/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/chromium/SkChromeRemoteGlyphCache.h" #include "include/core/SkDrawable.h" #include "include/core/SkSpan.h" #include "include/core/SkTypeface.h" #include "include/private/SkChecksum.h" #include "src/base/SkTLazy.h" #include "src/core/SkDevice.h" #include "src/core/SkDistanceFieldGen.h" #include "src/core/SkDraw.h" #include "src/core/SkEnumerate.h" #include "src/core/SkGlyph.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkStrike.h" #include "src/core/SkStrikeCache.h" #include "src/core/SkTHash.h" #include "src/core/SkTraceEvent.h" #include "src/core/SkTypeface_remote.h" #include "src/text/GlyphRun.h" #include "src/text/StrikeForGPU.h" #include #include #include #include #include #include #include #include #if defined(SK_GANESH) #include "include/gpu/GrContextOptions.h" #include "src/gpu/ganesh/GrDrawOpAtlas.h" #include "src/text/gpu/SDFTControl.h" #include "src/text/gpu/SubRunAllocator.h" #include "src/text/gpu/SubRunContainer.h" #include "src/text/gpu/TextBlob.h" #endif using namespace sktext; using namespace sktext::gpu; using namespace skglyph; namespace { // -- Serializer ----------------------------------------------------------------------------------- size_t pad(size_t size, size_t alignment) { return (size + (alignment - 1)) & ~(alignment - 1); } // Alignment between x86 and x64 differs for some types, in particular // int64_t and doubles have 4 and 8-byte alignment, respectively. // Be consistent even when writing and reading across different architectures. template size_t serialization_alignment() { return sizeof(T) == 8 ? 8 : alignof(T); } class Serializer { public: explicit Serializer(std::vector* buffer) : fBuffer{buffer} {} template T* emplace(Args&&... args) { auto result = this->allocate(sizeof(T), serialization_alignment()); return new (result) T{std::forward(args)...}; } template void write(const T& data) { T* result = (T*)this->allocate(sizeof(T), serialization_alignment()); memcpy(result, &data, sizeof(T)); } void writeDescriptor(const SkDescriptor& desc) { write(desc.getLength()); auto result = this->allocate(desc.getLength(), alignof(SkDescriptor)); memcpy(result, &desc, desc.getLength()); } void* allocate(size_t size, size_t alignment) { size_t aligned = pad(fBuffer->size(), alignment); fBuffer->resize(aligned + size); return &(*fBuffer)[aligned]; } private: std::vector* fBuffer; }; // -- Deserializer ------------------------------------------------------------------------------- // Note that the Deserializer is reading untrusted data, we need to guard against invalid data. class Deserializer { public: Deserializer(const volatile char* memory, size_t memorySize) : fMemory(memory), fMemorySize(memorySize) {} template bool read(T* val) { auto* result = this->ensureAtLeast(sizeof(T), serialization_alignment()); if (!result) return false; memcpy(val, const_cast(result), sizeof(T)); return true; } bool readDescriptor(SkAutoDescriptor* ad) { uint32_t descLength = 0u; if (!this->read(&descLength)) return false; auto* underlyingBuffer = this->ensureAtLeast(descLength, alignof(SkDescriptor)); if (!underlyingBuffer) return false; SkReadBuffer buffer((void*)underlyingBuffer, descLength); auto autoDescriptor = SkAutoDescriptor::MakeFromBuffer(buffer); if (!autoDescriptor.has_value()) { return false; } *ad = std::move(*autoDescriptor); return true; } const volatile void* read(size_t size, size_t alignment) { return this->ensureAtLeast(size, alignment); } size_t bytesRead() const { return fBytesRead; } private: const volatile char* ensureAtLeast(size_t size, size_t alignment) { size_t padded = pad(fBytesRead, alignment); // Not enough data. if (padded > fMemorySize) return nullptr; if (size > fMemorySize - padded) return nullptr; auto* result = fMemory + padded; fBytesRead = padded + size; return result; } // Note that we read each piece of memory only once to guard against TOCTOU violations. const volatile char* fMemory; size_t fMemorySize; size_t fBytesRead = 0u; }; // Paths use a SkWriter32 which requires 4 byte alignment. static const size_t kPathAlignment = 4u; static const size_t kDrawableAlignment = 8u; // -- StrikeSpec ----------------------------------------------------------------------------------- struct StrikeSpec { StrikeSpec() = default; StrikeSpec(SkTypefaceID typefaceID, SkDiscardableHandleId discardableHandleId) : fTypefaceID{typefaceID}, fDiscardableHandleId(discardableHandleId) {} SkTypefaceID fTypefaceID = 0u; SkDiscardableHandleId fDiscardableHandleId = 0u; }; // -- RemoteStrike ---------------------------------------------------------------------------- class RemoteStrike final : public sktext::StrikeForGPU { public: // N.B. RemoteStrike is not valid until ensureScalerContext is called. RemoteStrike(const SkStrikeSpec& strikeSpec, std::unique_ptr context, SkDiscardableHandleId discardableHandleId); ~RemoteStrike() override = default; void lock() override {} void unlock() override {} SkGlyphDigest digestFor(skglyph::ActionType, SkPackedGlyphID) override; bool prepareForImage(SkGlyph* glyph) override { this->ensureScalerContext(); glyph->setImage(&fAlloc, fContext.get()); return glyph->image() != nullptr; } bool prepareForPath(SkGlyph* glyph) override { this->ensureScalerContext(); glyph->setPath(&fAlloc, fContext.get()); return glyph->path() != nullptr; } bool prepareForDrawable(SkGlyph* glyph) override { this->ensureScalerContext(); glyph->setDrawable(&fAlloc, fContext.get()); return glyph->drawable() != nullptr; } void writePendingGlyphs(Serializer* serializer); SkDiscardableHandleId discardableHandleId() const { return fDiscardableHandleId; } const SkDescriptor& getDescriptor() const override { return *fDescriptor.getDesc(); } void setStrikeSpec(const SkStrikeSpec& strikeSpec); const SkGlyphPositionRoundingSpec& roundingSpec() const override { return fRoundingSpec; } sktext::SkStrikePromise strikePromise() override; bool hasPendingGlyphs() const { return !fMasksToSend.empty() || !fPathsToSend.empty() || !fDrawablesToSend.empty(); } void resetScalerContext(); private: void writeGlyphPath(const SkGlyph& glyph, Serializer* serializer) const; void writeGlyphDrawable(const SkGlyph& glyph, Serializer* serializer) const; void ensureScalerContext(); const SkAutoDescriptor fDescriptor; const SkDiscardableHandleId fDiscardableHandleId; const SkGlyphPositionRoundingSpec fRoundingSpec; // The context built using fDescriptor std::unique_ptr fContext; // fStrikeSpec is set every time getOrCreateCache is called. This allows the code to maintain // the fContext as lazy as possible. const SkStrikeSpec* fStrikeSpec; // Have the metrics been sent for this strike. Only send them once. bool fHaveSentFontMetrics{false}; // The masks and paths that currently reside in the GPU process. SkTHashMap fSentGlyphs; // The Masks, SDFT Mask, and Paths that need to be sent to the GPU task for the processed // TextBlobs. Cleared after diffs are serialized. std::vector fMasksToSend; std::vector fPathsToSend; std::vector fDrawablesToSend; // Alloc for storing bits and pieces of paths and drawables, Cleared after diffs are serialized. SkArenaAllocWithReset fAlloc{256}; }; RemoteStrike::RemoteStrike( const SkStrikeSpec& strikeSpec, std::unique_ptr context, uint32_t discardableHandleId) : fDescriptor{strikeSpec.descriptor()} , fDiscardableHandleId(discardableHandleId) , fRoundingSpec{context->isSubpixel(), context->computeAxisAlignmentForHText()} // N.B. context must come last because it is used above. , fContext{std::move(context)} { SkASSERT(fDescriptor.getDesc() != nullptr); SkASSERT(fContext != nullptr); } // No need to write fScalerContextBits because any needed image is already generated. void write_glyph(const SkGlyph& glyph, Serializer* serializer) { serializer->write(glyph.getPackedID()); serializer->write(glyph.advanceX()); serializer->write(glyph.advanceY()); serializer->write(glyph.width()); serializer->write(glyph.height()); serializer->write(glyph.top()); serializer->write(glyph.left()); serializer->write(glyph.maskFormat()); } void RemoteStrike::writePendingGlyphs(Serializer* serializer) { SkASSERT(this->hasPendingGlyphs()); // Write the desc. serializer->emplace(fContext->getTypeface()->uniqueID(), fDiscardableHandleId); serializer->writeDescriptor(*fDescriptor.getDesc()); serializer->emplace(fHaveSentFontMetrics); if (!fHaveSentFontMetrics) { // Write FontMetrics if not sent before. SkFontMetrics fontMetrics; fContext->getFontMetrics(&fontMetrics); serializer->write(fontMetrics); fHaveSentFontMetrics = true; } // Write mask glyphs serializer->emplace(fMasksToSend.size()); for (SkGlyph& glyph : fMasksToSend) { SkASSERT(SkMask::IsValidFormat(glyph.maskFormat())); write_glyph(glyph, serializer); auto imageSize = glyph.imageSize(); if (imageSize > 0 && SkGlyphDigest::FitsInAtlas(glyph)) { glyph.setImage(serializer->allocate(imageSize, glyph.formatAlignment())); fContext->getImage(glyph); } } fMasksToSend.clear(); // Write glyphs paths. serializer->emplace(fPathsToSend.size()); for (SkGlyph& glyph : fPathsToSend) { SkASSERT(SkMask::IsValidFormat(glyph.maskFormat())); write_glyph(glyph, serializer); this->writeGlyphPath(glyph, serializer); } fPathsToSend.clear(); // Write glyphs drawables. serializer->emplace(fDrawablesToSend.size()); for (SkGlyph& glyph : fDrawablesToSend) { SkASSERT(SkMask::IsValidFormat(glyph.maskFormat())); write_glyph(glyph, serializer); writeGlyphDrawable(glyph, serializer); } fDrawablesToSend.clear(); fAlloc.reset(); } void RemoteStrike::ensureScalerContext() { if (fContext == nullptr) { fContext = fStrikeSpec->createScalerContext(); } } void RemoteStrike::resetScalerContext() { fContext = nullptr; fStrikeSpec = nullptr; } void RemoteStrike::setStrikeSpec(const SkStrikeSpec& strikeSpec) { fStrikeSpec = &strikeSpec; } void RemoteStrike::writeGlyphPath(const SkGlyph& glyph, Serializer* serializer) const { if (glyph.isEmpty()) { serializer->write(0u); return; } const SkPath* path = glyph.path(); if (path == nullptr) { serializer->write(0u); return; } size_t pathSize = path->writeToMemory(nullptr); serializer->write(pathSize); path->writeToMemory(serializer->allocate(pathSize, kPathAlignment)); serializer->write(glyph.pathIsHairline()); } void RemoteStrike::writeGlyphDrawable(const SkGlyph& glyph, Serializer* serializer) const { if (glyph.isEmpty()) { serializer->write(0u); return; } SkDrawable* drawable = glyph.drawable(); if (drawable == nullptr) { serializer->write(0u); return; } sk_sp picture(drawable->newPictureSnapshot()); sk_sp data = picture->serialize(); serializer->write(data->size()); memcpy(serializer->allocate(data->size(), kDrawableAlignment), data->data(), data->size()); } SkGlyphDigest RemoteStrike::digestFor(ActionType actionType, SkPackedGlyphID packedGlyphID) { SkGlyphDigest* digestPtr = fSentGlyphs.find(packedGlyphID); if (digestPtr != nullptr && digestPtr->actionFor(actionType) != GlyphAction::kUnset) { return *digestPtr; } SkGlyph* glyph; this->ensureScalerContext(); switch (actionType) { case kPath: { fPathsToSend.emplace_back(fContext->makeGlyph(packedGlyphID, &fAlloc)); glyph = &fPathsToSend.back(); break; } case kDrawable: { fDrawablesToSend.emplace_back(fContext->makeGlyph(packedGlyphID, &fAlloc)); glyph = &fDrawablesToSend.back(); break; } default: { fMasksToSend.emplace_back(fContext->makeGlyph(packedGlyphID, &fAlloc)); glyph = &fMasksToSend.back(); break; } } if (digestPtr == nullptr) { digestPtr = fSentGlyphs.set(packedGlyphID, SkGlyphDigest{0, *glyph}); } digestPtr->setActionFor(actionType, glyph, this); return *digestPtr; } sktext::SkStrikePromise RemoteStrike::strikePromise() { return sktext::SkStrikePromise{*this->fStrikeSpec}; } // -- WireTypeface --------------------------------------------------------------------------------- struct WireTypeface { WireTypeface() = default; WireTypeface(SkTypefaceID typefaceId, int glyphCount, SkFontStyle style, bool isFixed, bool needsCurrentColor) : fTypefaceID(typefaceId), fGlyphCount(glyphCount), fStyle(style), fIsFixed(isFixed), fGlyphMaskNeedsCurrentColor(needsCurrentColor) {} SkTypefaceID fTypefaceID{0}; int fGlyphCount{0}; SkFontStyle fStyle; bool fIsFixed{false}; // Used for COLRv0 or COLRv1 fonts that may need the 0xFFFF special palette // index to represent foreground color. This information needs to be on here // to determine how this typeface can be cached. bool fGlyphMaskNeedsCurrentColor{false}; }; } // namespace // -- SkStrikeServerImpl --------------------------------------------------------------------------- class SkStrikeServerImpl final : public sktext::StrikeForGPUCacheInterface { public: explicit SkStrikeServerImpl( SkStrikeServer::DiscardableHandleManager* discardableHandleManager); // SkStrikeServer API methods sk_sp serializeTypeface(SkTypeface*); void writeStrikeData(std::vector* memory); sk_sp findOrCreateScopedStrike(const SkStrikeSpec& strikeSpec) override; // Methods for testing void setMaxEntriesInDescriptorMapForTesting(size_t count); size_t remoteStrikeMapSizeForTesting() const; private: inline static constexpr size_t kMaxEntriesInDescriptorMap = 2000u; void checkForDeletedEntries(); sk_sp getOrCreateCache(const SkStrikeSpec& strikeSpec); struct MapOps { size_t operator()(const SkDescriptor* key) const { return key->getChecksum(); } bool operator()(const SkDescriptor* lhs, const SkDescriptor* rhs) const { return *lhs == *rhs; } }; using DescToRemoteStrike = std::unordered_map, MapOps, MapOps>; DescToRemoteStrike fDescToRemoteStrike; SkStrikeServer::DiscardableHandleManager* const fDiscardableHandleManager; SkTHashSet fCachedTypefaces; size_t fMaxEntriesInDescriptorMap = kMaxEntriesInDescriptorMap; // Cached serialized typefaces. SkTHashMap> fSerializedTypefaces; // State cached until the next serialization. SkTHashSet fRemoteStrikesToSend; std::vector fTypefacesToSend; }; SkStrikeServerImpl::SkStrikeServerImpl(SkStrikeServer::DiscardableHandleManager* dhm) : fDiscardableHandleManager(dhm) { SkASSERT(fDiscardableHandleManager); } void SkStrikeServerImpl::setMaxEntriesInDescriptorMapForTesting(size_t count) { fMaxEntriesInDescriptorMap = count; } size_t SkStrikeServerImpl::remoteStrikeMapSizeForTesting() const { return fDescToRemoteStrike.size(); } sk_sp SkStrikeServerImpl::serializeTypeface(SkTypeface* tf) { auto* data = fSerializedTypefaces.find(SkTypeface::UniqueID(tf)); if (data) { return *data; } WireTypeface wire(SkTypeface::UniqueID(tf), tf->countGlyphs(), tf->fontStyle(), tf->isFixedPitch(), tf->glyphMaskNeedsCurrentColor()); data = fSerializedTypefaces.set(SkTypeface::UniqueID(tf), SkData::MakeWithCopy(&wire, sizeof(wire))); return *data; } void SkStrikeServerImpl::writeStrikeData(std::vector* memory) { #if defined(SK_TRACE_GLYPH_RUN_PROCESS) SkString msg; msg.appendf("\nBegin send strike differences\n"); #endif size_t strikesToSend = 0; fRemoteStrikesToSend.foreach ([&](RemoteStrike* strike) { if (strike->hasPendingGlyphs()) { strikesToSend++; } else { strike->resetScalerContext(); } }); if (strikesToSend == 0 && fTypefacesToSend.empty()) { fRemoteStrikesToSend.reset(); return; } Serializer serializer(memory); serializer.emplace(fTypefacesToSend.size()); for (const auto& tf : fTypefacesToSend) { serializer.write(tf); } fTypefacesToSend.clear(); serializer.emplace(SkTo(strikesToSend)); fRemoteStrikesToSend.foreach ( [&](RemoteStrike* strike) { if (strike->hasPendingGlyphs()) { strike->writePendingGlyphs(&serializer); strike->resetScalerContext(); } #ifdef SK_DEBUG auto it = fDescToRemoteStrike.find(&strike->getDescriptor()); SkASSERT(it != fDescToRemoteStrike.end()); SkASSERT(it->second.get() == strike); #endif #if defined(SK_TRACE_GLYPH_RUN_PROCESS) msg.append(strike->getDescriptor().dumpRec()); #endif } ); fRemoteStrikesToSend.reset(); #if defined(SK_TRACE_GLYPH_RUN_PROCESS) msg.appendf("End send strike differences"); SkDebugf("%s\n", msg.c_str()); #endif } sk_sp SkStrikeServerImpl::findOrCreateScopedStrike( const SkStrikeSpec& strikeSpec) { return this->getOrCreateCache(strikeSpec); } void SkStrikeServerImpl::checkForDeletedEntries() { auto it = fDescToRemoteStrike.begin(); while (fDescToRemoteStrike.size() > fMaxEntriesInDescriptorMap && it != fDescToRemoteStrike.end()) { RemoteStrike* strike = it->second.get(); if (fDiscardableHandleManager->isHandleDeleted(strike->discardableHandleId())) { // If we are trying to send the strike, then do not erase it. if (!fRemoteStrikesToSend.contains(strike)) { // Erase returns the iterator following the removed element. it = fDescToRemoteStrike.erase(it); continue; } } ++it; } } sk_sp SkStrikeServerImpl::getOrCreateCache(const SkStrikeSpec& strikeSpec) { // In cases where tracing is turned off, make sure not to get an unused function warning. // Lambdaize the function. TRACE_EVENT1("skia", "RecForDesc", "rec", TRACE_STR_COPY( [&strikeSpec](){ auto ptr = strikeSpec.descriptor().findEntry(kRec_SkDescriptorTag, nullptr); SkScalerContextRec rec; std::memcpy((void*)&rec, ptr, sizeof(rec)); return rec.dump(); }().c_str() ) ); if (auto it = fDescToRemoteStrike.find(&strikeSpec.descriptor()); it != fDescToRemoteStrike.end()) { // We have processed the RemoteStrike before. Reuse it. sk_sp strike = it->second; strike->setStrikeSpec(strikeSpec); if (fRemoteStrikesToSend.contains(strike.get())) { // Already tracking return strike; } // Strike is in unknown state on GPU. Start tracking strike on GPU by locking it. bool locked = fDiscardableHandleManager->lockHandle(it->second->discardableHandleId()); if (locked) { fRemoteStrikesToSend.add(strike.get()); return strike; } // If it wasn't locked, then forget this strike, and build it anew below. fDescToRemoteStrike.erase(it); } const SkTypeface& typeface = strikeSpec.typeface(); // Create a new RemoteStrike. Start by processing the typeface. const SkTypefaceID typefaceId = typeface.uniqueID(); if (!fCachedTypefaces.contains(typefaceId)) { fCachedTypefaces.add(typefaceId); fTypefacesToSend.emplace_back(typefaceId, typeface.countGlyphs(), typeface.fontStyle(), typeface.isFixedPitch(), typeface.glyphMaskNeedsCurrentColor()); } auto context = strikeSpec.createScalerContext(); auto newHandle = fDiscardableHandleManager->createHandle(); // Locked on creation auto remoteStrike = sk_make_sp(strikeSpec, std::move(context), newHandle); remoteStrike->setStrikeSpec(strikeSpec); fRemoteStrikesToSend.add(remoteStrike.get()); auto d = &remoteStrike->getDescriptor(); fDescToRemoteStrike[d] = remoteStrike; checkForDeletedEntries(); return remoteStrike; } // -- GlyphTrackingDevice -------------------------------------------------------------------------- #if defined(SK_GANESH) class GlyphTrackingDevice final : public SkNoPixelsDevice { public: GlyphTrackingDevice( const SkISize& dimensions, const SkSurfaceProps& props, SkStrikeServerImpl* server, sk_sp colorSpace, sktext::gpu::SDFTControl SDFTControl) : SkNoPixelsDevice(SkIRect::MakeSize(dimensions), props, std::move(colorSpace)) , fStrikeServerImpl(server) , fSDFTControl(SDFTControl) { SkASSERT(fStrikeServerImpl != nullptr); } SkBaseDevice* onCreateDevice(const CreateInfo& cinfo, const SkPaint*) override { const SkSurfaceProps surfaceProps(this->surfaceProps().flags(), cinfo.fPixelGeometry); return new GlyphTrackingDevice(cinfo.fInfo.dimensions(), surfaceProps, fStrikeServerImpl, cinfo.fInfo.refColorSpace(), fSDFTControl); } SkStrikeDeviceInfo strikeDeviceInfo() const override { return {this->surfaceProps(), this->scalerContextFlags(), &fSDFTControl}; } protected: void onDrawGlyphRunList(SkCanvas*, const sktext::GlyphRunList& glyphRunList, const SkPaint& initialPaint, const SkPaint& drawingPaint) override { SkMatrix drawMatrix = this->localToDevice(); drawMatrix.preTranslate(glyphRunList.origin().x(), glyphRunList.origin().y()); // Just ignore the resulting SubRunContainer. Since we're passing in a null SubRunAllocator // no SubRuns will be produced. STSubRunAllocator tempAlloc; auto container = SubRunContainer::MakeInAlloc(glyphRunList, drawMatrix, drawingPaint, this->strikeDeviceInfo(), fStrikeServerImpl, &tempAlloc, SubRunContainer::kStrikeCalculationsOnly, "Cache Diff"); // Calculations only. No SubRuns. SkASSERT(container->isEmpty()); } sk_sp convertGlyphRunListToSlug(const sktext::GlyphRunList& glyphRunList, const SkPaint& initialPaint, const SkPaint& drawingPaint) override { // Full matrix for placing glyphs. SkMatrix positionMatrix = this->localToDevice(); positionMatrix.preTranslate(glyphRunList.origin().x(), glyphRunList.origin().y()); #ifdef SK_SUPPORT_LEGACY_SLUG_CONVERT // TODO these two passes can be converted into one when the SkRemoteGlyphCache's strike // cache is fortified with enough information for supporting slug creation. // Use the lightweight strike cache provided by SkRemoteGlyphCache through fPainter to do // the analysis. Just ignore the resulting SubRunContainer. Since we're passing in a null // SubRunAllocator no SubRuns will be produced. STSubRunAllocator tempAlloc; auto container = SubRunContainer::MakeInAlloc(glyphRunList, positionMatrix, drawingPaint, this->strikeDeviceInfo(), fStrikeServerImpl, &tempAlloc, SubRunContainer::kStrikeCalculationsOnly, "Convert Slug Analysis"); // Calculations only. No SubRuns. SkASSERT(container->isEmpty()); // Use the glyph strike cache to get actual glyph information. return skgpu::v1::MakeSlug(this->localToDevice(), glyphRunList, initialPaint, drawingPaint, this->strikeDeviceInfo(), SkStrikeCache::GlobalStrikeCache()); #else // Use the SkStrikeServer's strike cache to generate the Slug. return skgpu::v1::MakeSlug(this->localToDevice(), glyphRunList, initialPaint, drawingPaint, this->strikeDeviceInfo(), fStrikeServerImpl); #endif } private: SkStrikeServerImpl* const fStrikeServerImpl; const sktext::gpu::SDFTControl fSDFTControl; }; #endif // defined(SK_GANESH) // -- SkStrikeServer ------------------------------------------------------------------------------- SkStrikeServer::SkStrikeServer(DiscardableHandleManager* dhm) : fImpl(new SkStrikeServerImpl{dhm}) { } SkStrikeServer::~SkStrikeServer() = default; std::unique_ptr SkStrikeServer::makeAnalysisCanvas(int width, int height, const SkSurfaceProps& props, sk_sp colorSpace, bool DFTSupport, bool DFTPerspSupport) { #if defined(SK_GANESH) GrContextOptions ctxOptions; #if !defined(SK_DISABLE_SDF_TEXT) auto control = sktext::gpu::SDFTControl{DFTSupport, props.isUseDeviceIndependentFonts(), DFTPerspSupport, ctxOptions.fMinDistanceFieldFontSize, ctxOptions.fGlyphsAsPathsFontSize}; #else auto control = sktext::gpu::SDFTControl{}; #endif sk_sp trackingDevice(new GlyphTrackingDevice( SkISize::Make(width, height), props, this->impl(), std::move(colorSpace), control)); #else sk_sp trackingDevice(new SkNoPixelsDevice( SkIRect::MakeWH(width, height), props, std::move(colorSpace))); #endif return std::make_unique(std::move(trackingDevice)); } sk_sp SkStrikeServer::serializeTypeface(SkTypeface* tf) { return fImpl->serializeTypeface(tf); } void SkStrikeServer::writeStrikeData(std::vector* memory) { fImpl->writeStrikeData(memory); } SkStrikeServerImpl* SkStrikeServer::impl() { return fImpl.get(); } void SkStrikeServer::setMaxEntriesInDescriptorMapForTesting(size_t count) { fImpl->setMaxEntriesInDescriptorMapForTesting(count); } size_t SkStrikeServer::remoteStrikeMapSizeForTesting() const { return fImpl->remoteStrikeMapSizeForTesting(); } // -- DiscardableStrikePinner ---------------------------------------------------------------------- class DiscardableStrikePinner : public SkStrikePinner { public: DiscardableStrikePinner(SkDiscardableHandleId discardableHandleId, sk_sp manager) : fDiscardableHandleId(discardableHandleId), fManager(std::move(manager)) {} ~DiscardableStrikePinner() override = default; bool canDelete() override { return fManager->deleteHandle(fDiscardableHandleId); } void assertValid() override { fManager->assertHandleValid(fDiscardableHandleId); } private: const SkDiscardableHandleId fDiscardableHandleId; sk_sp fManager; }; // -- SkStrikeClientImpl --------------------------------------------------------------------------- class SkStrikeClientImpl { public: explicit SkStrikeClientImpl(sk_sp, bool isLogging = true, SkStrikeCache* strikeCache = nullptr); sk_sp deserializeTypeface(const void* data, size_t length); bool readStrikeData(const volatile void* memory, size_t memorySize); bool translateTypefaceID(SkAutoDescriptor* descriptor) const; private: class PictureBackedGlyphDrawable final : public SkDrawable { public: PictureBackedGlyphDrawable(sk_sp self) : fSelf(std::move(self)) {} private: sk_sp fSelf; SkRect onGetBounds() override { return fSelf->cullRect(); } size_t onApproximateBytesUsed() override { return sizeof(PictureBackedGlyphDrawable) + fSelf->approximateBytesUsed(); } void onDraw(SkCanvas* canvas) override { canvas->drawPicture(fSelf); } }; static bool ReadGlyph(SkTLazy& glyph, Deserializer* deserializer); sk_sp addTypeface(const WireTypeface& wire); SkTHashMap> fRemoteTypefaceIdToTypeface; sk_sp fDiscardableHandleManager; SkStrikeCache* const fStrikeCache; const bool fIsLogging; }; SkStrikeClientImpl::SkStrikeClientImpl( sk_sp discardableManager, bool isLogging, SkStrikeCache* strikeCache) : fDiscardableHandleManager(std::move(discardableManager)), fStrikeCache{strikeCache ? strikeCache : SkStrikeCache::GlobalStrikeCache()}, fIsLogging{isLogging} {} // No need to write fScalerContextBits because any needed image is already generated. bool SkStrikeClientImpl::ReadGlyph(SkTLazy& glyph, Deserializer* deserializer) { SkPackedGlyphID glyphID; if (!deserializer->read(&glyphID)) return false; glyph.init(glyphID); if (!deserializer->read(&glyph->fAdvanceX)) return false; if (!deserializer->read(&glyph->fAdvanceY)) return false; if (!deserializer->read(&glyph->fWidth)) return false; if (!deserializer->read(&glyph->fHeight)) return false; if (!deserializer->read(&glyph->fTop)) return false; if (!deserializer->read(&glyph->fLeft)) return false; uint8_t maskFormat; if (!deserializer->read(&maskFormat)) return false; if (!SkMask::IsValidFormat(maskFormat)) return false; glyph->fMaskFormat = static_cast(maskFormat); SkDEBUGCODE(glyph->fAdvancesBoundsFormatAndInitialPathDone = true;) return true; } // Change the path count to track the line number of the failing read. // TODO: change __LINE__ back to glyphPathsCount when bug chromium:1287356 is closed. #define READ_FAILURE \ { \ SkDebugf("Bad font data serialization line: %d", __LINE__); \ SkStrikeClient::DiscardableHandleManager::ReadFailureData data = { \ memorySize, deserializer.bytesRead(), typefaceSize, \ strikeCount, glyphImagesCount, __LINE__}; \ fDiscardableHandleManager->notifyReadFailure(data); \ return false; \ } bool SkStrikeClientImpl::readStrikeData(const volatile void* memory, size_t memorySize) { SkASSERT(memorySize != 0u); Deserializer deserializer(static_cast(memory), memorySize); uint64_t typefaceSize = 0; uint64_t strikeCount = 0; uint64_t glyphImagesCount = 0; uint64_t glyphPathsCount = 0; uint64_t glyphDrawablesCount = 0; if (!deserializer.read(&typefaceSize)) READ_FAILURE for (size_t i = 0; i < typefaceSize; ++i) { WireTypeface wire; if (!deserializer.read(&wire)) READ_FAILURE this->addTypeface(wire); } #if defined(SK_TRACE_GLYPH_RUN_PROCESS) SkString msg; msg.appendf("\nBegin receive strike differences\n"); #endif if (!deserializer.read(&strikeCount)) READ_FAILURE for (size_t i = 0; i < strikeCount; ++i) { StrikeSpec spec; if (!deserializer.read(&spec)) READ_FAILURE SkAutoDescriptor ad; if (!deserializer.readDescriptor(&ad)) READ_FAILURE #if defined(SK_TRACE_GLYPH_RUN_PROCESS) msg.appendf(" Received descriptor:\n%s", ad.getDesc()->dumpRec().c_str()); #endif bool fontMetricsInitialized; if (!deserializer.read(&fontMetricsInitialized)) READ_FAILURE SkFontMetrics fontMetrics{}; if (!fontMetricsInitialized) { if (!deserializer.read(&fontMetrics)) READ_FAILURE } // Preflight the TypefaceID before doing the Descriptor translation. auto* tfPtr = fRemoteTypefaceIdToTypeface.find(spec.fTypefaceID); // Received a TypefaceID for a typeface we don't know about. if (!tfPtr) READ_FAILURE // Replace the ContextRec in the desc from the server to create the client // side descriptor. if (!this->translateTypefaceID(&ad)) READ_FAILURE SkDescriptor* clientDesc = ad.getDesc(); #if defined(SK_TRACE_GLYPH_RUN_PROCESS) msg.appendf(" Mapped descriptor:\n%s", clientDesc->dumpRec().c_str()); #endif auto strike = fStrikeCache->findStrike(*clientDesc); // Make sure strike is pinned if (strike) { strike->verifyPinnedStrike(); } // Metrics are only sent the first time. If the metrics are not initialized, there must // be an existing strike. if (fontMetricsInitialized && strike == nullptr) READ_FAILURE if (strike == nullptr) { // Note that we don't need to deserialize the effects since we won't be generating any // glyphs here anyway, and the desc is still correct since it includes the serialized // effects. SkStrikeSpec strikeSpec{*clientDesc, *tfPtr}; strike = fStrikeCache->createStrike( strikeSpec, &fontMetrics, std::make_unique( spec.fDiscardableHandleId, fDiscardableHandleManager)); } if (!deserializer.read(&glyphImagesCount)) READ_FAILURE for (size_t j = 0; j < glyphImagesCount; j++) { SkTLazy glyph; if (!ReadGlyph(glyph, &deserializer)) READ_FAILURE if (!glyph->isEmpty() && SkGlyphDigest::FitsInAtlas(*glyph)) { const volatile void* image = deserializer.read(glyph->imageSize(), glyph->formatAlignment()); if (!image) READ_FAILURE glyph->fImage = (void*)image; } strike->mergeGlyphAndImage(glyph->getPackedID(), *glyph); } if (!deserializer.read(&glyphPathsCount)) READ_FAILURE for (size_t j = 0; j < glyphPathsCount; j++) { SkTLazy glyph; if (!ReadGlyph(glyph, &deserializer)) READ_FAILURE SkGlyph* allocatedGlyph = strike->mergeGlyphAndImage(glyph->getPackedID(), *glyph); SkPath* pathPtr = nullptr; SkPath path; uint64_t pathSize = 0u; bool hairline = false; if (!deserializer.read(&pathSize)) READ_FAILURE if (pathSize > 0) { auto* pathData = deserializer.read(pathSize, kPathAlignment); if (!pathData) READ_FAILURE if (!path.readFromMemory(const_cast(pathData), pathSize)) READ_FAILURE pathPtr = &path; if (!deserializer.read(&hairline)) READ_FAILURE } strike->mergePath(allocatedGlyph, pathPtr, hairline); } if (!deserializer.read(&glyphDrawablesCount)) READ_FAILURE for (size_t j = 0; j < glyphDrawablesCount; j++) { SkTLazy glyph; if (!ReadGlyph(glyph, &deserializer)) READ_FAILURE SkGlyph* allocatedGlyph = strike->mergeGlyphAndImage(glyph->getPackedID(), *glyph); sk_sp drawable; uint64_t drawableSize = 0u; if (!deserializer.read(&drawableSize)) READ_FAILURE if (drawableSize > 0) { auto* drawableData = deserializer.read(drawableSize, kDrawableAlignment); if (!drawableData) READ_FAILURE sk_sp picture(SkPicture::MakeFromData( const_cast(drawableData), drawableSize)); if (!picture) READ_FAILURE drawable = sk_make_sp(std::move(picture)); } strike->mergeDrawable(allocatedGlyph, std::move(drawable)); } } #if defined(SK_TRACE_GLYPH_RUN_PROCESS) msg.appendf("End receive strike differences"); SkDebugf("%s\n", msg.c_str()); #endif return true; } bool SkStrikeClientImpl::translateTypefaceID(SkAutoDescriptor* toChange) const { SkDescriptor& descriptor = *toChange->getDesc(); // Rewrite the typefaceID in the rec. { uint32_t size; // findEntry returns a const void*, remove the const in order to update in place. void* ptr = const_cast(descriptor.findEntry(kRec_SkDescriptorTag, &size)); SkScalerContextRec rec; std::memcpy((void*)&rec, ptr, size); // Get the local typeface from remote typefaceID. auto* tfPtr = fRemoteTypefaceIdToTypeface.find(rec.fTypefaceID); // Received a strike for a typeface which doesn't exist. if (!tfPtr) { return false; } // Update the typeface id to work with the client side. rec.fTypefaceID = tfPtr->get()->uniqueID(); std::memcpy(ptr, &rec, size); } descriptor.computeChecksum(); return true; } sk_sp SkStrikeClientImpl::deserializeTypeface(const void* buf, size_t len) { WireTypeface wire; if (len != sizeof(wire)) return nullptr; memcpy(&wire, buf, sizeof(wire)); return this->addTypeface(wire); } sk_sp SkStrikeClientImpl::addTypeface(const WireTypeface& wire) { auto* typeface = fRemoteTypefaceIdToTypeface.find(wire.fTypefaceID); if (typeface) return *typeface; auto newTypeface = sk_make_sp( wire.fTypefaceID, wire.fGlyphCount, wire.fStyle, wire.fIsFixed, wire.fGlyphMaskNeedsCurrentColor, fDiscardableHandleManager, fIsLogging); fRemoteTypefaceIdToTypeface.set(wire.fTypefaceID, newTypeface); return std::move(newTypeface); } // SkStrikeClient ---------------------------------------------------------------------------------- SkStrikeClient::SkStrikeClient(sk_sp discardableManager, bool isLogging, SkStrikeCache* strikeCache) : fImpl{new SkStrikeClientImpl{std::move(discardableManager), isLogging, strikeCache}} {} SkStrikeClient::~SkStrikeClient() = default; bool SkStrikeClient::readStrikeData(const volatile void* memory, size_t memorySize) { return fImpl->readStrikeData(memory, memorySize); } sk_sp SkStrikeClient::deserializeTypeface(const void* buf, size_t len) { return fImpl->deserializeTypeface(buf, len); } bool SkStrikeClient::translateTypefaceID(SkAutoDescriptor* descriptor) const { return fImpl->translateTypefaceID(descriptor); } #if defined(SK_GANESH) sk_sp SkStrikeClient::deserializeSlug(const void* data, size_t size) const { return sktext::gpu::Slug::Deserialize(data, size, this); } #endif // defined(SK_GANESH)