/* * Copyright 2019 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/ops/OpsTask.h" #include "include/gpu/GrRecordingContext.h" #include "src/base/SkScopeExit.h" #include "src/core/SkRectPriv.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/ganesh/GrAttachment.h" #include "src/gpu/ganesh/GrAuditTrail.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrGpu.h" #include "src/gpu/ganesh/GrMemoryPool.h" #include "src/gpu/ganesh/GrNativeRect.h" #include "src/gpu/ganesh/GrOpFlushState.h" #include "src/gpu/ganesh/GrOpsRenderPass.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/GrRenderTarget.h" #include "src/gpu/ganesh/GrResourceAllocator.h" #include "src/gpu/ganesh/GrResourceProvider.h" #include "src/gpu/ganesh/GrTexture.h" #include "src/gpu/ganesh/geometry/GrRect.h" //////////////////////////////////////////////////////////////////////////////// namespace { // Experimentally we have found that most combining occurs within the first 10 comparisons. static const int kMaxOpMergeDistance = 10; static const int kMaxOpChainDistance = 10; //////////////////////////////////////////////////////////////////////////////// inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); } GrOpsRenderPass* create_render_pass(GrGpu* gpu, GrRenderTarget* rt, bool useMSAASurface, GrAttachment* stencil, GrSurfaceOrigin origin, const SkIRect& bounds, GrLoadOp colorLoadOp, const std::array& loadClearColor, GrLoadOp stencilLoadOp, GrStoreOp stencilStoreOp, const SkTArray& sampledProxies, GrXferBarrierFlags renderPassXferBarriers) { const GrOpsRenderPass::LoadAndStoreInfo kColorLoadStoreInfo { colorLoadOp, GrStoreOp::kStore, loadClearColor }; // TODO: // We would like to (at this level) only ever clear & discard. We would need // to stop splitting up higher level OpsTasks for copyOps to achieve that. // Note: we would still need SB loads and stores but they would happen at a // lower level (inside the VK command buffer). const GrOpsRenderPass::StencilLoadAndStoreInfo stencilLoadAndStoreInfo { stencilLoadOp, stencilStoreOp, }; return gpu->getOpsRenderPass(rt, useMSAASurface, stencil, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo, sampledProxies, renderPassXferBarriers); } } // anonymous namespace //////////////////////////////////////////////////////////////////////////////// namespace skgpu::v1 { inline OpsTask::OpChain::List::List(GrOp::Owner op) : fHead(std::move(op)), fTail(fHead.get()) { this->validate(); } inline OpsTask::OpChain::List::List(List&& that) { *this = std::move(that); } inline OpsTask::OpChain::List& OpsTask::OpChain::List::operator=(List&& that) { fHead = std::move(that.fHead); fTail = that.fTail; that.fTail = nullptr; this->validate(); return *this; } inline GrOp::Owner OpsTask::OpChain::List::popHead() { SkASSERT(fHead); auto temp = fHead->cutChain(); std::swap(temp, fHead); if (!fHead) { SkASSERT(fTail == temp.get()); fTail = nullptr; } return temp; } inline GrOp::Owner OpsTask::OpChain::List::removeOp(GrOp* op) { #ifdef SK_DEBUG auto head = op; while (head->prevInChain()) { head = head->prevInChain(); } SkASSERT(head == fHead.get()); #endif auto prev = op->prevInChain(); if (!prev) { SkASSERT(op == fHead.get()); return this->popHead(); } auto temp = prev->cutChain(); if (auto next = temp->cutChain()) { prev->chainConcat(std::move(next)); } else { SkASSERT(fTail == op); fTail = prev; } this->validate(); return temp; } inline void OpsTask::OpChain::List::pushHead(GrOp::Owner op) { SkASSERT(op); SkASSERT(op->isChainHead()); SkASSERT(op->isChainTail()); if (fHead) { op->chainConcat(std::move(fHead)); fHead = std::move(op); } else { fHead = std::move(op); fTail = fHead.get(); } } inline void OpsTask::OpChain::List::pushTail(GrOp::Owner op) { SkASSERT(op->isChainTail()); fTail->chainConcat(std::move(op)); fTail = fTail->nextInChain(); } inline void OpsTask::OpChain::List::validate() const { #ifdef SK_DEBUG if (fHead) { SkASSERT(fTail); fHead->validateChain(fTail); } #endif } //////////////////////////////////////////////////////////////////////////////// OpsTask::OpChain::OpChain(GrOp::Owner op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* appliedClip, const GrDstProxyView* dstProxyView) : fList{std::move(op)} , fProcessorAnalysis(processorAnalysis) , fAppliedClip(appliedClip) { if (fProcessorAnalysis.requiresDstTexture()) { SkASSERT(dstProxyView && dstProxyView->proxy()); fDstProxyView = *dstProxyView; } fBounds = fList.head()->bounds(); } void OpsTask::OpChain::visitProxies(const GrVisitProxyFunc& func) const { if (fList.empty()) { return; } for (const auto& op : GrOp::ChainRange<>(fList.head())) { op.visitProxies(func); } if (fDstProxyView.proxy()) { func(fDstProxyView.proxy(), GrMipmapped::kNo); } if (fAppliedClip) { fAppliedClip->visitProxies(func); } } void OpsTask::OpChain::deleteOps() { while (!fList.empty()) { // Since the value goes out of scope immediately, the GrOp::Owner deletes the op. fList.popHead(); } } // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that // the two chains are chainable. Returns the new chain. OpsTask::OpChain::List OpsTask::OpChain::DoConcat(List chainA, List chainB, const GrCaps& caps, SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting // at chain a's tail and working toward the head. We produce one of the following outcomes: // 1) b's head is merged into an op in a. // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.) // 3) b's head is popped from chain a and added at the tail of a. // After result 3 we don't want to attempt to merge the next head of b with the new tail of a, // as we assume merges were already attempted when chain b was created. So we keep track of the // original tail of a and start our iteration of a there. We also track the bounds of the nodes // appended to chain a that will be skipped for bounds testing. If the original tail of a is // merged into an op in b (case 2) then we advance the "original tail" towards the head of a. GrOp* origATail = chainA.tail(); SkRect skipBounds = SkRectPriv::MakeLargestInverted(); do { int numMergeChecks = 0; bool merged = false; bool noSkip = (origATail == chainA.tail()); SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted())); bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds); SkRect forwardMergeBounds = skipBounds; GrOp* a = origATail; while (a) { bool canForwardMerge = (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds); if (canForwardMerge || canBackwardMerge) { auto result = a->combineIfPossible(chainB.head(), opsTaskArena, caps); SkASSERT(result != GrOp::CombineResult::kCannotCombine); merged = (result == GrOp::CombineResult::kMerged); GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", chainB.head()->name(), chainB.head()->uniqueID(), a->name(), a->uniqueID()); } if (merged) { GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head()); if (canBackwardMerge) { // The GrOp::Owner releases the op. chainB.popHead(); } else { // We merged the contents of b's head into a. We will replace b's head with a in // chain b. SkASSERT(canForwardMerge); if (a == origATail) { origATail = a->prevInChain(); } GrOp::Owner detachedA = chainA.removeOp(a); // The GrOp::Owner releases the op. chainB.popHead(); chainB.pushHead(std::move(detachedA)); if (chainA.empty()) { // We merged all the nodes in chain a to chain b. return chainB; } } break; } else { if (++numMergeChecks == kMaxOpMergeDistance) { break; } forwardMergeBounds.joinNonEmptyArg(a->bounds()); canBackwardMerge = canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds()); a = a->prevInChain(); } } // If we weren't able to merge b's head then pop b's head from chain b and make it the new // tail of a. if (!merged) { chainA.pushTail(chainB.popHead()); skipBounds.joinNonEmptyArg(chainA.tail()->bounds()); } } while (!chainB.empty()); return chainA; } // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns // whether the operation succeeded. On success, the provided list will be returned empty. bool OpsTask::OpChain::tryConcat( List* list, GrProcessorSet::Analysis processorAnalysis, const GrDstProxyView& dstProxyView, const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps, SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { SkASSERT(!fList.empty()); SkASSERT(!list->empty()); SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxyView.proxy())); SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxyView.proxy())); // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug. if (fList.head()->classID() != list->head()->classID() || SkToBool(fAppliedClip) != SkToBool(appliedClip) || (fAppliedClip && *fAppliedClip != *appliedClip) || (fProcessorAnalysis.requiresNonOverlappingDraws() != processorAnalysis.requiresNonOverlappingDraws()) || (fProcessorAnalysis.requiresNonOverlappingDraws() && // Non-overlaping draws are only required when Ganesh will either insert a barrier, // or read back a new dst texture between draws. In either case, we can neither // chain nor combine overlapping Ops. GrRectsTouchOrOverlap(fBounds, bounds)) || (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) || (fProcessorAnalysis.requiresDstTexture() && fDstProxyView != dstProxyView)) { return false; } SkDEBUGCODE(bool first = true;) do { switch (fList.tail()->combineIfPossible(list->head(), opsTaskArena, caps)) { case GrOp::CombineResult::kCannotCombine: // If an op supports chaining then it is required that chaining is transitive and // that if any two ops in two different chains can merge then the two chains // may also be chained together. Thus, we should only hit this on the first // iteration. SkASSERT(first); return false; case GrOp::CombineResult::kMayChain: fList = DoConcat(std::move(fList), std::exchange(*list, List()), caps, opsTaskArena, auditTrail); // The above exchange cleared out 'list'. The list needs to be empty now for the // loop to terminate. SkASSERT(list->empty()); break; case GrOp::CombineResult::kMerged: { GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", list->tail()->name(), list->tail()->uniqueID(), list->head()->name(), list->head()->uniqueID()); GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head()); // The GrOp::Owner releases the op. list->popHead(); break; } } SkDEBUGCODE(first = false); } while (!list->empty()); // The new ops were successfully merged and/or chained onto our own. fBounds.joinPossiblyEmptyRect(bounds); return true; } bool OpsTask::OpChain::prependChain(OpChain* that, const GrCaps& caps, SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { if (!that->tryConcat(&fList, fProcessorAnalysis, fDstProxyView, fAppliedClip, fBounds, caps, opsTaskArena, auditTrail)) { this->validate(); // append failed return false; } // 'that' owns the combined chain. Move it into 'this'. SkASSERT(fList.empty()); fList = std::move(that->fList); fBounds = that->fBounds; that->fDstProxyView.setProxyView({}); if (that->fAppliedClip && that->fAppliedClip->hasCoverageFragmentProcessor()) { // Obliterates the processor. that->fAppliedClip->detachCoverageFragmentProcessor(); } this->validate(); return true; } GrOp::Owner OpsTask::OpChain::appendOp( GrOp::Owner op, GrProcessorSet::Analysis processorAnalysis, const GrDstProxyView* dstProxyView, const GrAppliedClip* appliedClip, const GrCaps& caps, SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { const GrDstProxyView noDstProxyView; if (!dstProxyView) { dstProxyView = &noDstProxyView; } SkASSERT(op->isChainHead() && op->isChainTail()); SkRect opBounds = op->bounds(); List chain(std::move(op)); if (!this->tryConcat(&chain, processorAnalysis, *dstProxyView, appliedClip, opBounds, caps, opsTaskArena, auditTrail)) { // append failed, give the op back to the caller. this->validate(); return chain.popHead(); } SkASSERT(chain.empty()); this->validate(); return nullptr; } inline void OpsTask::OpChain::validate() const { #ifdef SK_DEBUG fList.validate(); for (const auto& op : GrOp::ChainRange<>(fList.head())) { // Not using SkRect::contains because we allow empty rects. SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop && fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom); } #endif } //////////////////////////////////////////////////////////////////////////////// OpsTask::OpsTask(GrDrawingManager* drawingMgr, GrSurfaceProxyView view, GrAuditTrail* auditTrail, sk_sp arenas) : GrRenderTask() , fAuditTrail(auditTrail) , fUsesMSAASurface(view.asRenderTargetProxy()->numSamples() > 1) , fTargetSwizzle(view.swizzle()) , fTargetOrigin(view.origin()) , fArenas{std::move(arenas)} SkDEBUGCODE(, fNumClips(0)) { this->addTarget(drawingMgr, view.detachProxy()); } void OpsTask::deleteOps() { for (auto& chain : fOpChains) { chain.deleteOps(); } fOpChains.clear(); } OpsTask::~OpsTask() { this->deleteOps(); } void OpsTask::addOp(GrDrawingManager* drawingMgr, GrOp::Owner op, GrTextureResolveManager textureResolveManager, const GrCaps& caps) { auto addDependency = [&](GrSurfaceProxy* p, GrMipmapped mipmapped) { this->addDependency(drawingMgr, p, mipmapped, textureResolveManager, caps); }; op->visitProxies(addDependency); this->recordOp(std::move(op), false/*usesMSAA*/, GrProcessorSet::EmptySetAnalysis(), nullptr, nullptr, caps); } void OpsTask::addDrawOp(GrDrawingManager* drawingMgr, GrOp::Owner op, bool usesMSAA, const GrProcessorSet::Analysis& processorAnalysis, GrAppliedClip&& clip, const GrDstProxyView& dstProxyView, GrTextureResolveManager textureResolveManager, const GrCaps& caps) { auto addDependency = [&](GrSurfaceProxy* p, GrMipmapped mipmapped) { this->addSampledTexture(p); this->addDependency(drawingMgr, p, mipmapped, textureResolveManager, caps); }; op->visitProxies(addDependency); clip.visitProxies(addDependency); if (dstProxyView.proxy()) { if (!(dstProxyView.dstSampleFlags() & GrDstSampleFlags::kAsInputAttachment)) { this->addSampledTexture(dstProxyView.proxy()); } if (dstProxyView.dstSampleFlags() & GrDstSampleFlags::kRequiresTextureBarrier) { fRenderPassXferBarriers |= GrXferBarrierFlags::kTexture; } addDependency(dstProxyView.proxy(), GrMipmapped::kNo); SkASSERT(!(dstProxyView.dstSampleFlags() & GrDstSampleFlags::kAsInputAttachment) || dstProxyView.offset().isZero()); } if (processorAnalysis.usesNonCoherentHWBlending()) { fRenderPassXferBarriers |= GrXferBarrierFlags::kBlend; } this->recordOp(std::move(op), usesMSAA, processorAnalysis, clip.doesClip() ? &clip : nullptr, &dstProxyView, caps); } void OpsTask::endFlush(GrDrawingManager* drawingMgr) { fLastClipStackGenID = SK_InvalidUniqueID; this->deleteOps(); fDeferredProxies.clear(); fSampledProxies.clear(); fAuditTrail = nullptr; GrRenderTask::endFlush(drawingMgr); } void OpsTask::onPrePrepare(GrRecordingContext* context) { SkASSERT(this->isClosed()); // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we // can end up with OpsTasks that only have a discard load op and no ops. For vulkan validation // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled // we shouldn't end up with OpsTasks with only discard. if (this->isColorNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { return; } TRACE_EVENT0("skia.gpu", TRACE_FUNC); GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); for (const auto& chain : fOpChains) { if (chain.shouldExecute()) { chain.head()->prePrepare(context, dstView, chain.appliedClip(), chain.dstProxyView(), fRenderPassXferBarriers, fColorLoadOp); } } } void OpsTask::onPrepare(GrOpFlushState* flushState) { SkASSERT(this->target(0)->peekRenderTarget()); SkASSERT(this->isClosed()); // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we // can end up with OpsTasks that only have a discard load op and no ops. For vulkan validation // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled // we shouldn't end up with OpsTasks with only discard. if (this->isColorNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { return; } TRACE_EVENT0_ALWAYS("skia.gpu", TRACE_FUNC); flushState->setSampledProxyArray(&fSampledProxies); GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); // Loop over the ops that haven't yet been prepared. for (const auto& chain : fOpChains) { if (chain.shouldExecute()) { GrOpFlushState::OpArgs opArgs(chain.head(), dstView, fUsesMSAASurface, chain.appliedClip(), chain.dstProxyView(), fRenderPassXferBarriers, fColorLoadOp); flushState->setOpArgs(&opArgs); // Temporary debugging helper: for debugging prePrepare w/o going through DDLs // Delete once most of the GrOps have an onPrePrepare. // chain.head()->prePrepare(flushState->gpu()->getContext(), &this->target(0), // chain.appliedClip()); // GrOp::prePrepare may or may not have been called at this point chain.head()->prepare(flushState); flushState->setOpArgs(nullptr); } } flushState->setSampledProxyArray(nullptr); } // TODO: this is where GrOp::renderTarget is used (which is fine since it // is at flush time). However, we need to store the RenderTargetProxy in the // Ops and instantiate them here. bool OpsTask::onExecute(GrOpFlushState* flushState) { SkASSERT(this->numTargets() == 1); GrRenderTargetProxy* proxy = this->target(0)->asRenderTargetProxy(); SkASSERT(proxy); SK_AT_SCOPE_EXIT(proxy->clearArenas()); if (this->isColorNoOp() || fClippedContentBounds.isEmpty()) { return false; } TRACE_EVENT0_ALWAYS("skia.gpu", TRACE_FUNC); // Make sure load ops are not kClear if the GPU needs to use draws for clears SkASSERT(fColorLoadOp != GrLoadOp::kClear || !flushState->gpu()->caps()->performColorClearsAsDraws()); const GrCaps& caps = *flushState->gpu()->caps(); GrRenderTarget* renderTarget = proxy->peekRenderTarget(); SkASSERT(renderTarget); GrAttachment* stencil = nullptr; if (proxy->needsStencil()) { SkASSERT(proxy->canUseStencil(caps)); if (!flushState->resourceProvider()->attachStencilAttachment(renderTarget, fUsesMSAASurface)) { SkDebugf("WARNING: failed to attach a stencil buffer. Rendering will be skipped.\n"); return false; } stencil = renderTarget->getStencilAttachment(fUsesMSAASurface); } GrLoadOp stencilLoadOp; switch (fInitialStencilContent) { case StencilContent::kDontCare: stencilLoadOp = GrLoadOp::kDiscard; break; case StencilContent::kUserBitsCleared: SkASSERT(!caps.performStencilClearsAsDraws()); SkASSERT(stencil); if (caps.discardStencilValuesAfterRenderPass()) { // Always clear the stencil if it is being discarded after render passes. This is // also an optimization because we are on a tiler and it avoids loading the values // from memory. stencilLoadOp = GrLoadOp::kClear; break; } if (!stencil->hasPerformedInitialClear()) { stencilLoadOp = GrLoadOp::kClear; stencil->markHasPerformedInitialClear(); break; } // SurfaceDrawContexts are required to leave the user stencil bits in a cleared state // once finished, meaning the stencil values will always remain cleared after the // initial clear. Just fall through to reloading the existing (cleared) stencil values // from memory. [[fallthrough]]; case StencilContent::kPreserved: SkASSERT(stencil); stencilLoadOp = GrLoadOp::kLoad; break; } // NOTE: If fMustPreserveStencil is set, then we are executing a surfaceDrawContext that split // its opsTask. // // FIXME: We don't currently flag render passes that don't use stencil at all. In that case // their store op might be "discard", and we currently make the assumption that a discard will // not invalidate what's already in main memory. This is probably ok for now, but certainly // something we want to address soon. GrStoreOp stencilStoreOp = (caps.discardStencilValuesAfterRenderPass() && !fMustPreserveStencil) ? GrStoreOp::kDiscard : GrStoreOp::kStore; GrOpsRenderPass* renderPass = create_render_pass(flushState->gpu(), proxy->peekRenderTarget(), fUsesMSAASurface, stencil, fTargetOrigin, fClippedContentBounds, fColorLoadOp, fLoadClearColor, stencilLoadOp, stencilStoreOp, fSampledProxies, fRenderPassXferBarriers); if (!renderPass) { return false; } flushState->setOpsRenderPass(renderPass); renderPass->begin(); GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); // Draw all the generated geometry. for (const auto& chain : fOpChains) { if (!chain.shouldExecute()) { continue; } GrOpFlushState::OpArgs opArgs(chain.head(), dstView, fUsesMSAASurface, chain.appliedClip(), chain.dstProxyView(), fRenderPassXferBarriers, fColorLoadOp); flushState->setOpArgs(&opArgs); chain.head()->execute(flushState, chain.bounds()); flushState->setOpArgs(nullptr); } renderPass->end(); flushState->gpu()->submit(renderPass); flushState->setOpsRenderPass(nullptr); return true; } void OpsTask::setColorLoadOp(GrLoadOp op, std::array color) { fColorLoadOp = op; fLoadClearColor = color; if (GrLoadOp::kClear == fColorLoadOp) { GrSurfaceProxy* proxy = this->target(0); SkASSERT(proxy); fTotalBounds = proxy->backingStoreBoundsRect(); } } void OpsTask::reset() { fDeferredProxies.clear(); fSampledProxies.clear(); fClippedContentBounds = SkIRect::MakeEmpty(); fTotalBounds = SkRect::MakeEmpty(); this->deleteOps(); fRenderPassXferBarriers = GrXferBarrierFlags::kNone; } bool OpsTask::canMerge(const OpsTask* opsTask) const { return this->target(0) == opsTask->target(0) && fArenas == opsTask->fArenas && !opsTask->fCannotMergeBackward; } int OpsTask::mergeFrom(SkSpan> tasks) { int mergedCount = 0; for (const sk_sp& task : tasks) { auto opsTask = task->asOpsTask(); if (!opsTask || !this->canMerge(opsTask)) { break; } SkASSERT(fTargetSwizzle == opsTask->fTargetSwizzle); SkASSERT(fTargetOrigin == opsTask->fTargetOrigin); if (GrLoadOp::kClear == opsTask->fColorLoadOp) { // TODO(11903): Go back to actually dropping ops tasks when we are merged with // color clear. return 0; } mergedCount += 1; } if (0 == mergedCount) { return 0; } SkSpan> mergingNodes( reinterpret_cast*>(tasks.data()), SkToSizeT(mergedCount)); int addlDeferredProxyCount = 0; int addlProxyCount = 0; int addlOpChainCount = 0; for (const auto& toMerge : mergingNodes) { addlDeferredProxyCount += toMerge->fDeferredProxies.size(); addlProxyCount += toMerge->fSampledProxies.size(); addlOpChainCount += toMerge->fOpChains.size(); fClippedContentBounds.join(toMerge->fClippedContentBounds); fTotalBounds.join(toMerge->fTotalBounds); fRenderPassXferBarriers |= toMerge->fRenderPassXferBarriers; if (fInitialStencilContent == StencilContent::kDontCare) { // Propogate the first stencil content that isn't kDontCare. // // Once the stencil has any kind of initial content that isn't kDontCare, then the // inital contents of subsequent opsTasks that get merged in don't matter. // // (This works because the opsTask all target the same render target and are in // painter's order. kPreserved obviously happens automatically with a merge, and kClear // is also automatic because the contract is for ops to leave the stencil buffer in a // cleared state when finished.) fInitialStencilContent = toMerge->fInitialStencilContent; } fUsesMSAASurface |= toMerge->fUsesMSAASurface; SkDEBUGCODE(fNumClips += toMerge->fNumClips); } fLastClipStackGenID = SK_InvalidUniqueID; fDeferredProxies.reserve_back(addlDeferredProxyCount); fSampledProxies.reserve_back(addlProxyCount); fOpChains.reserve_back(addlOpChainCount); for (const auto& toMerge : mergingNodes) { for (GrRenderTask* renderTask : toMerge->dependents()) { renderTask->replaceDependency(toMerge.get(), this); } for (GrRenderTask* renderTask : toMerge->dependencies()) { renderTask->replaceDependent(toMerge.get(), this); } fDeferredProxies.move_back_n(toMerge->fDeferredProxies.size(), toMerge->fDeferredProxies.data()); fSampledProxies.move_back_n(toMerge->fSampledProxies.size(), toMerge->fSampledProxies.data()); fOpChains.move_back_n(toMerge->fOpChains.size(), toMerge->fOpChains.data()); toMerge->fDeferredProxies.clear(); toMerge->fSampledProxies.clear(); toMerge->fOpChains.clear(); } fMustPreserveStencil = mergingNodes.back()->fMustPreserveStencil; return mergedCount; } bool OpsTask::resetForFullscreenClear(CanDiscardPreviousOps canDiscardPreviousOps) { if (CanDiscardPreviousOps::kYes == canDiscardPreviousOps || this->isEmpty()) { this->deleteOps(); fDeferredProxies.clear(); fSampledProxies.clear(); // If the opsTask is using a render target which wraps a vulkan command buffer, we can't do // a clear load since we cannot change the render pass that we are using. Thus we fall back // to making a clear op in this case. return !this->target(0)->asRenderTargetProxy()->wrapsVkSecondaryCB(); } // Could not empty the task, so an op must be added to handle the clear return false; } void OpsTask::discard() { // Discard calls to in-progress opsTasks are ignored. Calls at the start update the // opsTasks' color & stencil load ops. if (this->isEmpty()) { fColorLoadOp = GrLoadOp::kDiscard; fInitialStencilContent = StencilContent::kDontCare; fTotalBounds.setEmpty(); } } //////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS void OpsTask::dump(const SkString& label, SkString indent, bool printDependencies, bool close) const { GrRenderTask::dump(label, indent, printDependencies, false); SkDebugf("%sfColorLoadOp: ", indent.c_str()); switch (fColorLoadOp) { case GrLoadOp::kLoad: SkDebugf("kLoad\n"); break; case GrLoadOp::kClear: SkDebugf("kClear {%g, %g, %g, %g}\n", fLoadClearColor[0], fLoadClearColor[1], fLoadClearColor[2], fLoadClearColor[3]); break; case GrLoadOp::kDiscard: SkDebugf("kDiscard\n"); break; } SkDebugf("%sfInitialStencilContent: ", indent.c_str()); switch (fInitialStencilContent) { case StencilContent::kDontCare: SkDebugf("kDontCare\n"); break; case StencilContent::kUserBitsCleared: SkDebugf("kUserBitsCleared\n"); break; case StencilContent::kPreserved: SkDebugf("kPreserved\n"); break; } SkDebugf("%s%d ops:\n", indent.c_str(), fOpChains.size()); for (int i = 0; i < fOpChains.size(); ++i) { SkDebugf("%s*******************************\n", indent.c_str()); if (!fOpChains[i].head()) { SkDebugf("%s%d: \n", indent.c_str(), i); } else { SkDebugf("%s%d: %s\n", indent.c_str(), i, fOpChains[i].head()->name()); SkRect bounds = fOpChains[i].bounds(); SkDebugf("%sClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", indent.c_str(), bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) { SkString info = SkTabString(op.dumpInfo(), 1); SkDebugf("%s%s\n", indent.c_str(), info.c_str()); bounds = op.bounds(); SkDebugf("%s\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", indent.c_str(), bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); } } } if (close) { SkDebugf("%s--------------------------------------------------------------\n\n", indent.c_str()); } } #endif #ifdef SK_DEBUG void OpsTask::visitProxies_debugOnly(const GrVisitProxyFunc& func) const { auto textureFunc = [ func ] (GrSurfaceProxy* tex, GrMipmapped mipmapped) { func(tex, mipmapped); }; for (const OpChain& chain : fOpChains) { chain.visitProxies(textureFunc); } } #endif //////////////////////////////////////////////////////////////////////////////// void OpsTask::onMakeSkippable() { this->deleteOps(); fDeferredProxies.clear(); fColorLoadOp = GrLoadOp::kLoad; SkASSERT(this->isColorNoOp()); } bool OpsTask::onIsUsed(GrSurfaceProxy* proxyToCheck) const { bool used = false; for (GrSurfaceProxy* proxy : fSampledProxies) { if (proxy == proxyToCheck) { used = true; break; } } #ifdef SK_DEBUG bool usedSlow = false; auto visit = [ proxyToCheck, &usedSlow ] (GrSurfaceProxy* p, GrMipmapped) { if (p == proxyToCheck) { usedSlow = true; } }; this->visitProxies_debugOnly(visit); SkASSERT(used == usedSlow); #endif return used; } void OpsTask::gatherProxyIntervals(GrResourceAllocator* alloc) const { SkASSERT(this->isClosed()); if (this->isColorNoOp()) { return; } for (int i = 0; i < fDeferredProxies.size(); ++i) { SkASSERT(!fDeferredProxies[i]->isInstantiated()); // We give all the deferred proxies a write usage at the very start of flushing. This // locks them out of being reused for the entire flush until they are read - and then // they can be recycled. This is a bit unfortunate because a flush can proceed in waves // with sub-flushes. The deferred proxies only need to be pinned from the start of // the sub-flush in which they appear. alloc->addInterval(fDeferredProxies[i], 0, 0, GrResourceAllocator::ActualUse::kNo); } GrSurfaceProxy* targetProxy = this->target(0); // Add the interval for all the writes to this OpsTasks's target if (fOpChains.size()) { unsigned int cur = alloc->curOp(); alloc->addInterval(targetProxy, cur, cur + fOpChains.size() - 1, GrResourceAllocator::ActualUse::kYes); } else { // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we // still need to add an interval for the destination so we create a fake op# for // the missing clear op. alloc->addInterval(targetProxy, alloc->curOp(), alloc->curOp(), GrResourceAllocator::ActualUse::kYes); alloc->incOps(); } auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p, GrMipmapped) { alloc->addInterval(p, alloc->curOp(), alloc->curOp(), GrResourceAllocator::ActualUse::kYes SkDEBUGCODE(, this->target(0) == p)); }; // TODO: visitProxies is expensive. Can we do this with fSampledProxies instead? for (const OpChain& recordedOp : fOpChains) { recordedOp.visitProxies(gather); // Even though the op may have been (re)moved we still need to increment the op count to // keep all the math consistent. alloc->incOps(); } } void OpsTask::recordOp( GrOp::Owner op, bool usesMSAA, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip, const GrDstProxyView* dstProxyView, const GrCaps& caps) { GrSurfaceProxy* proxy = this->target(0); #ifdef SK_DEBUG op->validate(); SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxyView && dstProxyView->proxy())); SkASSERT(proxy); // A closed OpsTask should never receive new/more ops SkASSERT(!this->isClosed()); // Ensure we can support dynamic msaa if the caller is trying to trigger it. if (proxy->asRenderTargetProxy()->numSamples() == 1 && usesMSAA) { SkASSERT(caps.supportsDynamicMSAA(proxy->asRenderTargetProxy())); } #endif if (!op->bounds().isFinite()) { return; } fUsesMSAASurface |= usesMSAA; // Account for this op's bounds before we attempt to combine. // NOTE: The caller should have already called "op->setClippedBounds()" by now, if applicable. fTotalBounds.join(op->bounds()); // Check if there is an op we can combine with by linearly searching back until we either // 1) check every op // 2) intersect with something // 3) find a 'blocker' GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), proxy->uniqueID()); GrOP_INFO("opsTask: %d Recording (%s, opID: %u)\n" "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n", this->uniqueID(), op->name(), op->uniqueID(), op->bounds().fLeft, op->bounds().fTop, op->bounds().fRight, op->bounds().fBottom); GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str()); GrOP_INFO("\tOutcome:\n"); int maxCandidates = std::min(kMaxOpChainDistance, fOpChains.size()); if (maxCandidates) { int i = 0; while (true) { OpChain& candidate = fOpChains.fromBack(i); op = candidate.appendOp(std::move(op), processorAnalysis, dstProxyView, clip, caps, fArenas->arenaAlloc(), fAuditTrail); if (!op) { return; } // Stop going backwards if we would cause a painter's order violation. if (!can_reorder(candidate.bounds(), op->bounds())) { GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n", candidate.head()->name(), candidate.head()->uniqueID()); break; } if (++i == maxCandidates) { GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i); break; } } } else { GrOP_INFO("\t\tBackward: FirstOp\n"); } if (clip) { clip = fArenas->arenaAlloc()->make(std::move(*clip)); SkDEBUGCODE(fNumClips++;) } fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxyView); } void OpsTask::forwardCombine(const GrCaps& caps) { SkASSERT(!this->isClosed()); GrOP_INFO("opsTask: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.size()); for (int i = 0; i < fOpChains.size() - 1; ++i) { OpChain& chain = fOpChains[i]; int maxCandidateIdx = std::min(i + kMaxOpChainDistance, fOpChains.size() - 1); int j = i + 1; while (true) { OpChain& candidate = fOpChains[j]; if (candidate.prependChain(&chain, caps, fArenas->arenaAlloc(), fAuditTrail)) { break; } // Stop traversing if we would cause a painter's order violation. if (!can_reorder(chain.bounds(), candidate.bounds())) { GrOP_INFO( "\t\t%d: chain (%s head opID: %u) -> " "Intersects with chain (%s, head opID: %u)\n", i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(), candidate.head()->uniqueID()); break; } if (++j > maxCandidateIdx) { GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n", i, chain.head()->name(), chain.head()->uniqueID()); break; } } } } GrRenderTask::ExpectedOutcome OpsTask::onMakeClosed(GrRecordingContext* rContext, SkIRect* targetUpdateBounds) { this->forwardCombine(*rContext->priv().caps()); if (!this->isColorNoOp()) { GrSurfaceProxy* proxy = this->target(0); // Use the entire backing store bounds since the GPU doesn't clip automatically to the // logical dimensions. SkRect clippedContentBounds = proxy->backingStoreBoundsRect(); // TODO: If we can fix up GLPrograms test to always intersect the target proxy bounds // then we can simply assert here that the bounds intersect. if (clippedContentBounds.intersect(fTotalBounds)) { clippedContentBounds.roundOut(&fClippedContentBounds); *targetUpdateBounds = GrNativeRect::MakeIRectRelativeTo( fTargetOrigin, this->target(0)->backingStoreDimensions().height(), fClippedContentBounds); return ExpectedOutcome::kTargetDirty; } } return ExpectedOutcome::kTargetUnchanged; } } // namespace skgpu::v1