bytes that were completely eliminated from the left static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) { int trim = 0; while (leftZ > 0) { SkASSERT(0 == row[1]); int n = row[0]; SkASSERT(n > 0); SkASSERT(n <= width); width -= n; row += 2; if (n > leftZ) { row[-2] = n - leftZ; break; } trim += 2; leftZ -= n; SkASSERT(leftZ >= 0); } if (riteZ) { // walk row to the end, and then we'll back up to trim riteZ while (width > 0) { int n = row[0]; SkASSERT(n <= width); width -= n; row += 2; } // now skip whole runs of zeros do { row -= 2; SkASSERT(0 == row[1]); int n = row[0]; SkASSERT(n > 0); if (n > riteZ) { row[0] = n - riteZ; break; } riteZ -= n; SkASSERT(riteZ >= 0); } while (riteZ > 0); } return trim; } bool SkAAClip::trimLeftRight() { if (this->isEmpty()) { return false; } AUTO_AACLIP_VALIDATE(*this); const int width = fBounds.width(); RunHead* head = fRunHead; YOffset* yoff = head->yoffsets(); YOffset* stop = yoff + head->fRowCount; uint8_t* base = head->data(); // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum // number of zeros on the left and right of the clip. This information // can be used to shrink the bounding box. int leftZeros = width; int riteZeros = width; while (yoff < stop) { int L, R; count_left_right_zeros(base + yoff->fOffset, width, &L, &R); SkASSERT(L + R < width || (L == width && R == width)); if (L < leftZeros) { leftZeros = L; } if (R < riteZeros) { riteZeros = R; } if (0 == (leftZeros | riteZeros)) { // no trimming to do return true; } yoff += 1; } SkASSERT(leftZeros || riteZeros); if (width == leftZeros) { SkASSERT(width == riteZeros); return this->setEmpty(); } this->validate(); fBounds.fLeft += leftZeros; fBounds.fRight -= riteZeros; SkASSERT(!fBounds.isEmpty()); // For now we don't realloc the storage (for time), we just shrink in place // This means we don't have to do any memmoves either, since we can just // play tricks with the yoff->fOffset for each row yoff = head->yoffsets(); while (yoff < stop) { uint8_t* row = base + yoff->fOffset; SkDEBUGCODE((void)compute_row_length(row, width);) yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros); SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);) yoff += 1; } return true; } static bool row_is_all_zeros(const uint8_t* row, int width) { SkASSERT(width > 0); do { if (row[1]) { return false; } int n = row[0]; SkASSERT(n <= width); width -= n; row += 2; } while (width > 0); SkASSERT(0 == width); return true; } bool SkAAClip::trimTopBottom() { if (this->isEmpty()) { return false; } this->validate(); const int width = fBounds.width(); RunHead* head = fRunHead; YOffset* yoff = head->yoffsets(); YOffset* stop = yoff + head->fRowCount; const uint8_t* base = head->data(); // Look to trim away empty rows from the top. // int skip = 0; while (yoff < stop) { const uint8_t* data = base + yoff->fOffset; if (!row_is_all_zeros(data, width)) { break; } skip += 1; yoff += 1; } SkASSERT(skip <= head->fRowCount); if (skip == head->fRowCount) { return this->setEmpty(); } if (skip > 0) { // adjust fRowCount and fBounds.fTop, and slide all the data up // as we remove [skip] number of YOffset entries yoff = head->yoffsets(); int dy = yoff[skip - 1].fY + 1; for (int i = skip; i < head->fRowCount; ++i) { SkASSERT(yoff[i].fY >= dy); yoff[i].fY -= dy; } YOffset* dst = head->yoffsets(); size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize; memmove(dst, dst + skip, size - skip * sizeof(YOffset)); fBounds.fTop += dy; SkASSERT(!fBounds.isEmpty()); head->fRowCount -= skip; SkASSERT(head->fRowCount > 0); this->validate(); // need to reset this after the memmove base = head->data(); } // Look to trim away empty rows from the bottom. // We know that we have at least one non-zero row, so we can just walk // backwards without checking for running past the start. // stop = yoff = head->yoffsets() + head->fRowCount; do { yoff -= 1; } while (row_is_all_zeros(base + yoff->fOffset, width)); skip = SkToInt(stop - yoff - 1); SkASSERT(skip >= 0 && skip < head->fRowCount); if (skip > 0) { // removing from the bottom is easier than from the top, as we don't // have to adjust any of the Y values, we just have to trim the array memmove(stop - skip, stop, head->fDataSize); fBounds.fBottom = fBounds.fTop + yoff->fY + 1; SkASSERT(!fBounds.isEmpty()); head->fRowCount -= skip; SkASSERT(head->fRowCount > 0); } this->validate(); return true; } // can't validate before we're done, since trimming is part of the process of // making us valid after the Builder. Since we build from top to bottom, its // possible our fBounds.fBottom is bigger than our last scanline of data, so // we trim fBounds.fBottom back up. // // TODO: check for duplicates in X and Y to further compress our data // bool SkAAClip::trimBounds() { if (this->isEmpty()) { return false; } const RunHead* head = fRunHead; const YOffset* yoff = head->yoffsets(); SkASSERT(head->fRowCount > 0); const YOffset& lastY = yoff[head->fRowCount - 1]; SkASSERT(lastY.fY + 1 <= fBounds.height()); fBounds.fBottom = fBounds.fTop + lastY.fY + 1; SkASSERT(lastY.fY + 1 == fBounds.height()); SkASSERT(!fBounds.isEmpty()); return this->trimTopBottom() && this->trimLeftRight(); } /////////////////////////////////////////////////////////////////////////////// SkAAClip::SkAAClip() { fBounds.setEmpty(); fRunHead = nullptr; } SkAAClip::SkAAClip(const SkAAClip& src) { SkDEBUGCODE(fBounds.setEmpty();) // need this for validate fRunHead = nullptr; *this = src; } SkAAClip::~SkAAClip() { this->freeRuns(); } SkAAClip& SkAAClip::operator=(const SkAAClip& src) { AUTO_AACLIP_VALIDATE(*this); src.validate(); if (this != &src) { this->freeRuns(); fBounds = src.fBounds; fRunHead = src.fRunHead; if (fRunHead) { fRunHead->fRefCnt++; } } return *this; } bool SkAAClip::setEmpty() { this->freeRuns(); fBounds.setEmpty(); fRunHead = nullptr; return false; } bool SkAAClip::setRect(const SkIRect& bounds) { if (bounds.isEmpty()) { return this->setEmpty(); } AUTO_AACLIP_VALIDATE(*this); this->freeRuns(); fBounds = bounds; fRunHead = RunHead::AllocRect(bounds); SkASSERT(!this->isEmpty()); return true; } bool SkAAClip::isRect() const { if (this->isEmpty()) { return false; } const RunHead* head = fRunHead; if (head->fRowCount != 1) { return false; } const YOffset* yoff = head->yoffsets(); if (yoff->fY != fBounds.fBottom - 1) { return false; } const uint8_t* row = head->data() + yoff->fOffset; int width = fBounds.width(); do { if (row[1] != 0xFF) { return false; } int n = row[0]; SkASSERT(n <= width); width -= n; row += 2; } while (width > 0); return true; } bool SkAAClip::setRegion(const SkRegion& rgn) { if (rgn.isEmpty()) { return this->setEmpty(); } if (rgn.isRect()) { return this->setRect(rgn.getBounds()); } const SkIRect& bounds = rgn.getBounds(); const int offsetX = bounds.fLeft; const int offsetY = bounds.fTop; SkTDArray yArray; SkTDArray xArray; yArray.reserve(std::min(bounds.height(), 1024)); xArray.reserve(std::min(bounds.width(), 512) * 128); auto appendXRun = [&xArray](uint8_t value, int count) { SkASSERT(count >= 0); while (count > 0) { int n = count; if (n > 255) { n = 255; } uint8_t* data = xArray.append(2); data[0] = n; data[1] = value; count -= n; } }; SkRegion::Iterator iter(rgn); int prevRight = 0; int prevBot = 0; YOffset* currY = nullptr; for (; !iter.done(); iter.next()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); int bot = r.fBottom - offsetY; SkASSERT(bot >= prevBot); if (bot > prevBot) { if (currY) { // flush current row appendXRun(0, bounds.width() - prevRight); } // did we introduce an empty-gap from the prev row? int top = r.fTop - offsetY; if (top > prevBot) { currY = yArray.append(); currY->fY = top - 1; currY->fOffset = xArray.size(); appendXRun(0, bounds.width()); } // create a new record for this Y value currY = yArray.append(); currY->fY = bot - 1; currY->fOffset = xArray.size(); prevRight = 0; prevBot = bot; } int x = r.fLeft - offsetX; appendXRun(0, x - prevRight); int w = r.fRight - r.fLeft; appendXRun(0xFF, w); prevRight = x + w; SkASSERT(prevRight <= bounds.width()); } // flush last row appendXRun(0, bounds.width() - prevRight); // now pack everything into a RunHead RunHead* head = RunHead::Alloc(yArray.size(), xArray.size_bytes()); memcpy(head->yoffsets(), yArray.begin(), yArray.size_bytes()); memcpy(head->data(), xArray.begin(), xArray.size_bytes()); this->setEmpty(); fBounds = bounds; fRunHead = head; this->validate(); return true; } bool SkAAClip::setPath(const SkPath& path, const SkIRect& clip, bool doAA) { AUTO_AACLIP_VALIDATE(*this); if (clip.isEmpty()) { return this->setEmpty(); } SkIRect ibounds; // Since we assert that the BuilderBlitter will never blit outside the intersection // of clip and ibounds, we create the builder with the snug bounds. if (path.isInverseFillType()) { ibounds = clip; } else { path.getBounds().roundOut(&ibounds); if (ibounds.isEmpty() || !ibounds.intersect(clip)) { return this->setEmpty(); } } Builder builder(ibounds); return builder.blitPath(this, path, doAA); } /////////////////////////////////////////////////////////////////////////////// bool SkAAClip::op(const SkAAClip& other, SkClipOp op) { AUTO_AACLIP_VALIDATE(*this); if (this->isEmpty()) { // Once the clip is empty, it cannot become un-empty. return false; } SkIRect bounds = fBounds; switch(op) { case SkClipOp::kDifference: if (other.isEmpty() || !SkIRect::Intersects(fBounds, other.fBounds)) { // this remains unmodified and isn't empty return true; } break; case SkClipOp::kIntersect: if (other.isEmpty() || !bounds.intersect(other.fBounds)) { // the intersected clip becomes empty return this->setEmpty(); } break; } SkASSERT(SkIRect::Intersects(bounds, fBounds)); SkASSERT(SkIRect::Intersects(bounds, other.fBounds)); Builder builder(bounds); return builder.applyClipOp(this, other, op); } bool SkAAClip::op(const SkIRect& rect, SkClipOp op) { // It can be expensive to build a local aaclip before applying the op, so // we first see if we can restrict the bounds of new rect to our current // bounds, or note that the new rect subsumes our current clip. SkIRect pixelBounds = fBounds; if (!pixelBounds.intersect(rect)) { // No change or clip becomes empty depending on 'op' switch(op) { case SkClipOp::kDifference: return !this->isEmpty(); case SkClipOp::kIntersect: return this->setEmpty(); } SkUNREACHABLE; } else if (pixelBounds == fBounds) { // Wholly inside 'rect', so clip becomes empty or remains unchanged switch(op) { case SkClipOp::kDifference: return this->setEmpty(); case SkClipOp::kIntersect: return !this->isEmpty(); } SkUNREACHABLE; } else if (op == SkClipOp::kIntersect && this->quickContains(pixelBounds)) { // We become just the remaining rectangle return this->setRect(pixelBounds); } else { SkAAClip clip; clip.setRect(rect); return this->op(clip, op); } } bool SkAAClip::op(const SkRect& rect, SkClipOp op, bool doAA) { if (!doAA) { return this->op(rect.round(), op); } else { // Tighten bounds for "path" aaclip of the rect SkIRect pixelBounds = fBounds; if (!pixelBounds.intersect(rect.roundOut())) { // No change or clip becomes empty depending on 'op' switch(op) { case SkClipOp::kDifference: return !this->isEmpty(); case SkClipOp::kIntersect: return this->setEmpty(); } SkUNREACHABLE; } else if (rect.contains(SkRect::Make(fBounds))) { // Wholly inside 'rect', so clip becomes empty or remains unchanged switch(op) { case SkClipOp::kDifference: return this->setEmpty(); case SkClipOp::kIntersect: return !this->isEmpty(); } SkUNREACHABLE; } else if (op == SkClipOp::kIntersect && this->quickContains(pixelBounds)) { // We become just the rect intersected with pixel bounds (preserving fractional coords // for AA edges). return this->setPath(SkPath::Rect(rect), pixelBounds, /*doAA=*/true); } else { SkAAClip rectClip; rectClip.setPath(SkPath::Rect(rect), op == SkClipOp::kDifference ? fBounds : pixelBounds, /*doAA=*/true); return this->op(rectClip, op); } } } /////////////////////////////////////////////////////////////////////////////// bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const { if (nullptr == dst) { return !this->isEmpty(); } if (this->isEmpty()) { return dst->setEmpty(); } if (this != dst) { fRunHead->fRefCnt++; dst->freeRuns(); dst->fRunHead = fRunHead; dst->fBounds = fBounds; } dst->fBounds.offset(dx, dy); return true; } void SkAAClip::freeRuns() { if (fRunHead) { SkASSERT(fRunHead->fRefCnt.load() >= 1); if (1 == fRunHead->fRefCnt--) { sk_free(fRunHead); } } } const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const { SkASSERT(fRunHead); if (y < fBounds.fTop || y >= fBounds.fBottom) { return nullptr; } y -= fBounds.y(); // our yoffs values are relative to the top const YOffset* yoff = fRunHead->yoffsets(); while (yoff->fY < y) { yoff += 1; SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount); } if (lastYForRow) { *lastYForRow = fBounds.y() + yoff->fY; } return fRunHead->data() + yoff->fOffset; } const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const { SkASSERT(x >= fBounds.fLeft && x < fBounds.fRight); x -= fBounds.x(); // first skip up to X for (;;) { int n = data[0]; if (x < n) { if (initialCount) { *initialCount = n - x; } break; } data += 2; x -= n; } return data; } bool SkAAClip::quickContains(int left, int top, int right, int bottom) const { if (this->isEmpty()) { return false; } if (!fBounds.contains(SkIRect{left, top, right, bottom})) { return false; } int lastY SK_INIT_TO_AVOID_WARNING; const uint8_t* row = this->findRow(top, &lastY); if (lastY < bottom) { return false; } // now just need to check in X int count; row = this->findX(row, left, &count); int rectWidth = right - left; while (0xFF == row[1]) { if (count >= rectWidth) { return true; } rectWidth -= count; row += 2; count = row[0]; } return false; } /////////////////////////////////////////////////////////////////////////////// static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width, int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) { // we don't read our initial n from data, since the caller may have had to // clip it, hence the initialCount parameter. int n = initialCount; for (;;) { if (n > width) { n = width; } SkASSERT(n > 0); runs[0] = n; runs += n; aa[0] = data[1]; aa += n; data += 2; width -= n; if (0 == width) { break; } // load the next count n = data[0]; } runs[0] = 0; // sentinel } SkAAClipBlitter::~SkAAClipBlitter() { sk_free(fScanlineScratch); } void SkAAClipBlitter::ensureRunsAndAA() { if (nullptr == fScanlineScratch) { // add 1 so we can store the terminating run count of 0 int count = fAAClipBounds.width() + 1; // we use this either for fRuns + fAA, or a scaline of a mask // which may be as deep as 32bits fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor)); fRuns = (int16_t*)fScanlineScratch; fAA = (SkAlpha*)(fRuns + count); } } void SkAAClipBlitter::blitH(int x, int y, int width) { SkASSERT(width > 0); SkASSERT(fAAClipBounds.contains(x, y)); SkASSERT(fAAClipBounds.contains(x + width - 1, y)); const uint8_t* row = fAAClip->findRow(y); int initialCount; row = fAAClip->findX(row, x, &initialCount); if (initialCount >= width) { SkAlpha alpha = row[1]; if (0 == alpha) { return; } if (0xFF == alpha) { fBlitter->blitH(x, y, width); return; } } this->ensureRunsAndAA(); expandToRuns(row, initialCount, width, fRuns, fAA); fBlitter->blitAntiH(x, y, fAA, fRuns); } static void merge(const uint8_t* SK_RESTRICT row, int rowN, const SkAlpha* SK_RESTRICT srcAA, const int16_t* SK_RESTRICT srcRuns, SkAlpha* SK_RESTRICT dstAA, int16_t* SK_RESTRICT dstRuns, int width) { SkDEBUGCODE(int accumulated = 0;) int srcN = srcRuns[0]; // do we need this check? if (0 == srcN) { return; } for (;;) { SkASSERT(rowN > 0); SkASSERT(srcN > 0); unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]); int minN = std::min(srcN, rowN); dstRuns[0] = minN; dstRuns += minN; dstAA[0] = newAlpha; dstAA += minN; if (0 == (srcN -= minN)) { srcN = srcRuns[0]; // refresh srcRuns += srcN; srcAA += srcN; srcN = srcRuns[0]; // reload if (0 == srcN) { break; } } if (0 == (rowN -= minN)) { row += 2; rowN = row[0]; // reload } SkDEBUGCODE(accumulated += minN;) SkASSERT(accumulated <= width); } dstRuns[0] = 0; } void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { const uint8_t* row = fAAClip->findRow(y); int initialCount; row = fAAClip->findX(row, x, &initialCount); this->ensureRunsAndAA(); merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width()); fBlitter->blitAntiH(x, y, fAA, fRuns); } void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { if (fAAClip->quickContains(x, y, x + 1, y + height)) { fBlitter->blitV(x, y, height, alpha); return; } for (;;) { int lastY SK_INIT_TO_AVOID_WARNING; const uint8_t* row = fAAClip->findRow(y, &lastY); int dy = lastY - y + 1; if (dy > height) { dy = height; } height -= dy; row = fAAClip->findX(row, x); SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]); if (newAlpha) { fBlitter->blitV(x, y, dy, newAlpha); } SkASSERT(height >= 0); if (height <= 0) { break; } y = lastY + 1; } } void SkAAClipBlitter::blitRect(int x, int y, int width, int height) { if (fAAClip->quickContains(x, y, x + width, y + height)) { fBlitter->blitRect(x, y, width, height); return; } while (--height >= 0) { this->blitH(x, y, width); y += 1; } } typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row, int initialRowCount, void* dst); static void small_memcpy(void* dst, const void* src, size_t n) { memcpy(dst, src, n); } static void small_bzero(void* dst, size_t n) { sk_bzero(dst, n); } static inline uint8_t mergeOne(uint8_t value, unsigned alpha) { return SkMulDiv255Round(value, alpha); } static inline uint16_t mergeOne(uint16_t value, unsigned alpha) { unsigned r = SkGetPackedR16(value); unsigned g = SkGetPackedG16(value); unsigned b = SkGetPackedB16(value); return SkPackRGB16(SkMulDiv255Round(r, alpha), SkMulDiv255Round(g, alpha), SkMulDiv255Round(b, alpha)); } template void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) { const T* SK_RESTRICT src = static_cast(inSrc); T* SK_RESTRICT dst = static_cast(inDst); for (;;) { SkASSERT(rowN > 0); SkASSERT(srcN > 0); int n = std::min(rowN, srcN); unsigned rowA = row[1]; if (0xFF == rowA) { small_memcpy(dst, src, n * sizeof(T)); } else if (0 == rowA) { small_bzero(dst, n * sizeof(T)); } else { for (int i = 0; i < n; ++i) { dst[i] = mergeOne(src[i], rowA); } } if (0 == (srcN -= n)) { break; } src += n; dst += n; SkASSERT(rowN == n); row += 2; rowN = row[0]; } } static MergeAAProc find_merge_aa_proc(SkMask::Format format) { switch (format) { case SkMask::kBW_Format: SkDEBUGFAIL("unsupported"); return nullptr; case SkMask::kA8_Format: case SkMask::k3D_Format: return mergeT ; case SkMask::kLCD16_Format: return mergeT; default: SkDEBUGFAIL("unsupported"); return nullptr; } } static U8CPU bit2byte(int bitInAByte) { SkASSERT(bitInAByte <= 0xFF); // negation turns any non-zero into 0xFFFFFF??, so we just shift down // some value >= 8 to get a full FF value return -bitInAByte >> 8; } static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) { SkASSERT(SkMask::kBW_Format == srcMask.fFormat); SkASSERT(SkMask::kA8_Format == dstMask->fFormat); const int width = srcMask.fBounds.width(); const int height = srcMask.fBounds.height(); const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage; const size_t srcRB = srcMask.fRowBytes; uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage; const size_t dstRB = dstMask->fRowBytes; const int wholeBytes = width >> 3; const int leftOverBits = width & 7; for (int y = 0; y < height; ++y) { uint8_t* SK_RESTRICT d = dst; for (int i = 0; i < wholeBytes; ++i) { int srcByte = src[i]; d[0] = bit2byte(srcByte & (1 << 7)); d[1] = bit2byte(srcByte & (1 << 6)); d[2] = bit2byte(srcByte & (1 << 5)); d[3] = bit2byte(srcByte & (1 << 4)); d[4] = bit2byte(srcByte & (1 << 3)); d[5] = bit2byte(srcByte & (1 << 2)); d[6] = bit2byte(srcByte & (1 << 1)); d[7] = bit2byte(srcByte & (1 << 0)); d += 8; } if (leftOverBits) { int srcByte = src[wholeBytes]; for (int x = 0; x < leftOverBits; ++x) { *d++ = bit2byte(srcByte & 0x80); srcByte <<= 1; } } src += srcRB; dst += dstRB; } } void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) { SkASSERT(fAAClip->getBounds().contains(clip)); if (fAAClip->quickContains(clip)) { fBlitter->blitMask(origMask, clip); return; } const SkMask* mask = &origMask; // if we're BW, we need to upscale to A8 (ugh) SkMask grayMask; if (SkMask::kBW_Format == origMask.fFormat) { grayMask.fFormat = SkMask::kA8_Format; grayMask.fBounds = origMask.fBounds; grayMask.fRowBytes = origMask.fBounds.width(); size_t size = grayMask.computeImageSize(); grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size, SkAutoMalloc::kReuse_OnShrink); upscaleBW2A8(&grayMask, origMask); mask = &grayMask; } this->ensureRunsAndAA(); // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D // data into a temp block to support it better (ugh) const void* src = mask->getAddr(clip.fLeft, clip.fTop); const size_t srcRB = mask->fRowBytes; const int width = clip.width(); MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat); SkMask rowMask; rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat; rowMask.fBounds.fLeft = clip.fLeft; rowMask.fBounds.fRight = clip.fRight; rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1 rowMask.fImage = (uint8_t*)fScanlineScratch; int y = clip.fTop; const int stopY = y + clip.height(); do { int localStopY SK_INIT_TO_AVOID_WARNING; const uint8_t* row = fAAClip->findRow(y, &localStopY); // findRow returns last Y, not stop, so we add 1 localStopY = std::min(localStopY + 1, stopY); int initialCount; row = fAAClip->findX(row, clip.fLeft, &initialCount); do { mergeProc(src, width, row, initialCount, rowMask.fImage); rowMask.fBounds.fTop = y; rowMask.fBounds.fBottom = y + 1; fBlitter->blitMask(rowMask, rowMask.fBounds); src = (const void*)((const char*)src + srcRB); } while (++y < localStopY); } while (y < stopY); } const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) { return nullptr; }