/* * Copyright 2022 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/graphite/DrawAtlas.h" #include #include "include/core/SkColorSpace.h" #include "include/gpu/graphite/Recorder.h" #include "include/private/SkColorData.h" #include "include/private/base/SkTPin.h" #include "src/base/SkMathPriv.h" #include "src/core/SkOpts.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/AtlasTypes.h" #include "src/gpu/graphite/Caps.h" #include "src/gpu/graphite/CommandTypes.h" #include "src/gpu/graphite/ContextPriv.h" #include "src/gpu/graphite/RecorderPriv.h" #include "src/gpu/graphite/TextureProxy.h" #include "src/gpu/graphite/UploadTask.h" namespace skgpu::graphite { #if defined(DUMP_ATLAS_DATA) static const constexpr bool kDumpAtlasData = true; #else static const constexpr bool kDumpAtlasData = false; #endif class PlotUploadContext : public ConditionalUploadContext { public: static std::unique_ptr Make(PlotLocator plotLocator, AtlasToken uploadToken, uint32_t atlasID) { return std::unique_ptr(new PlotUploadContext(plotLocator, uploadToken, atlasID)); } ~PlotUploadContext() override {} bool needsUpload(Context* context) const override { return context->priv().plotUploadTracker()->needsUpload(fPlotLocator, fUploadToken, fAtlasID); } private: PlotUploadContext(PlotLocator plotLocator, AtlasToken uploadToken, uint32_t atlasID) : ConditionalUploadContext() , fPlotLocator(plotLocator) , fUploadToken(uploadToken) , fAtlasID(atlasID) {} // identifiers PlotLocator fPlotLocator; // has plot index, page index, and eviction gen ID AtlasToken fUploadToken; uint32_t fAtlasID; }; #ifdef SK_DEBUG void DrawAtlas::validate(const AtlasLocator& atlasLocator) const { // Verify that the plotIndex stored in the PlotLocator is consistent with the glyph rectangle int numPlotsX = fTextureWidth / fPlotWidth; int numPlotsY = fTextureHeight / fPlotHeight; int plotIndex = atlasLocator.plotIndex(); auto topLeft = atlasLocator.topLeft(); int plotX = topLeft.x() / fPlotWidth; int plotY = topLeft.y() / fPlotHeight; SkASSERT(plotIndex == (numPlotsY - plotY - 1) * numPlotsX + (numPlotsX - plotX - 1)); } #endif std::unique_ptr DrawAtlas::Make(SkColorType colorType, size_t bpp, int width, int height, int plotWidth, int plotHeight, AtlasGenerationCounter* generationCounter, AllowMultitexturing allowMultitexturing, PlotEvictionCallback* evictor, std::string_view label) { std::unique_ptr atlas(new DrawAtlas(colorType, bpp, width, height, plotWidth, plotHeight, generationCounter, allowMultitexturing, label)); if (evictor != nullptr) { atlas->fEvictionCallbacks.emplace_back(evictor); } return atlas; } /////////////////////////////////////////////////////////////////////////////// static int32_t next_id() { static std::atomic nextID{1}; int32_t id; do { id = nextID.fetch_add(1, std::memory_order_relaxed); } while (id == SK_InvalidGenID); return id; } DrawAtlas::DrawAtlas(SkColorType colorType, size_t bpp, int width, int height, int plotWidth, int plotHeight, AtlasGenerationCounter* generationCounter, AllowMultitexturing allowMultitexturing, std::string_view label) : fColorType(colorType) , fBytesPerPixel(bpp) , fTextureWidth(width) , fTextureHeight(height) , fPlotWidth(plotWidth) , fPlotHeight(plotHeight) , fLabel(label) , fAtlasID(next_id()) , fGenerationCounter(generationCounter) , fAtlasGeneration(fGenerationCounter->next()) , fPrevFlushToken(AtlasToken::InvalidToken()) , fFlushesSinceLastUse(0) , fMaxPages(AllowMultitexturing::kYes == allowMultitexturing ? PlotLocator::kMaxMultitexturePages : 1) , fNumActivePages(0) { int numPlotsX = width/plotWidth; int numPlotsY = height/plotHeight; SkASSERT(numPlotsX * numPlotsY <= PlotLocator::kMaxPlots); SkASSERT(fPlotWidth * numPlotsX == fTextureWidth); SkASSERT(fPlotHeight * numPlotsY == fTextureHeight); fNumPlots = numPlotsX * numPlotsY; this->createPages(generationCounter); } inline void DrawAtlas::processEviction(PlotLocator plotLocator) { for (PlotEvictionCallback* evictor : fEvictionCallbacks) { evictor->evict(plotLocator); } fAtlasGeneration = fGenerationCounter->next(); } inline bool DrawAtlas::updatePlot(AtlasLocator* atlasLocator, Plot* plot) { int pageIdx = plot->pageIndex(); this->makeMRU(plot, pageIdx); // The actual upload will be created in recordUploads(). atlasLocator->updatePlotLocator(plot->plotLocator()); SkDEBUGCODE(this->validate(*atlasLocator);) return true; } bool DrawAtlas::addToPage(unsigned int pageIdx, int width, int height, const void* image, AtlasLocator* atlasLocator) { SkASSERT(fProxies[pageIdx]); // look through all allocated plots for one we can share, in Most Recently Refed order PlotList::Iter plotIter; plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart); for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) { if (plot->addSubImage(width, height, image, atlasLocator)) { return this->updatePlot(atlasLocator, plot); } } return false; } bool DrawAtlas::recordUploads(UploadList* ul, Recorder* recorder, bool useCachedUploads) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); for (uint32_t pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { PlotList::Iter plotIter; plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart); for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) { if (useCachedUploads || plot->needsUpload()) { TextureProxy* proxy = fProxies[pageIdx].get(); SkASSERT(proxy); const void* dataPtr; SkIRect dstRect; std::tie(dataPtr, dstRect) = plot->prepareForUpload(useCachedUploads); if (dstRect.isEmpty()) { continue; } std::vector levels; levels.push_back({dataPtr, fBytesPerPixel*fPlotWidth}); plot->setLastUploadToken(recorder->priv().tokenTracker()->nextFlushToken()); auto uploadContext = PlotUploadContext::Make(plot->plotLocator(), plot->lastUploadToken(), fAtlasID); // Src and dst colorInfo are the same SkColorInfo colorInfo(fColorType, kUnknown_SkAlphaType, nullptr); if (!ul->recordUpload(recorder, sk_ref_sp(proxy), colorInfo, colorInfo, levels, dstRect, std::move(uploadContext))) { return false; } } } } return true; } // Number of atlas-related flushes beyond which we consider a plot to no longer be in use. // // This value is somewhat arbitrary -- the idea is to keep it low enough that // a page with unused plots will get removed reasonably quickly, but allow it // to hang around for a bit in case it's needed. The assumption is that flushes // are rare; i.e., we are not continually refreshing the frame. static constexpr auto kPlotRecentlyUsedCount = 32; static constexpr auto kAtlasRecentlyUsedCount = 128; DrawAtlas::ErrorCode DrawAtlas::addToAtlas(Recorder* recorder, int width, int height, const void* image, AtlasLocator* atlasLocator) { if (width > fPlotWidth || height > fPlotHeight) { return ErrorCode::kError; } // Look through each page to see if we can upload without having to flush // We prioritize this upload to the first pages, not the most recently used, to make it easier // to remove unused pages in reverse page order. for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { if (this->addToPage(pageIdx, width, height, image, atlasLocator)) { return ErrorCode::kSucceeded; } } // If the above fails, then see if the least recently used plot per page has already been // queued for upload if we're at max page allocation, or if the plot has aged out otherwise. // We wait until we've grown to the full number of pages to begin evicting already queued // plots so that we can maximize the opportunity for reuse. // As before we prioritize this upload to the first pages, not the most recently used. if (fNumActivePages == this->maxPages()) { for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { Plot* plot = fPages[pageIdx].fPlotList.tail(); SkASSERT(plot); if (plot->lastUseToken() < recorder->priv().tokenTracker()->nextFlushToken()) { this->processEvictionAndResetRects(plot); SkDEBUGCODE(bool verify = )plot->addSubImage(width, height, image, atlasLocator); SkASSERT(verify); if (!this->updatePlot(atlasLocator, plot)) { return ErrorCode::kError; } return ErrorCode::kSucceeded; } } } else { // If we haven't activated all the available pages, try to create a new one and add to it if (!this->activateNewPage(recorder)) { return ErrorCode::kError; } if (this->addToPage(fNumActivePages-1, width, height, image, atlasLocator)) { return ErrorCode::kSucceeded; } else { // If we fail to upload to a newly activated page then something has gone terribly // wrong - return an error return ErrorCode::kError; } } if (!fNumActivePages) { return ErrorCode::kError; } // All plots are currently in use by the current set of draws, so we need to fail. This // gives the Device a chance to snap the current set of uploads and draws, advance the draw // token, and call back into this function. The subsequent call will have plots available // for fresh uploads. return ErrorCode::kTryAgain; } void DrawAtlas::compact(AtlasToken startTokenForNextFlush) { if (fNumActivePages < 1) { fPrevFlushToken = startTokenForNextFlush; return; } // For all plots, reset number of flushes since used if used this frame. PlotList::Iter plotIter; bool atlasUsedThisFlush = false; for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) { plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); while (Plot* plot = plotIter.get()) { // Reset number of flushes since used if (plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { plot->resetFlushesSinceLastUsed(); atlasUsedThisFlush = true; } plotIter.next(); } } if (atlasUsedThisFlush) { fFlushesSinceLastUse = 0; } else { ++fFlushesSinceLastUse; } // We only try to compact if the atlas was used in the recently completed flush or // hasn't been used in a long time. // This is to handle the case where a lot of text or path rendering has occurred but then just // a blinking cursor is drawn. if (atlasUsedThisFlush || fFlushesSinceLastUse > kAtlasRecentlyUsedCount) { SkTArray availablePlots; uint32_t lastPageIndex = fNumActivePages - 1; // For all plots but the last one, update number of flushes since used, and check to see // if there are any in the first pages that the last page can safely upload to. for (uint32_t pageIndex = 0; pageIndex < lastPageIndex; ++pageIndex) { if constexpr (kDumpAtlasData) { SkDebugf("page %d: ", pageIndex); } plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); while (Plot* plot = plotIter.get()) { // Update number of flushes since plot was last used // We only increment the 'sinceLastUsed' count for flushes where the atlas was used // to avoid deleting everything when we return to text drawing in the blinking // cursor case if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { plot->incFlushesSinceLastUsed(); } if constexpr (kDumpAtlasData) { SkDebugf("%d ", plot->flushesSinceLastUsed()); } // Count plots we can potentially upload to in all pages except the last one // (the potential compactee). if (plot->flushesSinceLastUsed() > kPlotRecentlyUsedCount) { availablePlots.push_back() = plot; } plotIter.next(); } if constexpr (kDumpAtlasData) { SkDebugf("\n"); } } // Count recently used plots in the last page and evict any that are no longer in use. // Since we prioritize uploading to the first pages, this will eventually // clear out usage of this page unless we have a large need. plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); unsigned int usedPlots = 0; if constexpr (kDumpAtlasData) { SkDebugf("page %d: ", lastPageIndex); } while (Plot* plot = plotIter.get()) { // Update number of flushes since plot was last used if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { plot->incFlushesSinceLastUsed(); } if constexpr (kDumpAtlasData) { SkDebugf("%d ", plot->flushesSinceLastUsed()); } // If this plot was used recently if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { usedPlots++; } else if (plot->lastUseToken() != AtlasToken::InvalidToken()) { // otherwise if aged out just evict it. this->processEvictionAndResetRects(plot); } plotIter.next(); } if constexpr (kDumpAtlasData) { SkDebugf("\n"); } // If recently used plots in the last page are using less than a quarter of the page, try // to evict them if there's available space in lower index pages. Since we prioritize // uploading to the first pages, this will eventually clear out usage of this page unless // we have a large need. if (availablePlots.size() && usedPlots && usedPlots <= fNumPlots / 4) { plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); while (Plot* plot = plotIter.get()) { // If this plot was used recently if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { // See if there's room in an lower index page and if so evict. // We need to be somewhat harsh here so that a handful of plots that are // consistently in use don't end up locking the page in memory. if (availablePlots.size() > 0) { this->processEvictionAndResetRects(plot); this->processEvictionAndResetRects(availablePlots.back()); availablePlots.pop_back(); --usedPlots; } if (!usedPlots || !availablePlots.size()) { break; } } plotIter.next(); } } // If none of the plots in the last page have been used recently, delete it. if (!usedPlots) { if constexpr (kDumpAtlasData) { SkDebugf("delete %d\n", fNumActivePages-1); } this->deactivateLastPage(); fFlushesSinceLastUse = 0; } } fPrevFlushToken = startTokenForNextFlush; } bool DrawAtlas::createPages(AtlasGenerationCounter* generationCounter) { SkASSERT(SkIsPow2(fTextureWidth) && SkIsPow2(fTextureHeight)); int numPlotsX = fTextureWidth/fPlotWidth; int numPlotsY = fTextureHeight/fPlotHeight; for (uint32_t i = 0; i < this->maxPages(); ++i) { // Proxies are uncreated at first fProxies[i] = nullptr; // set up allocated plots fPages[i].fPlotArray = std::make_unique[]>(numPlotsX * numPlotsY); sk_sp* currPlot = fPages[i].fPlotArray.get(); for (int y = numPlotsY - 1, r = 0; y >= 0; --y, ++r) { for (int x = numPlotsX - 1, c = 0; x >= 0; --x, ++c) { uint32_t plotIndex = r * numPlotsX + c; currPlot->reset(new Plot( i, plotIndex, generationCounter, x, y, fPlotWidth, fPlotHeight, fColorType, fBytesPerPixel)); // build LRU list fPages[i].fPlotList.addToHead(currPlot->get()); ++currPlot; } } } return true; } bool DrawAtlas::activateNewPage(Recorder* recorder) { SkASSERT(fNumActivePages < this->maxPages()); SkASSERT(!fProxies[fNumActivePages]); auto textureInfo = recorder->priv().caps()->getDefaultSampledTextureInfo( fColorType, /*mipmapped=*/Mipmapped::kNo, Protected::kNo, Renderable::kNo); fProxies[fNumActivePages].reset( new TextureProxy({fTextureWidth, fTextureHeight}, textureInfo, skgpu::Budgeted::kYes)); if (!fProxies[fNumActivePages]) { return false; } if constexpr (kDumpAtlasData) { SkDebugf("activated page#: %d\n", fNumActivePages); } ++fNumActivePages; return true; } inline void DrawAtlas::deactivateLastPage() { SkASSERT(fNumActivePages); uint32_t lastPageIndex = fNumActivePages - 1; int numPlotsX = fTextureWidth/fPlotWidth; int numPlotsY = fTextureHeight/fPlotHeight; fPages[lastPageIndex].fPlotList.reset(); for (int r = 0; r < numPlotsY; ++r) { for (int c = 0; c < numPlotsX; ++c) { uint32_t plotIndex = r * numPlotsX + c; Plot* currPlot = fPages[lastPageIndex].fPlotArray[plotIndex].get(); currPlot->resetRects(); currPlot->resetFlushesSinceLastUsed(); // rebuild the LRU list SkDEBUGCODE(currPlot->resetListPtrs()); fPages[lastPageIndex].fPlotList.addToHead(currPlot); } } // remove ref to the texture proxy fProxies[lastPageIndex].reset(); --fNumActivePages; } void DrawAtlas::evictAllPlots() { PlotList::Iter plotIter; for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) { plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); while (Plot* plot = plotIter.get()) { this->processEvictionAndResetRects(plot); plotIter.next(); } } } DrawAtlasConfig::DrawAtlasConfig(int maxTextureSize, size_t maxBytes) { static const SkISize kARGBDimensions[] = { {256, 256}, // maxBytes < 2^19 {512, 256}, // 2^19 <= maxBytes < 2^20 {512, 512}, // 2^20 <= maxBytes < 2^21 {1024, 512}, // 2^21 <= maxBytes < 2^22 {1024, 1024}, // 2^22 <= maxBytes < 2^23 {2048, 1024}, // 2^23 <= maxBytes }; // Index 0 corresponds to maxBytes of 2^18, so start by dividing it by that maxBytes >>= 18; // Take the floor of the log to get the index int index = maxBytes > 0 ? SkTPin(SkPrevLog2(maxBytes), 0, std::size(kARGBDimensions) - 1) : 0; SkASSERT(kARGBDimensions[index].width() <= kMaxAtlasDim); SkASSERT(kARGBDimensions[index].height() <= kMaxAtlasDim); fARGBDimensions.set(std::min(kARGBDimensions[index].width(), maxTextureSize), std::min(kARGBDimensions[index].height(), maxTextureSize)); fMaxTextureSize = std::min(maxTextureSize, kMaxAtlasDim); } SkISize DrawAtlasConfig::atlasDimensions(MaskFormat type) const { if (MaskFormat::kA8 == type) { // A8 is always 2x the ARGB dimensions, clamped to the max allowed texture size return { std::min(2 * fARGBDimensions.width(), fMaxTextureSize), std::min(2 * fARGBDimensions.height(), fMaxTextureSize) }; } else { return fARGBDimensions; } } SkISize DrawAtlasConfig::plotDimensions(MaskFormat type) const { if (MaskFormat::kA8 == type) { SkISize atlasDimensions = this->atlasDimensions(type); // For A8 we want to grow the plots at larger texture sizes to accept more of the // larger SDF glyphs. Since the largest SDF glyph can be 170x170 with padding, this // allows us to pack 3 in a 512x256 plot, or 9 in a 512x512 plot. // This will give us 512x256 plots for 2048x1024, 512x512 plots for 2048x2048, // and 256x256 plots otherwise. int plotWidth = atlasDimensions.width() >= 2048 ? 512 : 256; int plotHeight = atlasDimensions.height() >= 2048 ? 512 : 256; return { plotWidth, plotHeight }; } else { // ARGB and LCD always use 256x256 plots -- this has been shown to be faster return { 256, 256 }; } } //////////////////////////////////////////////////////////////////////////////////////////// bool PlotUploadTracker::needsUpload(PlotLocator plotLocator, AtlasToken uploadToken, uint32_t atlasID) { uint32_t key = plotLocator.pageIndex() << 8 | plotLocator.plotIndex(); PlotAgeData* ageData = fAtlasData[atlasID].find(key); if (!ageData || ageData->genID != plotLocator.genID() || ageData->uploadToken < uploadToken) { PlotAgeData data{plotLocator.genID(), uploadToken}; fAtlasData[atlasID].set(key, data); return true; } return false; } } // namespace skgpu::graphite