/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h" #include #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrGeometryProcessor.h" #include "src/gpu/ganesh/GrPipeline.h" #include "src/gpu/ganesh/GrRenderTarget.h" #include "src/gpu/ganesh/GrShaderCaps.h" #include "src/gpu/ganesh/GrTexture.h" #include "src/gpu/ganesh/GrXferProcessor.h" #include "src/gpu/ganesh/effects/GrTextureEffect.h" #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" #include "src/sksl/SkSLCompiler.h" using namespace skia_private; const int GrGLSLProgramBuilder::kVarsPerBlock = 8; GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrProgramDesc& desc, const GrProgramInfo& programInfo) : fVS(this) , fFS(this) , fDesc(desc) , fProgramInfo(programInfo) , fNumFragmentSamplers(0) {} GrGLSLProgramBuilder::~GrGLSLProgramBuilder() = default; void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, uint32_t featureBit, const char* extensionName) { if (shaders & kVertex_GrShaderFlag) { fVS.addFeature(featureBit, extensionName); } if (shaders & kFragment_GrShaderFlag) { fFS.addFeature(featureBit, extensionName); } } bool GrGLSLProgramBuilder::emitAndInstallProcs() { // First we loop over all of the installed processors and collect coord transforms. These will // be sent to the ProgramImpl in its emitCode function SkString inputColor; SkString inputCoverage; if (!this->emitAndInstallPrimProc(&inputColor, &inputCoverage)) { return false; } if (!this->emitAndInstallDstTexture()) { return false; } if (!this->emitAndInstallFragProcs(&inputColor, &inputCoverage)) { return false; } if (!this->emitAndInstallXferProc(inputColor, inputCoverage)) { return false; } fGPImpl->emitTransformCode(&fVS, this->uniformHandler()); return this->checkSamplerCounts(); } bool GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) { const GrGeometryProcessor& geomProc = this->geometryProcessor(); // Program builders have a bit of state we need to clear with each effect this->advanceStage(); this->nameExpression(outputColor, "outputColor"); this->nameExpression(outputCoverage, "outputCoverage"); SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform( nullptr, kVertex_GrShaderFlag, SkSLType::kFloat4, SkSL::Compiler::RTADJUST_NAME); fFS.codeAppendf("// Stage %d, %s\n", fStageIndex, geomProc.name()); fVS.codeAppendf("// Primitive Processor %s\n", geomProc.name()); SkASSERT(!fGPImpl); fGPImpl = geomProc.makeProgramImpl(*this->shaderCaps()); AutoSTArray<4, SamplerHandle> texSamplers(geomProc.numTextureSamplers()); for (int i = 0; i < geomProc.numTextureSamplers(); ++i) { SkString name; name.printf("TextureSampler_%d", i); const auto& sampler = geomProc.textureSampler(i); texSamplers[i] = this->emitSampler(geomProc.textureSampler(i).backendFormat(), sampler.samplerState(), sampler.swizzle(), name.c_str()); if (!texSamplers[i].isValid()) { return false; } } GrGeometryProcessor::ProgramImpl::EmitArgs args(&fVS, &fFS, this->varyingHandler(), this->uniformHandler(), this->shaderCaps(), geomProc, outputColor->c_str(), outputCoverage->c_str(), texSamplers.get()); std::tie(fFPCoordsMap, fLocalCoordsVar) = fGPImpl->emitCode(args, this->pipeline()); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(geomProc);) return true; } bool GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) { int fpCount = this->pipeline().numFragmentProcessors(); SkASSERT(fFPImpls.empty()); fFPImpls.reserve(fpCount); for (int i = 0; i < fpCount; ++i) { SkString* inOut = this->pipeline().isColorFragmentProcessor(i) ? color : coverage; SkString output; const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); fFPImpls.push_back(fp.makeProgramImpl()); output = this->emitRootFragProc(fp, *fFPImpls.back(), *inOut, output); if (output.isEmpty()) { return false; } *inOut = std::move(output); } return true; } SkString GrGLSLProgramBuilder::emitRootFragProc(const GrFragmentProcessor& fp, GrFragmentProcessor::ProgramImpl& impl, const SkString& input, SkString output) { SkASSERT(input.size()); // Program builders have a bit of state we need to clear with each effect this->advanceStage(); this->nameExpression(&output, "output"); fFS.codeAppendf("half4 %s;", output.c_str()); bool ok = true; fp.visitWithImpls([&, samplerIdx = 0](const GrFragmentProcessor& fp, GrFragmentProcessor::ProgramImpl& impl) mutable { if (auto* te = fp.asTextureEffect()) { SkString name; name.printf("TextureSampler_%d", samplerIdx++); GrSamplerState samplerState = te->samplerState(); const GrBackendFormat& format = te->view().proxy()->backendFormat(); skgpu::Swizzle swizzle = te->view().swizzle(); SamplerHandle handle = this->emitSampler(format, samplerState, swizzle, name.c_str()); if (!handle.isValid()) { ok = false; return; } static_cast(impl).setSamplerHandle(handle); } }, impl); if (!ok) { return {}; } this->writeFPFunction(fp, impl); if (fp.isBlendFunction()) { if (this->fragmentProcessorHasCoordsParam(&fp)) { fFS.codeAppendf("%s = %s(%s, half4(1), %s);", output.c_str(), impl.functionName(), input.c_str(), fLocalCoordsVar.c_str()); } else { fFS.codeAppendf("%s = %s(%s, half4(1));", output.c_str(), impl.functionName(), input.c_str()); } } else { if (this->fragmentProcessorHasCoordsParam(&fp)) { fFS.codeAppendf("%s = %s(%s, %s);", output.c_str(), impl.functionName(), input.c_str(), fLocalCoordsVar.c_str()); } else { fFS.codeAppendf("%s = %s(%s);", output.c_str(), impl.functionName(), input.c_str()); } } // We have to check that effects and the code they emit are consistent, ie if an effect asks // for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(fp);) return output; } void GrGLSLProgramBuilder::writeChildFPFunctions(const GrFragmentProcessor& fp, GrFragmentProcessor::ProgramImpl& impl) { fSubstageIndices.push_back(0); for (int i = 0; i < impl.numChildProcessors(); ++i) { GrFragmentProcessor::ProgramImpl* childImpl = impl.childProcessor(i); if (!childImpl) { continue; } const GrFragmentProcessor* childFP = fp.childProcessor(i); SkASSERT(childFP); this->writeFPFunction(*childFP, *childImpl); ++fSubstageIndices.back(); } fSubstageIndices.pop_back(); } void GrGLSLProgramBuilder::writeFPFunction(const GrFragmentProcessor& fp, GrFragmentProcessor::ProgramImpl& impl) { constexpr const char* kDstColor = "_dst"; const char* const inputColor = fp.isBlendFunction() ? "_src" : "_input"; const char* sampleCoords = "_coords"; fFS.nextStage(); // Conceptually, an FP is always sampled at a particular coordinate. However, if it is only // sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that // would have been passed to _coords is lifted to the vertex shader and // varying. In that case it uses that variable and we do not pass a second argument for _coords. GrShaderVar params[3]; int numParams = 0; params[numParams++] = GrShaderVar(inputColor, SkSLType::kHalf4); if (fp.isBlendFunction()) { // Blend functions take a dest color as input. params[numParams++] = GrShaderVar(kDstColor, SkSLType::kHalf4); } if (this->fragmentProcessorHasCoordsParam(&fp)) { params[numParams++] = GrShaderVar(sampleCoords, SkSLType::kFloat2); } else { // Either doesn't use coords at all or sampled through a chain of passthrough/matrix // samples usages. In the latter case the coords are emitted in the vertex shader as a // varying, so this only has to access it. Add a float2 _coords variable that maps to the // associated varying and replaces the absent 2nd argument to the fp's function. GrShaderVar varying = fFPCoordsMap[&fp].coordsVarying; switch (varying.getType()) { case SkSLType::kVoid: SkASSERT(!fp.usesSampleCoordsDirectly()); break; case SkSLType::kFloat2: // Just point the local coords to the varying sampleCoords = varying.getName().c_str(); break; case SkSLType::kFloat3: // Must perform the perspective divide in the frag shader based on the // varying, and since we won't actually have a function parameter for local // coords, add it as a local variable. fFS.codeAppendf("float2 %s = %s.xy / %s.z;\n", sampleCoords, varying.getName().c_str(), varying.getName().c_str()); break; default: SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n", varying.getName().c_str(), (int)varying.getType()); break; } } SkASSERT(numParams <= (int)std::size(params)); // First, emit every child's function. This needs to happen (even for children that aren't // sampled), so that all of the expected uniforms are registered. this->writeChildFPFunctions(fp, impl); GrFragmentProcessor::ProgramImpl::EmitArgs args(&fFS, this->uniformHandler(), this->shaderCaps(), fp, inputColor, kDstColor, sampleCoords); impl.emitCode(args); impl.setFunctionName(fFS.getMangledFunctionName(args.fFp.name())); fFS.emitFunction(SkSLType::kHalf4, impl.functionName(), SkSpan(params, numParams), fFS.code().c_str()); fFS.deleteStage(); } bool GrGLSLProgramBuilder::emitAndInstallDstTexture() { fDstTextureOrigin = kTopLeft_GrSurfaceOrigin; const GrSurfaceProxyView& dstView = this->pipeline().dstProxyView(); if (this->pipeline().usesDstTexture()) { // Set up a sampler handle for the destination texture. GrTextureProxy* dstTextureProxy = dstView.asTextureProxy(); SkASSERT(dstTextureProxy); const skgpu::Swizzle& swizzle = dstView.swizzle(); fDstTextureSamplerHandle = this->emitSampler(dstTextureProxy->backendFormat(), GrSamplerState(), swizzle, "DstTextureSampler"); if (!fDstTextureSamplerHandle.isValid()) { return false; } fDstTextureOrigin = dstView.origin(); SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal); // Declare a _dstColor global variable which samples from the dest-texture sampler at the // top of the fragment shader. const char* dstTextureCoordsName; fUniformHandles.fDstTextureCoordsUni = this->uniformHandler()->addUniform( /*owner=*/nullptr, kFragment_GrShaderFlag, SkSLType::kHalf4, "DstTextureCoords", &dstTextureCoordsName); fFS.codeAppend("// Read color from copy of the destination\n"); if (dstTextureProxy->textureType() == GrTextureType::k2D) { fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy) * %s.zw;\n", dstTextureCoordsName, dstTextureCoordsName); if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) { fFS.codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n"); } } else { SkASSERT(dstTextureProxy->textureType() == GrTextureType::kRectangle); fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy);\n", dstTextureCoordsName); if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) { // When the texture type is kRectangle, instead of a scale stored in the zw of the // uniform, we store the height in z so we can flip the coord here. fFS.codeAppendf("_dstTexCoord.y = %s.z - _dstTexCoord.y;\n", dstTextureCoordsName); } } const char* dstColor = fFS.dstColor(); SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor); fFS.definitionAppend(dstColorDecl.c_str()); fFS.codeAppendf("%s = ", dstColor); fFS.appendTextureLookup(fDstTextureSamplerHandle, "_dstTexCoord"); fFS.codeAppend(";\n"); } else if (this->pipeline().usesDstInputAttachment()) { // Set up an input attachment for the destination texture. const skgpu::Swizzle& swizzle = dstView.swizzle(); fDstTextureSamplerHandle = this->emitInputSampler(swizzle, "DstTextureInput"); if (!fDstTextureSamplerHandle.isValid()) { return false; } // Populate the _dstColor variable by loading from the input attachment at the top of the // fragment shader. fFS.codeAppend("// Read color from input attachment\n"); const char* dstColor = fFS.dstColor(); SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor); fFS.definitionAppend(dstColorDecl.c_str()); fFS.codeAppendf("%s = ", dstColor); fFS.appendInputLoad(fDstTextureSamplerHandle); fFS.codeAppend(";\n"); } return true; } bool GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn, const SkString& coverageIn) { // Program builders have a bit of state we need to clear with each effect this->advanceStage(); SkASSERT(!fXPImpl); const GrXferProcessor& xp = this->pipeline().getXferProcessor(); fXPImpl = xp.makeProgramImpl(); // Enable dual source secondary output if we have one if (xp.hasSecondaryOutput()) { fFS.enableSecondaryOutput(); } SkString openBrace; openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); fFS.codeAppend(openBrace.c_str()); SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)"); GrXferProcessor::ProgramImpl::EmitArgs args( &fFS, this->uniformHandler(), this->shaderCaps(), xp, finalInColor.c_str(), coverageIn.size() ? coverageIn.c_str() : "float4(1)", fFS.getPrimaryColorOutputName(), fFS.getSecondaryColorOutputName(), fDstTextureSamplerHandle, fDstTextureOrigin, this->pipeline().writeSwizzle()); fXPImpl->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(xp);) fFS.codeAppend("}"); return true; } GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler( const GrBackendFormat& backendFormat, GrSamplerState state, const skgpu::Swizzle& swizzle, const char* name) { ++fNumFragmentSamplers; return this->uniformHandler()->addSampler(backendFormat, state, swizzle, name, this->shaderCaps()); } GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitInputSampler( const skgpu::Swizzle& swizzle, const char* name) { return this->uniformHandler()->addInputSampler(swizzle, name); } bool GrGLSLProgramBuilder::checkSamplerCounts() { const GrShaderCaps& shaderCaps = *this->shaderCaps(); if (fNumFragmentSamplers > shaderCaps.fMaxFragmentSamplers) { GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); return false; } return true; } #ifdef SK_DEBUG void GrGLSLProgramBuilder::verify(const GrGeometryProcessor& geomProc) { SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly); } void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { SkASSERT(fp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly); } void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly); } #endif SkString GrGLSLProgramBuilder::getMangleSuffix() const { SkASSERT(fStageIndex >= 0); SkString suffix; suffix.printf("_S%d", fStageIndex); for (auto c : fSubstageIndices) { suffix.appendf("_c%d", c); } return suffix; } SkString GrGLSLProgramBuilder::nameVariable(char prefix, const char* name, bool mangle) { SkString out; if ('\0' == prefix) { out = name; } else { out.printf("%c%s", prefix, name); } if (mangle) { SkString suffix = this->getMangleSuffix(); // Names containing "__" are reserved; add "x" if needed to avoid consecutive underscores. const char *underscoreSplitter = out.endsWith('_') ? "x" : ""; out.appendf("%s%s", underscoreSplitter, suffix.c_str()); } return out; } void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) { // Name a variable to hold stage result. If we already have a valid output name, use that as-is; // otherwise, create a new mangled one. if (output->isEmpty()) { *output = this->nameVariable(/*prefix=*/'\0', baseName); } } void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { this->uniformHandler()->appendUniformDecls(visibility, out); } void GrGLSLProgramBuilder::addRTFlipUniform(const char* name) { SkASSERT(!fUniformHandles.fRTFlipUni.isValid()); GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); fUniformHandles.fRTFlipUni = uniformHandler->internalAddUniformArray(nullptr, kFragment_GrShaderFlag, SkSLType::kFloat2, name, false, 0, nullptr); } bool GrGLSLProgramBuilder::fragmentProcessorHasCoordsParam(const GrFragmentProcessor* fp) { return fFPCoordsMap[fp].hasCoordsParam; } void GrGLSLProgramBuilder::finalizeShaders() { this->varyingHandler()->finalize(); fVS.finalize(kVertex_GrShaderFlag); fFS.finalize(kFragment_GrShaderFlag); }