/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRasterPipeline_opts_DEFINED #define SkRasterPipeline_opts_DEFINED #include "include/core/SkData.h" #include "include/core/SkTypes.h" #include "include/private/base/SkMalloc.h" #include "modules/skcms/skcms.h" #include "src/base/SkUtils.h" // unaligned_{load,store} #include "src/core/SkRasterPipeline.h" #include // Every function in this file should be marked static and inline using SI. #if defined(__clang__) #define SI __attribute__((always_inline)) static inline #else #define SI static inline #endif template SI Dst widen_cast(const Src& src) { static_assert(sizeof(Dst) > sizeof(Src)); static_assert(std::is_trivially_copyable::value); static_assert(std::is_trivially_copyable::value); Dst dst; memcpy(&dst, &src, sizeof(Src)); return dst; } struct Ctx { SkRasterPipelineStage* fStage; template operator T*() { return (T*)fStage->ctx; } }; using NoCtx = const void*; #if !defined(__clang__) #define JUMPER_IS_SCALAR #elif defined(SK_ARM_HAS_NEON) #define JUMPER_IS_NEON #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX #define JUMPER_IS_SKX #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 #define JUMPER_IS_HSW #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX #define JUMPER_IS_AVX #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 #define JUMPER_IS_SSE41 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #define JUMPER_IS_SSE2 #else #define JUMPER_IS_SCALAR #endif // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7. #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32) // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative. #if defined(__apple_build_version__) && __clang_major__ < 9 #define JUMPER_IS_SCALAR #elif __clang_major__ < 5 #define JUMPER_IS_SCALAR #endif #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR) #undef JUMPER_IS_NEON #endif #endif #if defined(JUMPER_IS_SCALAR) #include #elif defined(JUMPER_IS_NEON) #include #else #include #endif // Notes: // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for // Intel this requires one additional step because its estimate has 12 bit precision. namespace SK_OPTS_NS { #if defined(JUMPER_IS_SCALAR) // This path should lead to portable scalar code. using F = float ; using I32 = int32_t; using U64 = uint64_t; using U32 = uint32_t; using U16 = uint16_t; using U8 = uint8_t ; SI F min(F a, F b) { return fminf(a,b); } SI I32 min(I32 a, I32 b) { return a < b ? a : b; } SI U32 min(U32 a, U32 b) { return a < b ? a : b; } SI F max(F a, F b) { return fmaxf(a,b); } SI I32 max(I32 a, I32 b) { return a > b ? a : b; } SI U32 max(U32 a, U32 b) { return a > b ? a : b; } SI F mad(F f, F m, F a) { return f*m+a; } SI F abs_ (F v) { return fabsf(v); } SI I32 abs_ (I32 v) { return v < 0 ? -v : v; } SI F floor_(F v) { return floorf(v); } SI F ceil_(F v) { return ceilf(v); } SI F rcp_fast(F v) { return 1.0f / v; } SI F rsqrt (F v) { return 1.0f / sqrtf(v); } SI F sqrt_ (F v) { return sqrtf(v); } SI F rcp_precise (F v) { return 1.0f / v; } SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); } SI U16 pack(U32 v) { return (U16)v; } SI U8 pack(U16 v) { return (U8)v; } SI F if_then_else(I32 c, F t, F e) { return c ? t : e; } SI bool any(I32 c) { return c != 0; } SI bool all(I32 c) { return c != 0; } template SI T gather(const T* p, U32 ix) { return p[ix]; } SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { *r = ptr[0]; *g = ptr[1]; } SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { ptr[0] = r; ptr[1] = g; } SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { *r = ptr[0]; *g = ptr[1]; *b = ptr[2]; } SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { *r = ptr[0]; *g = ptr[1]; *b = ptr[2]; *a = ptr[3]; } SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { ptr[0] = r; ptr[1] = g; ptr[2] = b; ptr[3] = a; } SI void load2(const float* ptr, size_t tail, F* r, F* g) { *r = ptr[0]; *g = ptr[1]; } SI void store2(float* ptr, size_t tail, F r, F g) { ptr[0] = r; ptr[1] = g; } SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { *r = ptr[0]; *g = ptr[1]; *b = ptr[2]; *a = ptr[3]; } SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { ptr[0] = r; ptr[1] = g; ptr[2] = b; ptr[3] = a; } #elif defined(JUMPER_IS_NEON) // Since we know we're using Clang, we can use its vector extensions. template using V = T __attribute__((ext_vector_type(4))); using F = V; using I32 = V< int32_t>; using U64 = V; using U32 = V; using U16 = V; using U8 = V; // We polyfill a few routines that Clang doesn't build into ext_vector_types. SI F min(F a, F b) { return vminq_f32(a,b); } SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); } SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); } SI F max(F a, F b) { return vmaxq_f32(a,b); } SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); } SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); } SI F abs_ (F v) { return vabsq_f32(v); } SI I32 abs_ (I32 v) { return vabsq_s32(v); } SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; } SI F rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e ) * e; } SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; } SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); } SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); } SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); } #if defined(SK_CPU_ARM64) SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; } SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; } SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); } SI F floor_(F v) { return vrndmq_f32(v); } SI F ceil_(F v) { return vrndpq_f32(v); } SI F sqrt_(F v) { return vsqrtq_f32(v); } SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); } #else SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; } SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; } SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); } SI F floor_(F v) { F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); return roundtrip - if_then_else(roundtrip > v, 1, 0); } SI F ceil_(F v) { F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); return roundtrip + if_then_else(roundtrip < v, 1, 0); } SI F sqrt_(F v) { auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v). e *= vrsqrtsq_f32(v,e*e); e *= vrsqrtsq_f32(v,e*e); return v*e; // sqrt(v) == v*rsqrt(v). } SI U32 round(F v, F scale) { return vcvtq_u32_f32(mad(v,scale,0.5f)); } #endif template SI V gather(const T* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; } SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { uint16x4x2_t rg; if (__builtin_expect(tail,0)) { if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); } if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); } if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); } } else { rg = vld2_u16(ptr); } *r = rg.val[0]; *g = rg.val[1]; } SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { if (__builtin_expect(tail,0)) { if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); } if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); } if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); } } else { vst2_u16(ptr, (uint16x4x2_t{{r,g}})); } } SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { uint16x4x3_t rgb; if (__builtin_expect(tail,0)) { if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); } if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); } if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); } } else { rgb = vld3_u16(ptr); } *r = rgb.val[0]; *g = rgb.val[1]; *b = rgb.val[2]; } SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { uint16x4x4_t rgba; if (__builtin_expect(tail,0)) { if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); } if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); } if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); } } else { rgba = vld4_u16(ptr); } *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; *a = rgba.val[3]; } SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { if (__builtin_expect(tail,0)) { if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); } if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); } if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); } } else { vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}})); } } SI void load2(const float* ptr, size_t tail, F* r, F* g) { float32x4x2_t rg; if (__builtin_expect(tail,0)) { if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); } if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); } if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); } } else { rg = vld2q_f32(ptr); } *r = rg.val[0]; *g = rg.val[1]; } SI void store2(float* ptr, size_t tail, F r, F g) { if (__builtin_expect(tail,0)) { if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); } if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); } if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); } } else { vst2q_f32(ptr, (float32x4x2_t{{r,g}})); } } SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { float32x4x4_t rgba; if (__builtin_expect(tail,0)) { if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); } if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); } if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); } } else { rgba = vld4q_f32(ptr); } *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; *a = rgba.val[3]; } SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { if (__builtin_expect(tail,0)) { if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); } if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); } if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); } } else { vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}})); } } #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) // These are __m256 and __m256i, but friendlier and strongly-typed. template using V = T __attribute__((ext_vector_type(8))); using F = V; using I32 = V< int32_t>; using U64 = V; using U32 = V; using U16 = V; using U8 = V; SI F mad(F f, F m, F a) { #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) return _mm256_fmadd_ps(f,m,a); #else return f*m+a; #endif } SI F min(F a, F b) { return _mm256_min_ps(a,b); } SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); } SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); } SI F max(F a, F b) { return _mm256_max_ps(a,b); } SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); } SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); } SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); } SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); } SI F floor_(F v) { return _mm256_floor_ps(v); } SI F ceil_(F v) { return _mm256_ceil_ps(v); } SI F rcp_fast(F v) { return _mm256_rcp_ps (v); } SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); } SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); } SI F rcp_precise (F v) { F e = rcp_fast(v); #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e; #else return e * (2.0f - v * e); #endif } SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); } SI U16 pack(U32 v) { return _mm_packus_epi32(_mm256_extractf128_si256(v, 0), _mm256_extractf128_si256(v, 1)); } SI U8 pack(U16 v) { auto r = _mm_packus_epi16(v,v); return sk_unaligned_load(&r); } SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); } // NOTE: This version of 'all' only works with mask values (true == all bits set) SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); } SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); } template SI V gather(const T* p, U32 ix) { return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]], p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], }; } #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); } SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); } SI U64 gather(const uint64_t* p, U32 ix) { __m256i parts[] = { _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8), _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8), }; return sk_bit_cast(parts); } #endif SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { U16 _0123, _4567; if (__builtin_expect(tail,0)) { _0123 = _4567 = _mm_setzero_si128(); auto* d = &_0123; if (tail > 3) { *d = _mm_loadu_si128(((__m128i*)ptr) + 0); tail -= 4; ptr += 8; d = &_4567; } bool high = false; if (tail > 1) { *d = _mm_loadu_si64(ptr); tail -= 2; ptr += 4; high = true; } if (tail > 0) { (*d)[high ? 4 : 0] = *(ptr + 0); (*d)[high ? 5 : 1] = *(ptr + 1); } } else { _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0); _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1); } *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16), _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16)); *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16), _mm_srai_epi32(_4567, 16)); } SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { auto _0123 = _mm_unpacklo_epi16(r, g), _4567 = _mm_unpackhi_epi16(r, g); if (__builtin_expect(tail,0)) { const auto* s = &_0123; if (tail > 3) { _mm_storeu_si128((__m128i*)ptr, *s); s = &_4567; tail -= 4; ptr += 8; } bool high = false; if (tail > 1) { _mm_storel_epi64((__m128i*)ptr, *s); ptr += 4; tail -= 2; high = true; } if (tail > 0) { if (high) { *(int32_t*)ptr = _mm_extract_epi32(*s, 2); } else { *(int32_t*)ptr = _mm_cvtsi128_si32(*s); } } } else { _mm_storeu_si128((__m128i*)ptr + 0, _0123); _mm_storeu_si128((__m128i*)ptr + 1, _4567); } } SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { __m128i _0,_1,_2,_3,_4,_5,_6,_7; if (__builtin_expect(tail,0)) { auto load_rgb = [](const uint16_t* src) { auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); return _mm_insert_epi16(v, src[2], 2); }; _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128(); if ( true ) { _0 = load_rgb(ptr + 0); } if (tail > 1) { _1 = load_rgb(ptr + 3); } if (tail > 2) { _2 = load_rgb(ptr + 6); } if (tail > 3) { _3 = load_rgb(ptr + 9); } if (tail > 4) { _4 = load_rgb(ptr + 12); } if (tail > 5) { _5 = load_rgb(ptr + 15); } if (tail > 6) { _6 = load_rgb(ptr + 18); } } else { // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over. auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ; auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ; auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ; auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4); _0 = _01; _1 = _mm_srli_si128(_01, 6); _2 = _23; _3 = _mm_srli_si128(_23, 6); _4 = _45; _5 = _mm_srli_si128(_45, 6); _6 = _67; _7 = _mm_srli_si128(_67, 6); } auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx _13 = _mm_unpacklo_epi16(_1, _3), _46 = _mm_unpacklo_epi16(_4, _6), _57 = _mm_unpacklo_epi16(_5, _7); auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx rg4567 = _mm_unpacklo_epi16(_46, _57), bx4567 = _mm_unpackhi_epi16(_46, _57); *r = _mm_unpacklo_epi64(rg0123, rg4567); *g = _mm_unpackhi_epi64(rg0123, rg4567); *b = _mm_unpacklo_epi64(bx0123, bx4567); } SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { __m128i _01, _23, _45, _67; if (__builtin_expect(tail,0)) { auto src = (const double*)ptr; _01 = _23 = _45 = _67 = _mm_setzero_si128(); if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); } if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); } if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); } if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); } if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); } if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); } if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); } } else { _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); _45 = _mm_loadu_si128(((__m128i*)ptr) + 2); _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); } auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 _46 = _mm_unpacklo_epi16(_45, _67), _57 = _mm_unpackhi_epi16(_45, _67); auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 rg4567 = _mm_unpacklo_epi16(_46, _57), ba4567 = _mm_unpackhi_epi16(_46, _57); *r = _mm_unpacklo_epi64(rg0123, rg4567); *g = _mm_unpackhi_epi64(rg0123, rg4567); *b = _mm_unpacklo_epi64(ba0123, ba4567); *a = _mm_unpackhi_epi64(ba0123, ba4567); } SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3 rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7 ba0123 = _mm_unpacklo_epi16(b, a), ba4567 = _mm_unpackhi_epi16(b, a); auto _01 = _mm_unpacklo_epi32(rg0123, ba0123), _23 = _mm_unpackhi_epi32(rg0123, ba0123), _45 = _mm_unpacklo_epi32(rg4567, ba4567), _67 = _mm_unpackhi_epi32(rg4567, ba4567); if (__builtin_expect(tail,0)) { auto dst = (double*)ptr; if (tail > 0) { _mm_storel_pd(dst+0, _01); } if (tail > 1) { _mm_storeh_pd(dst+1, _01); } if (tail > 2) { _mm_storel_pd(dst+2, _23); } if (tail > 3) { _mm_storeh_pd(dst+3, _23); } if (tail > 4) { _mm_storel_pd(dst+4, _45); } if (tail > 5) { _mm_storeh_pd(dst+5, _45); } if (tail > 6) { _mm_storel_pd(dst+6, _67); } } else { _mm_storeu_si128((__m128i*)ptr + 0, _01); _mm_storeu_si128((__m128i*)ptr + 1, _23); _mm_storeu_si128((__m128i*)ptr + 2, _45); _mm_storeu_si128((__m128i*)ptr + 3, _67); } } SI void load2(const float* ptr, size_t tail, F* r, F* g) { F _0123, _4567; if (__builtin_expect(tail, 0)) { _0123 = _4567 = _mm256_setzero_ps(); F* d = &_0123; if (tail > 3) { *d = _mm256_loadu_ps(ptr); ptr += 8; tail -= 4; d = &_4567; } bool high = false; if (tail > 1) { *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr)); ptr += 4; tail -= 2; high = true; } if (tail > 0) { *d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1) : _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0); } } else { _0123 = _mm256_loadu_ps(ptr + 0); _4567 = _mm256_loadu_ps(ptr + 8); } F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20), _2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31); *r = _mm256_shuffle_ps(_0145, _2367, 0x88); *g = _mm256_shuffle_ps(_0145, _2367, 0xDD); } SI void store2(float* ptr, size_t tail, F r, F g) { F _0145 = _mm256_unpacklo_ps(r, g), _2367 = _mm256_unpackhi_ps(r, g); F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20), _4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31); if (__builtin_expect(tail, 0)) { const __m256* s = &_0123; if (tail > 3) { _mm256_storeu_ps(ptr, *s); s = &_4567; tail -= 4; ptr += 8; } bool high = false; if (tail > 1) { _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0)); ptr += 4; tail -= 2; high = true; } if (tail > 0) { *(ptr + 0) = (*s)[ high ? 4 : 0]; *(ptr + 1) = (*s)[ high ? 5 : 1]; } } else { _mm256_storeu_ps(ptr + 0, _0123); _mm256_storeu_ps(ptr + 8, _4567); } } SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { F _04, _15, _26, _37; _04 = _15 = _26 = _37 = 0; switch (tail) { case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]]; case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]]; case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]]; case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]]; case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]]; case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]]; case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]]; case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0); } F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5 ba0145 = _mm256_unpackhi_ps(_04,_15), rg2367 = _mm256_unpacklo_ps(_26,_37), ba2367 = _mm256_unpackhi_ps(_26,_37); *r = _mm256_unpacklo_pd(rg0145, rg2367); *g = _mm256_unpackhi_pd(rg0145, rg2367); *b = _mm256_unpacklo_pd(ba0145, ba2367); *a = _mm256_unpackhi_pd(ba0145, ba2367); } SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5 rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ... ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5 ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ... F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4 _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ... _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ... _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ... if (__builtin_expect(tail, 0)) { if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); } if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); } if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); } if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); } if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); } if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); } if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); } } else { F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo _23 = _mm256_permute2f128_ps(_26, _37, 32), _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi _67 = _mm256_permute2f128_ps(_26, _37, 49); _mm256_storeu_ps(ptr+ 0, _01); _mm256_storeu_ps(ptr+ 8, _23); _mm256_storeu_ps(ptr+16, _45); _mm256_storeu_ps(ptr+24, _67); } } #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) template using V = T __attribute__((ext_vector_type(4))); using F = V; using I32 = V< int32_t>; using U64 = V; using U32 = V; using U16 = V; using U8 = V; SI F if_then_else(I32 c, F t, F e) { return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e)); } SI F min(F a, F b) { return _mm_min_ps(a,b); } SI F max(F a, F b) { return _mm_max_ps(a,b); } #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); } SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); } SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); } SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); } #else SI I32 min(I32 a, I32 b) { return sk_bit_cast(if_then_else(a < b, sk_bit_cast(a), sk_bit_cast(b))); } SI U32 min(U32 a, U32 b) { return sk_bit_cast(if_then_else(a < b, sk_bit_cast(a), sk_bit_cast(b))); } SI I32 max(I32 a, I32 b) { return sk_bit_cast(if_then_else(a > b, sk_bit_cast(a), sk_bit_cast(b))); } SI U32 max(U32 a, U32 b) { return sk_bit_cast(if_then_else(a > b, sk_bit_cast(a), sk_bit_cast(b))); } #endif SI F mad(F f, F m, F a) { return f*m+a; } SI F abs_(F v) { return _mm_and_ps(v, 0-v); } #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) SI I32 abs_(I32 v) { return _mm_abs_epi32(v); } #else SI I32 abs_(I32 v) { return max(v, -v); } #endif SI F rcp_fast(F v) { return _mm_rcp_ps (v); } SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); } SI F rsqrt (F v) { return _mm_rsqrt_ps(v); } SI F sqrt_(F v) { return _mm_sqrt_ps (v); } SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); } SI U16 pack(U32 v) { #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) auto p = _mm_packus_epi32(v,v); #else // Sign extend so that _mm_packs_epi32() does the pack we want. auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16); p = _mm_packs_epi32(p,p); #endif return sk_unaligned_load(&p); // We have two copies. Return (the lower) one. } SI U8 pack(U16 v) { auto r = widen_cast<__m128i>(v); r = _mm_packus_epi16(r,r); return sk_unaligned_load(&r); } // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values. SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; } SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; } SI F floor_(F v) { #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) return _mm_floor_ps(v); #else F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); return roundtrip - if_then_else(roundtrip > v, 1, 0); #endif } SI F ceil_(F v) { #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) return _mm_ceil_ps(v); #else F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); return roundtrip + if_then_else(roundtrip < v, 1, 0); #endif } template SI V gather(const T* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; } SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { __m128i _01; if (__builtin_expect(tail,0)) { _01 = _mm_setzero_si128(); if (tail > 1) { _01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00 if (tail > 2) { _01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00 _01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00 } } else { _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00 } } else { _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3 } auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3 auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3 auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3 auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3 *r = sk_unaligned_load(&R); *g = sk_unaligned_load(&G); } SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)); if (__builtin_expect(tail, 0)) { if (tail > 1) { _mm_storel_epi64((__m128i*)ptr, rg); if (tail > 2) { int32_t rgpair = rg[2]; memcpy(ptr + 4, &rgpair, sizeof(rgpair)); } } else { int32_t rgpair = rg[0]; memcpy(ptr, &rgpair, sizeof(rgpair)); } } else { _mm_storeu_si128((__m128i*)ptr + 0, rg); } } SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { __m128i _0, _1, _2, _3; if (__builtin_expect(tail,0)) { _1 = _2 = _3 = _mm_setzero_si128(); auto load_rgb = [](const uint16_t* src) { auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); return _mm_insert_epi16(v, src[2], 2); }; if ( true ) { _0 = load_rgb(ptr + 0); } if (tail > 1) { _1 = load_rgb(ptr + 3); } if (tail > 2) { _2 = load_rgb(ptr + 6); } } else { // Load slightly weirdly to make sure we don't load past the end of 4x48 bits. auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) , _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4); // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored). _0 = _01; _1 = _mm_srli_si128(_01, 6); _2 = _23; _3 = _mm_srli_si128(_23, 6); } // De-interlace to R,G,B. auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 G = _mm_srli_si128(R, 8), B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx *r = sk_unaligned_load(&R); *g = sk_unaligned_load(&G); *b = sk_unaligned_load(&B); } SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { __m128i _01, _23; if (__builtin_expect(tail,0)) { _01 = _23 = _mm_setzero_si128(); auto src = (const double*)ptr; if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00 if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1 if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00 } else { _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1 _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3 } auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3 auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3 *r = sk_unaligned_load((uint16_t*)&rg + 0); *g = sk_unaligned_load((uint16_t*)&rg + 4); *b = sk_unaligned_load((uint16_t*)&ba + 0); *a = sk_unaligned_load((uint16_t*)&ba + 4); } SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)), ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a)); if (__builtin_expect(tail, 0)) { auto dst = (double*)ptr; if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); } if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); } if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); } } else { _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba)); _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba)); } } SI void load2(const float* ptr, size_t tail, F* r, F* g) { F _01, _23; if (__builtin_expect(tail, 0)) { _01 = _23 = _mm_setzero_si128(); if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); } if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); } if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); } } else { _01 = _mm_loadu_ps(ptr + 0); _23 = _mm_loadu_ps(ptr + 4); } *r = _mm_shuffle_ps(_01, _23, 0x88); *g = _mm_shuffle_ps(_01, _23, 0xDD); } SI void store2(float* ptr, size_t tail, F r, F g) { F _01 = _mm_unpacklo_ps(r, g), _23 = _mm_unpackhi_ps(r, g); if (__builtin_expect(tail, 0)) { if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); } if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); } if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); } } else { _mm_storeu_ps(ptr + 0, _01); _mm_storeu_ps(ptr + 4, _23); } } SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { F _0, _1, _2, _3; if (__builtin_expect(tail, 0)) { _1 = _2 = _3 = _mm_setzero_si128(); if ( true ) { _0 = _mm_loadu_ps(ptr + 0); } if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); } if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); } } else { _0 = _mm_loadu_ps(ptr + 0); _1 = _mm_loadu_ps(ptr + 4); _2 = _mm_loadu_ps(ptr + 8); _3 = _mm_loadu_ps(ptr +12); } _MM_TRANSPOSE4_PS(_0,_1,_2,_3); *r = _0; *g = _1; *b = _2; *a = _3; } SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { _MM_TRANSPOSE4_PS(r,g,b,a); if (__builtin_expect(tail, 0)) { if ( true ) { _mm_storeu_ps(ptr + 0, r); } if (tail > 1) { _mm_storeu_ps(ptr + 4, g); } if (tail > 2) { _mm_storeu_ps(ptr + 8, b); } } else { _mm_storeu_ps(ptr + 0, r); _mm_storeu_ps(ptr + 4, g); _mm_storeu_ps(ptr + 8, b); _mm_storeu_ps(ptr +12, a); } } #endif // We need to be a careful with casts. // (F)x means cast x to float in the portable path, but bit_cast x to float in the others. // These named casts and bit_cast() are always what they seem to be. #if defined(JUMPER_IS_SCALAR) SI F cast (U32 v) { return (F)v; } SI F cast64(U64 v) { return (F)v; } SI U32 trunc_(F v) { return (U32)v; } SI U32 expand(U16 v) { return (U32)v; } SI U32 expand(U8 v) { return (U32)v; } #else SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); } SI F cast64(U64 v) { return __builtin_convertvector( v, F); } SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); } SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); } SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); } #endif template SI V if_then_else(I32 c, V t, V e) { return sk_bit_cast(if_then_else(c, sk_bit_cast(t), sk_bit_cast(e))); } SI U16 bswap(U16 x) { #if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes // when generating code for SSE2 and SSE4.1. We'll do it manually... auto v = widen_cast<__m128i>(x); v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8); return sk_unaligned_load(&v); #else return (x<<8) | (x>>8); #endif } SI F fract(F v) { return v - floor_(v); } // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. SI F approx_log2(F x) { // e - 127 is a fair approximation of log2(x) in its own right... F e = cast(sk_bit_cast(x)) * (1.0f / (1<<23)); // ... but using the mantissa to refine its error is _much_ better. F m = sk_bit_cast((sk_bit_cast(x) & 0x007fffff) | 0x3f000000); return e - 124.225514990f - 1.498030302f * m - 1.725879990f / (0.3520887068f + m); } SI F approx_log(F x) { const float ln2 = 0.69314718f; return ln2 * approx_log2(x); } SI F approx_pow2(F x) { F f = fract(x); return sk_bit_cast(round(1.0f * (1<<23), x + 121.274057500f - 1.490129070f * f + 27.728023300f / (4.84252568f - f))); } SI F approx_exp(F x) { const float log2_e = 1.4426950408889634074f; return approx_pow2(log2_e * x); } SI F approx_powf(F x, F y) { return if_then_else((x == 0)|(x == 1), x , approx_pow2(approx_log2(x) * y)); } SI F from_half(U16 h) { #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. return vcvt_f32_f16(h); #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) return _mm256_cvtph_ps(h); #else // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias. U32 sem = expand(h), s = sem & 0x8000, em = sem ^ s; // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero. auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here. return if_then_else(denorm, F(0) , sk_bit_cast( (s<<16) + (em<<13) + ((127-15)<<23) )); #endif } SI U16 to_half(F f) { #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. return vcvt_f16_f32(f); #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION); #else // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. U32 sem = sk_bit_cast(f), s = sem & 0x80000000, em = sem ^ s; // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here. return pack(if_then_else(denorm, U32(0) , (s>>16) + (em>>13) - ((127-15)<<10))); #endif } // Our fundamental vector depth is our pixel stride. static constexpr size_t N = sizeof(F) / sizeof(float); // We're finally going to get to what a Stage function looks like! // tail == 0 ~~> work on a full N pixels // tail != 0 ~~> work on only the first tail pixels // tail is always < N. // Any custom ABI to use for all (non-externally-facing) stage functions? // Also decide here whether to use narrow (compromise) or wide (ideal) stages. #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON) // This lets us pass vectors more efficiently on 32-bit ARM. // We can still only pass 16 floats, so best as 4x {r,g,b,a}. #define ABI __attribute__((pcs("aapcs-vfp"))) #define JUMPER_NARROW_STAGES 1 #elif defined(_MSC_VER) // Even if not vectorized, this lets us pass {r,g,b,a} as registers, // instead of {b,a} on the stack. Narrow stages work best for __vectorcall. #define ABI __vectorcall #define JUMPER_NARROW_STAGES 1 #elif defined(__x86_64__) || defined(SK_CPU_ARM64) // These platforms are ideal for wider stages, and their default ABI is ideal. #define ABI #define JUMPER_NARROW_STAGES 0 #else // 32-bit or unknown... shunt them down the narrow path. // Odds are these have few registers and are better off there. #define ABI #define JUMPER_NARROW_STAGES 1 #endif #if JUMPER_NARROW_STAGES struct Params { size_t dx, dy, tail; F dr,dg,db,da; }; using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a); #else using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, F,F,F,F, F,F,F,F); #endif static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, SkRasterPipelineStage* program) { auto start = (Stage)program->fn; const size_t x0 = dx; for (; dy < ylimit; dy++) { #if JUMPER_NARROW_STAGES Params params = { x0,dy,0, 0,0,0,0 }; while (params.dx + N <= xlimit) { start(¶ms,program, 0,0,0,0); params.dx += N; } if (size_t tail = xlimit - params.dx) { params.tail = tail; start(¶ms,program, 0,0,0,0); } #else dx = x0; while (dx + N <= xlimit) { start(0,program,dx,dy, 0,0,0,0, 0,0,0,0); dx += N; } if (size_t tail = xlimit - dx) { start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0); } #endif } } #if SK_HAS_MUSTTAIL #define JUMPER_MUSTTAIL [[clang::musttail]] #else #define JUMPER_MUSTTAIL #endif #if JUMPER_NARROW_STAGES #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ static void ABI name(Params* params, SkRasterPipelineStage* program, \ F r, F g, F b, F a) { \ OFFSET name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a,\ params->dr, params->dg, params->db, params->da); \ INC; \ auto fn = (Stage)program->fn; \ MUSTTAIL return fn(params, program, r,g,b,a); \ } \ SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) #else #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \ F r, F g, F b, F a, F dr, F dg, F db, F da) { \ OFFSET name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \ INC; \ auto fn = (Stage)program->fn; \ MUSTTAIL return fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ } \ SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) #endif // A typical stage returns void, always increments the program counter by 1, and lets the optimizer // decide whether or not tail-calling is appropriate. #define STAGE(name, arg) \ DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/) // A tail stage returns void, always increments the program counter by 1, and uses tail-calling. // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and // could overflow the stack (particularly in debug). #define STAGE_TAIL(name, arg) \ DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL) // A branch stage returns an integer, which is added directly to the program counter, and tailcalls. #define STAGE_BRANCH(name, arg) \ DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL) // just_return() is a simple no-op stage that only exists to end the chain, // returning back up to start_pipeline(), and from there to the caller. #if JUMPER_NARROW_STAGES static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {} #else static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, F,F,F,F, F,F,F,F) {} #endif // Note that in release builds, most stages consume no stack (thanks to tail call optimization). // However: certain builds (especially with non-clang compilers) may fail to optimize tail // calls, resulting in actual stack frames being generated. // // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth. // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point), // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit. // // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the // full state of the mutable registers that are normally passed to the next stage in the program. // // stack_rewind is the only stage other than just_return that actually returns (rather than jumping // to the next stage in the program). Before it does so, it stashes all of the registers in the // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once, // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned, // rather than a just_return). // // Normally, just_return is the only stage that returns, and no other stage does anything after a // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline. // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the // context), and continues the linear execution of stages, but has reclaimed all of the stack frames // pushed before the stack_rewind before doing so. #if JUMPER_NARROW_STAGES static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program, F r, F g, F b, F a) { SkRasterPipeline_RewindCtx* ctx = Ctx{program}; while (program) { auto next = (Stage)(++program)->fn; ctx->stage = nullptr; next(params, program, r, g, b, a); program = ctx->stage; if (program) { r = sk_unaligned_load(ctx->r ); g = sk_unaligned_load(ctx->g ); b = sk_unaligned_load(ctx->b ); a = sk_unaligned_load(ctx->a ); params->dr = sk_unaligned_load(ctx->dr); params->dg = sk_unaligned_load(ctx->dg); params->db = sk_unaligned_load(ctx->db); params->da = sk_unaligned_load(ctx->da); } } } static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program, F r, F g, F b, F a) { SkRasterPipeline_RewindCtx* ctx = Ctx{program}; sk_unaligned_store(ctx->r , r ); sk_unaligned_store(ctx->g , g ); sk_unaligned_store(ctx->b , b ); sk_unaligned_store(ctx->a , a ); sk_unaligned_store(ctx->dr, params->dr); sk_unaligned_store(ctx->dg, params->dg); sk_unaligned_store(ctx->db, params->db); sk_unaligned_store(ctx->da, params->da); ctx->stage = program; } #else static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, F r, F g, F b, F a, F dr, F dg, F db, F da) { SkRasterPipeline_RewindCtx* ctx = Ctx{program}; while (program) { auto next = (Stage)(++program)->fn; ctx->stage = nullptr; next(tail, program, dx, dy, r, g, b, a, dr, dg, db, da); program = ctx->stage; if (program) { r = sk_unaligned_load(ctx->r ); g = sk_unaligned_load(ctx->g ); b = sk_unaligned_load(ctx->b ); a = sk_unaligned_load(ctx->a ); dr = sk_unaligned_load(ctx->dr); dg = sk_unaligned_load(ctx->dg); db = sk_unaligned_load(ctx->db); da = sk_unaligned_load(ctx->da); } } } static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, F r, F g, F b, F a, F dr, F dg, F db, F da) { SkRasterPipeline_RewindCtx* ctx = Ctx{program}; sk_unaligned_store(ctx->r , r ); sk_unaligned_store(ctx->g , g ); sk_unaligned_store(ctx->b , b ); sk_unaligned_store(ctx->a , a ); sk_unaligned_store(ctx->dr, dr); sk_unaligned_store(ctx->dg, dg); sk_unaligned_store(ctx->db, db); sk_unaligned_store(ctx->da, da); ctx->stage = program; } #endif // We could start defining normal Stages now. But first, some helper functions. // These load() and store() methods are tail-aware, // but focus mainly on keeping the at-stride tail==0 case fast. template SI V load(const T* src, size_t tail) { #if !defined(JUMPER_IS_SCALAR) __builtin_assume(tail < N); if (__builtin_expect(tail, 0)) { V v{}; // Any inactive lanes are zeroed. switch (tail) { case 7: v[6] = src[6]; [[fallthrough]]; case 6: v[5] = src[5]; [[fallthrough]]; case 5: v[4] = src[4]; [[fallthrough]]; case 4: memcpy(&v, src, 4*sizeof(T)); break; case 3: v[2] = src[2]; [[fallthrough]]; case 2: memcpy(&v, src, 2*sizeof(T)); break; case 1: memcpy(&v, src, 1*sizeof(T)); break; } return v; } #endif return sk_unaligned_load(src); } template SI void store(T* dst, V v, size_t tail) { #if !defined(JUMPER_IS_SCALAR) __builtin_assume(tail < N); if (__builtin_expect(tail, 0)) { switch (tail) { case 7: dst[6] = v[6]; [[fallthrough]]; case 6: dst[5] = v[5]; [[fallthrough]]; case 5: dst[4] = v[4]; [[fallthrough]]; case 4: memcpy(dst, &v, 4*sizeof(T)); break; case 3: dst[2] = v[2]; [[fallthrough]]; case 2: memcpy(dst, &v, 2*sizeof(T)); break; case 1: memcpy(dst, &v, 1*sizeof(T)); break; } return; } #endif sk_unaligned_store(dst, v); } SI F from_byte(U8 b) { return cast(expand(b)) * (1/255.0f); } SI F from_short(U16 s) { return cast(expand(s)) * (1/65535.0f); } SI void from_565(U16 _565, F* r, F* g, F* b) { U32 wide = expand(_565); *r = cast(wide & (31<<11)) * (1.0f / (31<<11)); *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5)); *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0)); } SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) { U32 wide = expand(_4444); *r = cast(wide & (15<<12)) * (1.0f / (15<<12)); *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8)); *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4)); *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0)); } SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { *r = cast((_8888 ) & 0xff) * (1/255.0f); *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); *a = cast((_8888 >> 24) ) * (1/255.0f); } SI void from_88(U16 _88, F* r, F* g) { U32 wide = expand(_88); *r = cast((wide ) & 0xff) * (1/255.0f); *g = cast((wide >> 8) & 0xff) * (1/255.0f); } SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) { *r = cast((rgba ) & 0x3ff) * (1/1023.0f); *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f); *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f); *a = cast((rgba >> 30) ) * (1/ 3.0f); } SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) { static constexpr float min = -0.752941f; static constexpr float max = 1.25098f; static constexpr float range = max - min; *r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min; *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min; *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min; *a = cast((rgba >> 30) ) * (1/ 3.0f); } SI void from_1616(U32 _1616, F* r, F* g) { *r = cast((_1616 ) & 0xffff) * (1/65535.0f); *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f); } SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) { *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f); *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f); *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f); *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f); } // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory. template SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { return (T*)ctx->pixels + dy*ctx->stride + dx; } // clamp v to [0,limit). SI F clamp(F v, F limit) { F inclusive = sk_bit_cast( sk_bit_cast(limit) - 1 ); // Exclusive -> inclusive. return min(max(0.0f, v), inclusive); } // clamp to (0,limit). SI F clamp_ex(F v, F limit) { const F inclusiveZ = std::numeric_limits::min(), inclusiveL = sk_bit_cast( sk_bit_cast(limit) - 1 ); return min(max(inclusiveZ, v), inclusiveL); } // Bhaskara I's sine approximation // 16x(pi - x) / (5*pi^2 - 4x(pi - x) // ... divide by 4 // 4x(pi - x) / 5*pi^2/4 - x(pi - x) // // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get // radians into that range first. SI F sin_(F v) { constexpr float Pi = SK_ScalarPI; F x = fract(v * (0.5f/Pi)) * (2*Pi); I32 neg = x > Pi; x = if_then_else(neg, x - Pi, x); F pair = x * (Pi - x); x = 4.0f * pair / ((5*Pi*Pi/4) - pair); x = if_then_else(neg, -x, x); return x; } SI F cos_(F v) { return sin_(v + (SK_ScalarPI/2)); } /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 Some simplifications: 1. tan(x) is periodic, -PI/2 < x < PI/2 2. tan(x) is odd, so tan(-x) = -tan(x) 3. Our polynomial approximation is best near zero, so we use the following identity tan(x) + tan(y) tan(x + y) = ----------------- 1 - tan(x)*tan(y) tan(PI/4) = 1 So for x > PI/8, we do the following refactor: x' = x - PI/4 1 + tan(x') tan(x) = ------------ 1 - tan(x') */ SI F tan_(F x) { constexpr float Pi = SK_ScalarPI; // periodic between -pi/2 ... pi/2 // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); I32 neg = (x < 0.0f); x = if_then_else(neg, -x, x); // minimize total error by shifting if x > pi/8 I32 use_quotient = (x > (Pi/8)); x = if_then_else(use_quotient, x - (Pi/4), x); // 9th order poly = 4th order(x^2) * x F x2 = x * x; x *= 1 + x2 * (1/3.0f + x2 * (2/15.0f + x2 * (17/315.0f + x2 * (62/2835.0f)))); x = if_then_else(use_quotient, (1+x)/(1-x), x); x = if_then_else(neg, -x, x); return x; } /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ with 129 values of x,atan(x) for x:[0...1] This only works for 0 <= x <= 1 */ SI F approx_atan_unit(F x) { // y = 0.14130025741326729 x⁴ // - 0.34312835980675116 x³ // - 0.016172900528248768 x² // + 1.00376969762003850 x // - 0.00014758242182738969 return x * (x * (x * (x * 0.14130025741326729f - 0.34312835980675116f) - 0.016172900528248768f) + 1.0037696976200385f) - 0.00014758242182738969f; } // Use identity atan(x) = pi/2 - atan(1/x) for x > 1 SI F atan_(F x) { I32 neg = (x < 0.0f); x = if_then_else(neg, -x, x); I32 flip = (x > 1.0f); x = if_then_else(flip, 1/x, x); x = approx_atan_unit(x); x = if_then_else(flip, SK_ScalarPI/2 - x, x); x = if_then_else(neg, -x, x); return x; } /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() which avoids a 2nd divide instruction if we had instead called atan(). */ SI F atan2_(F y0, F x0) { I32 flip = (abs_(y0) > abs_(x0)); F y = if_then_else(flip, x0, y0); F x = if_then_else(flip, y0, x0); F arg = y/x; I32 neg = (arg < 0.0f); arg = if_then_else(neg, -arg, arg); F r = approx_atan_unit(arg); r = if_then_else(flip, SK_ScalarPI/2 - r, r); r = if_then_else(neg, -r, r); // handle quadrant distinctions r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); // Note: we don't try to handle 0,0 or infinities return r; } // Used by gather_ stages to calculate the base pointer and a vector of indices to load. template SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would // produce a NaN if applied to +0.f. x = clamp_ex(x, ctx->width ); y = clamp_ex(y, ctx->height); x = sk_bit_cast(sk_bit_cast(x) - (uint32_t)ctx->roundDownAtInteger); y = sk_bit_cast(sk_bit_cast(y) - (uint32_t)ctx->roundDownAtInteger); *ptr = (const T*)ctx->pixels; return trunc_(y)*ctx->stride + trunc_(x); } // We often have a nominally [0,1] float value we need to scale and convert to an integer, // whether for a table lookup or to pack back down into bytes for storage. // // In practice, especially when dealing with interesting color spaces, that notionally // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp. // // You can adjust the expected input to [0,bias] by tweaking that parameter. SI U32 to_unorm(F v, F scale, F bias = 1.0f) { // Any time we use round() we probably want to use to_unorm(). return round(min(max(0.0f, v), bias), scale); } SI I32 cond_to_mask(I32 cond) { #if defined(JUMPER_IS_SCALAR) // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks // (eg, using bitwise operations to select values). return if_then_else(cond, I32(~0), I32(0)); #else // In SIMD mode, our various instruction sets already represent conditions as masks. return cond; #endif } // Now finally, normal Stages! STAGE(seed_shader, NoCtx) { static constexpr float iota[] = { 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, }; // It's important for speed to explicitly cast(dx) and cast(dy), // which has the effect of splatting them to vectors before converting to floats. // On Intel this breaks a data dependency on previous loop iterations' registers. r = cast(dx) + sk_unaligned_load(iota); g = cast(dy) + 0.5f; b = 1.0f; // This is w=1 for matrix multiplies by the device coords. a = 0; } STAGE(store_device_xy01, F* dst) { // This is very similar to `seed_shader + store_src`, but b/a are backwards. // (sk_FragCoord actually puts w=1 in the w slot.) static constexpr float iota[] = { 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, }; dst[0] = cast(dx) + sk_unaligned_load(iota); dst[1] = cast(dy) + 0.5f; dst[2] = 0.0f; dst[3] = 1.0f; } STAGE(dither, const float* rate) { // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors. uint32_t iota[] = {0,1,2,3,4,5,6,7}; U32 X = dx + sk_unaligned_load(iota), Y = dy; // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering. // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ]. // We only need X and X^Y from here on, so it's easier to just think of that as "Y". Y ^= X; // We'll mix the bottom 3 bits of each of X and Y to make 6 bits, // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda. U32 M = (Y & 1) << 5 | (X & 1) << 4 | (Y & 2) << 2 | (X & 2) << 1 | (Y & 4) >> 1 | (X & 4) >> 2; // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon. // We want to make sure our dither is less than 0.5 in either direction to keep exact values // like 0 and 1 unchanged after rounding. F dither = cast(M) * (2/128.0f) - (63/128.0f); r += *rate*dither; g += *rate*dither; b += *rate*dither; r = max(0.0f, min(r, a)); g = max(0.0f, min(g, a)); b = max(0.0f, min(b, a)); } // load 4 floats from memory, and splat them into r,g,b,a STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { r = c->r; g = c->g; b = c->b; a = c->a; } STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) { r = c->r; g = c->g; b = c->b; a = c->a; } // load 4 floats from memory, and splat them into dr,dg,db,da STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { dr = c->r; dg = c->g; db = c->b; da = c->a; } // splats opaque-black into r,g,b,a STAGE(black_color, NoCtx) { r = g = b = 0.0f; a = 1.0f; } STAGE(white_color, NoCtx) { r = g = b = a = 1.0f; } // load registers r,g,b,a from context (mirrors store_src) STAGE(load_src, const float* ptr) { r = sk_unaligned_load(ptr + 0*N); g = sk_unaligned_load(ptr + 1*N); b = sk_unaligned_load(ptr + 2*N); a = sk_unaligned_load(ptr + 3*N); } // store registers r,g,b,a into context (mirrors load_src) STAGE(store_src, float* ptr) { sk_unaligned_store(ptr + 0*N, r); sk_unaligned_store(ptr + 1*N, g); sk_unaligned_store(ptr + 2*N, b); sk_unaligned_store(ptr + 3*N, a); } // store registers r,g into context STAGE(store_src_rg, float* ptr) { sk_unaligned_store(ptr + 0*N, r); sk_unaligned_store(ptr + 1*N, g); } // load registers r,g from context STAGE(load_src_rg, float* ptr) { r = sk_unaligned_load(ptr + 0*N); g = sk_unaligned_load(ptr + 1*N); } // store register a into context STAGE(store_src_a, float* ptr) { sk_unaligned_store(ptr, a); } // load registers dr,dg,db,da from context (mirrors store_dst) STAGE(load_dst, const float* ptr) { dr = sk_unaligned_load(ptr + 0*N); dg = sk_unaligned_load(ptr + 1*N); db = sk_unaligned_load(ptr + 2*N); da = sk_unaligned_load(ptr + 3*N); } // store registers dr,dg,db,da into context (mirrors load_dst) STAGE(store_dst, float* ptr) { sk_unaligned_store(ptr + 0*N, dr); sk_unaligned_store(ptr + 1*N, dg); sk_unaligned_store(ptr + 2*N, db); sk_unaligned_store(ptr + 3*N, da); } // Most blend modes apply the same logic to each channel. #define BLEND_MODE(name) \ SI F name##_channel(F s, F d, F sa, F da); \ STAGE(name, NoCtx) { \ r = name##_channel(r,dr,a,da); \ g = name##_channel(g,dg,a,da); \ b = name##_channel(b,db,a,da); \ a = name##_channel(a,da,a,da); \ } \ SI F name##_channel(F s, F d, F sa, F da) SI F inv(F x) { return 1.0f - x; } SI F two(F x) { return x + x; } BLEND_MODE(clear) { return 0; } BLEND_MODE(srcatop) { return s*da + d*inv(sa); } BLEND_MODE(dstatop) { return d*sa + s*inv(da); } BLEND_MODE(srcin) { return s * da; } BLEND_MODE(dstin) { return d * sa; } BLEND_MODE(srcout) { return s * inv(da); } BLEND_MODE(dstout) { return d * inv(sa); } BLEND_MODE(srcover) { return mad(d, inv(sa), s); } BLEND_MODE(dstover) { return mad(s, inv(da), d); } BLEND_MODE(modulate) { return s*d; } BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa. BLEND_MODE(screen) { return s + d - s*d; } BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); } #undef BLEND_MODE // Most other blend modes apply the same logic to colors, and srcover to alpha. #define BLEND_MODE(name) \ SI F name##_channel(F s, F d, F sa, F da); \ STAGE(name, NoCtx) { \ r = name##_channel(r,dr,a,da); \ g = name##_channel(g,dg,a,da); \ b = name##_channel(b,db,a,da); \ a = mad(da, inv(a), a); \ } \ SI F name##_channel(F s, F d, F sa, F da) BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; } BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; } BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); } BLEND_MODE(exclusion) { return s + d - two(s*d); } BLEND_MODE(colorburn) { return if_then_else(d == da, d + s*inv(da), if_then_else(s == 0, /* s + */ d*inv(sa), sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa))); } BLEND_MODE(colordodge) { return if_then_else(d == 0, /* d + */ s*inv(da), if_then_else(s == sa, s + d*inv(sa), sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa))); } BLEND_MODE(hardlight) { return s*inv(da) + d*inv(sa) + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s))); } BLEND_MODE(overlay) { return s*inv(da) + d*inv(sa) + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s))); } BLEND_MODE(softlight) { F m = if_then_else(da > 0, d / da, 0), s2 = two(s), m4 = two(two(m)); // The logic forks three ways: // 1. dark src? // 2. light src, dark dst? // 3. light src, light dst? F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. liteDst = sqrt_(m) - m, liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3? return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)? } #undef BLEND_MODE // We're basing our implemenation of non-separable blend modes on // https://www.w3.org/TR/compositing-1/#blendingnonseparable. // and // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf // They're equivalent, but ES' math has been better simplified. // // Anything extra we add beyond that is to make the math work with premul inputs. SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); } SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; } SI void set_sat(F* r, F* g, F* b, F s) { F mn = min(*r, min(*g,*b)), mx = max(*r, max(*g,*b)), sat = mx - mn; // Map min channel to 0, max channel to s, and scale the middle proportionally. auto scale = [=](F c) { return if_then_else(sat == 0, 0, (c - mn) * s / sat); }; *r = scale(*r); *g = scale(*g); *b = scale(*b); } SI void set_lum(F* r, F* g, F* b, F l) { F diff = l - lum(*r, *g, *b); *r += diff; *g += diff; *b += diff; } SI void clip_color(F* r, F* g, F* b, F a) { F mn = min(*r, min(*g, *b)), mx = max(*r, max(*g, *b)), l = lum(*r, *g, *b); auto clip = [=](F c) { c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c); c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c); c = max(c, 0.0f); // Sometimes without this we may dip just a little negative. return c; }; *r = clip(*r); *g = clip(*g); *b = clip(*b); } STAGE(hue, NoCtx) { F R = r*a, G = g*a, B = b*a; set_sat(&R, &G, &B, sat(dr,dg,db)*a); set_lum(&R, &G, &B, lum(dr,dg,db)*a); clip_color(&R,&G,&B, a*da); r = r*inv(da) + dr*inv(a) + R; g = g*inv(da) + dg*inv(a) + G; b = b*inv(da) + db*inv(a) + B; a = a + da - a*da; } STAGE(saturation, NoCtx) { F R = dr*a, G = dg*a, B = db*a; set_sat(&R, &G, &B, sat( r, g, b)*da); set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.) clip_color(&R,&G,&B, a*da); r = r*inv(da) + dr*inv(a) + R; g = g*inv(da) + dg*inv(a) + G; b = b*inv(da) + db*inv(a) + B; a = a + da - a*da; } STAGE(color, NoCtx) { F R = r*da, G = g*da, B = b*da; set_lum(&R, &G, &B, lum(dr,dg,db)*a); clip_color(&R,&G,&B, a*da); r = r*inv(da) + dr*inv(a) + R; g = g*inv(da) + dg*inv(a) + G; b = b*inv(da) + db*inv(a) + B; a = a + da - a*da; } STAGE(luminosity, NoCtx) { F R = dr*a, G = dg*a, B = db*a; set_lum(&R, &G, &B, lum(r,g,b)*da); clip_color(&R,&G,&B, a*da); r = r*inv(da) + dr*inv(a) + R; g = g*inv(da) + dg*inv(a) + G; b = b*inv(da) + db*inv(a) + B; a = a + da - a*da; } STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U32 dst = load(ptr, tail); dr = cast((dst ) & 0xff); dg = cast((dst >> 8) & 0xff); db = cast((dst >> 16) & 0xff); da = cast((dst >> 24) ); // {dr,dg,db,da} are in [0,255] // { r, g, b, a} are in [0, 1] (but may be out of gamut) r = mad(dr, inv(a), r*255.0f); g = mad(dg, inv(a), g*255.0f); b = mad(db, inv(a), b*255.0f); a = mad(da, inv(a), a*255.0f); // { r, g, b, a} are now in [0,255] (but may be out of gamut) // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased. dst = to_unorm(r, 1, 255) | to_unorm(g, 1, 255) << 8 | to_unorm(b, 1, 255) << 16 | to_unorm(a, 1, 255) << 24; store(ptr, dst, tail); } SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); } STAGE(clamp_01, NoCtx) { r = clamp_01_(r); g = clamp_01_(g); b = clamp_01_(b); a = clamp_01_(a); } STAGE(clamp_gamut, NoCtx) { a = min(max(a, 0.0f), 1.0f); r = min(max(r, 0.0f), a); g = min(max(g, 0.0f), a); b = min(max(b, 0.0f), a); } STAGE(set_rgb, const float* rgb) { r = rgb[0]; g = rgb[1]; b = rgb[2]; } STAGE(unbounded_set_rgb, const float* rgb) { r = rgb[0]; g = rgb[1]; b = rgb[2]; } STAGE(swap_rb, NoCtx) { auto tmp = r; r = b; b = tmp; } STAGE(swap_rb_dst, NoCtx) { auto tmp = dr; dr = db; db = tmp; } STAGE(move_src_dst, NoCtx) { dr = r; dg = g; db = b; da = a; } STAGE(move_dst_src, NoCtx) { r = dr; g = dg; b = db; a = da; } STAGE(swap_src_dst, NoCtx) { std::swap(r, dr); std::swap(g, dg); std::swap(b, db); std::swap(a, da); } STAGE(premul, NoCtx) { r = r * a; g = g * a; b = b * a; } STAGE(premul_dst, NoCtx) { dr = dr * da; dg = dg * da; db = db * da; } STAGE(unpremul, NoCtx) { float inf = sk_bit_cast(0x7f800000); auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); r *= scale; g *= scale; b *= scale; } STAGE(unpremul_polar, NoCtx) { float inf = sk_bit_cast(0x7f800000); auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); g *= scale; b *= scale; } STAGE(force_opaque , NoCtx) { a = 1; } STAGE(force_opaque_dst, NoCtx) { da = 1; } STAGE(rgb_to_hsl, NoCtx) { F mx = max(r, max(g,b)), mn = min(r, min(g,b)), d = mx - mn, d_rcp = 1.0f / d; F h = (1/6.0f) * if_then_else(mx == mn, 0, if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0), if_then_else(mx == g, (b-r)*d_rcp + 2.0f, (r-g)*d_rcp + 4.0f))); F l = (mx + mn) * 0.5f; F s = if_then_else(mx == mn, 0, d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn)); r = h; g = s; b = l; } STAGE(hsl_to_rgb, NoCtx) { // See GrRGBToHSLFilterEffect.fp F h = r, s = g, l = b, c = (1.0f - abs_(2.0f * l - 1)) * s; auto hue_to_rgb = [&](F hue) { F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f); return (q - 0.5f) * c + l; }; r = hue_to_rgb(h + 0.0f/3.0f); g = hue_to_rgb(h + 2.0f/3.0f); b = hue_to_rgb(h + 1.0f/3.0f); } // Color conversion functions used in gradient interpolation, based on // https://www.w3.org/TR/css-color-4/#color-conversion-code STAGE(css_lab_to_xyz, NoCtx) { constexpr float k = 24389 / 27.0f; constexpr float e = 216 / 24389.0f; F f[3]; f[1] = (r + 16) * (1 / 116.0f); f[0] = (g * (1 / 500.0f)) + f[1]; f[2] = f[1] - (b * (1 / 200.0f)); F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] }; F xyz[3] = { if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)), if_then_else(r > k * e, f_cubed[1], r * (1 / k)), if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k)) }; constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f }; r = xyz[0]*D50[0]; g = xyz[1]*D50[1]; b = xyz[2]*D50[2]; } STAGE(css_oklab_to_linear_srgb, NoCtx) { F l_ = r + 0.3963377774f * g + 0.2158037573f * b, m_ = r - 0.1055613458f * g - 0.0638541728f * b, s_ = r - 0.0894841775f * g - 1.2914855480f * b; F l = l_*l_*l_, m = m_*m_*m_, s = s_*s_*s_; r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s; g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s; b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s; } // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB. // See similar comments & logic in SkGradientShaderBase.cpp. STAGE(css_hcl_to_lab, NoCtx) { F H = r, C = g, L = b; F hueRadians = H * (SK_FloatPI / 180); r = L; g = C * cos_(hueRadians); b = C * sin_(hueRadians); } SI F mod_(F x, float y) { return x - y * floor_(x * (1 / y)); } struct RGB { F r, g, b; }; SI RGB css_hsl_to_srgb_(F h, F s, F l) { h = mod_(h, 360); s *= 0.01f; l *= 0.01f; F k[3] = { mod_(0 + h * (1 / 30.0f), 12), mod_(8 + h * (1 / 30.0f), 12), mod_(4 + h * (1 / 30.0f), 12) }; F a = s * min(l, 1 - l); return { l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)), l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)), l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f)) }; } STAGE(css_hsl_to_srgb, NoCtx) { RGB rgb = css_hsl_to_srgb_(r, g, b); r = rgb.r; g = rgb.g; b = rgb.b; } STAGE(css_hwb_to_srgb, NoCtx) { g *= 0.01f; b *= 0.01f; F gray = g / (g + b); RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f); rgb.r = rgb.r * (1 - g - b) + g; rgb.g = rgb.g * (1 - g - b) + g; rgb.b = rgb.b * (1 - g - b) + g; auto isGray = (g + b) >= 1; r = if_then_else(isGray, gray, rgb.r); g = if_then_else(isGray, gray, rgb.g); b = if_then_else(isGray, gray, rgb.b); } // Derive alpha's coverage from rgb coverage and the values of src and dst alpha. SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) { return if_then_else(a < da, min(cr, min(cg,cb)) , max(cr, max(cg,cb))); } STAGE(scale_1_float, const float* c) { r = r * *c; g = g * *c; b = b * *c; a = a * *c; } STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); auto scales = load(ptr, tail); auto c = from_byte(scales); r = r * c; g = g * c; b = b * c; a = a * c; } STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); F cr,cg,cb; from_565(load(ptr, tail), &cr, &cg, &cb); F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); r = r * cr; g = g * cg; b = b * cb; a = a * ca; } SI F lerp(F from, F to, F t) { return mad(to-from, t, from); } STAGE(lerp_1_float, const float* c) { r = lerp(dr, r, *c); g = lerp(dg, g, *c); b = lerp(db, b, *c); a = lerp(da, a, *c); } STAGE(scale_native, const float scales[]) { auto c = sk_unaligned_load(scales); r = r * c; g = g * c; b = b * c; a = a * c; } STAGE(lerp_native, const float scales[]) { auto c = sk_unaligned_load(scales); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); auto scales = load(ptr, tail); auto c = from_byte(scales); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); F cr,cg,cb; from_565(load(ptr, tail), &cr, &cg, &cb); F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); r = lerp(dr, r, cr); g = lerp(dg, g, cg); b = lerp(db, b, cb); a = lerp(da, a, ca); } STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) { auto mptr = ptr_at_xy(&ctx->mul, dx,dy), aptr = ptr_at_xy(&ctx->add, dx,dy); F mul = from_byte(load(mptr, tail)), add = from_byte(load(aptr, tail)); r = mad(r, mul, add); g = mad(g, mul, add); b = mad(b, mul, add); } STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) { r = from_byte(gather(tables->r, to_unorm(r, 255))); g = from_byte(gather(tables->g, to_unorm(g, 255))); b = from_byte(gather(tables->b, to_unorm(b, 255))); a = from_byte(gather(tables->a, to_unorm(a, 255))); } SI F strip_sign(F x, U32* sign) { U32 bits = sk_bit_cast(x); *sign = bits & 0x80000000; return sk_bit_cast(bits ^ *sign); } SI F apply_sign(F x, U32 sign) { return sk_bit_cast(sign | sk_bit_cast(x)); } STAGE(parametric, const skcms_TransferFunction* ctx) { auto fn = [&](F v) { U32 sign; v = strip_sign(v, &sign); F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f) , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e); return apply_sign(r, sign); }; r = fn(r); g = fn(g); b = fn(b); } STAGE(gamma_, const float* G) { auto fn = [&](F v) { U32 sign; v = strip_sign(v, &sign); return apply_sign(approx_powf(v, *G), sign); }; r = fn(r); g = fn(g); b = fn(b); } STAGE(PQish, const skcms_TransferFunction* ctx) { auto fn = [&](F v) { U32 sign; v = strip_sign(v, &sign); F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f) / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)), ctx->f); return apply_sign(r, sign); }; r = fn(r); g = fn(g); b = fn(b); } STAGE(HLGish, const skcms_TransferFunction* ctx) { auto fn = [&](F v) { U32 sign; v = strip_sign(v, &sign); const float R = ctx->a, G = ctx->b, a = ctx->c, b = ctx->d, c = ctx->e, K = ctx->f + 1.0f; F r = if_then_else(v*R <= 1, approx_powf(v*R, G) , approx_exp((v-c)*a) + b); return K * apply_sign(r, sign); }; r = fn(r); g = fn(g); b = fn(b); } STAGE(HLGinvish, const skcms_TransferFunction* ctx) { auto fn = [&](F v) { U32 sign; v = strip_sign(v, &sign); const float R = ctx->a, G = ctx->b, a = ctx->c, b = ctx->d, c = ctx->e, K = ctx->f + 1.0f; v /= K; F r = if_then_else(v <= 1, R * approx_powf(v, G) , a * approx_log(v - b) + c); return apply_sign(r, sign); }; r = fn(r); g = fn(g); b = fn(b); } STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); r = g = b = 0.0f; a = from_byte(load(ptr, tail)); } STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); dr = dg = db = 0.0f; da = from_byte(load(ptr, tail)); } STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { const uint8_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); r = g = b = 0.0f; a = from_byte(gather(ptr, ix)); } STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U8 packed = pack(pack(to_unorm(a, 255))); store(ptr, packed, tail); } STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U8 packed = pack(pack(to_unorm(r, 255))); store(ptr, packed, tail); } STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_565(load(ptr, tail), &r,&g,&b); a = 1.0f; } STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_565(load(ptr, tail), &dr,&dg,&db); da = 1.0f; } STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); from_565(gather(ptr, ix), &r,&g,&b); a = 1.0f; } STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 px = pack( to_unorm(r, 31) << 11 | to_unorm(g, 63) << 5 | to_unorm(b, 31) ); store(ptr, px, tail); } STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_4444(load(ptr, tail), &r,&g,&b,&a); } STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_4444(load(ptr, tail), &dr,&dg,&db,&da); } STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); from_4444(gather(ptr, ix), &r,&g,&b,&a); } STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 px = pack( to_unorm(r, 15) << 12 | to_unorm(g, 15) << 8 | to_unorm(b, 15) << 4 | to_unorm(a, 15) ); store(ptr, px, tail); } STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_8888(load(ptr, tail), &r,&g,&b,&a); } STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_8888(load(ptr, tail), &dr,&dg,&db,&da); } STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); from_8888(gather(ptr, ix), &r,&g,&b,&a); } STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U32 px = to_unorm(r, 255) | to_unorm(g, 255) << 8 | to_unorm(b, 255) << 16 | to_unorm(a, 255) << 24; store(ptr, px, tail); } STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); from_88(load(ptr, tail), &r, &g); b = 0; a = 1; } STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); from_88(load(ptr, tail), &dr, &dg); db = 0; da = 1; } STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); from_88(gather(ptr, ix), &r, &g); b = 0; a = 1; } STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 ); store(ptr, px, tail); } STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); r = g = b = 0; a = from_short(load(ptr, tail)); } STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); dr = dg = db = 0.0f; da = from_short(load(ptr, tail)); } STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); r = g = b = 0.0f; a = from_short(gather(ptr, ix)); } STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 px = pack(to_unorm(a, 65535)); store(ptr, px, tail); } STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); b = 0; a = 1; from_1616(load(ptr, tail), &r,&g); } STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); from_1616(load(ptr, tail), &dr, &dg); db = 0; da = 1; } STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) { const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); from_1616(gather(ptr, ix), &r, &g); b = 0; a = 1; } STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U32 px = to_unorm(r, 65535) | to_unorm(g, 65535) << 16; store(ptr, px, tail); } STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); from_16161616(load(ptr, tail), &r,&g, &b, &a); } STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); from_16161616(load(ptr, tail), &dr, &dg, &db, &da); } STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) { const uint64_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); from_16161616(gather(ptr, ix), &r, &g, &b, &a); } STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 4*dx,4*dy); U16 R = pack(to_unorm(r, 65535)), G = pack(to_unorm(g, 65535)), B = pack(to_unorm(b, 65535)), A = pack(to_unorm(a, 65535)); store4(ptr,tail, R,G,B,A); } STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_1010102(load(ptr, tail), &r,&g,&b,&a); } STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_1010102(load(ptr, tail), &dr,&dg,&db,&da); } STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_1010102_xr(load(ptr, tail), &r,&g,&b,&a); } STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); from_1010102_xr(load(ptr, tail), &dr,&dg,&db,&da); } STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) { const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); from_1010102(gather(ptr, ix), &r,&g,&b,&a); } STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U32 px = to_unorm(r, 1023) | to_unorm(g, 1023) << 10 | to_unorm(b, 1023) << 20 | to_unorm(a, 3) << 30; store(ptr, px, tail); } STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); static constexpr float min = -0.752941f; static constexpr float max = 1.25098f; static constexpr float range = max - min; U32 px = to_unorm((r - min) / range, 1023) | to_unorm((g - min) / range, 1023) << 10 | to_unorm((b - min) / range, 1023) << 20 | to_unorm(a, 3) << 30; store(ptr, px, tail); } STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 R,G,B,A; load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); r = from_half(R); g = from_half(G); b = from_half(B); a = from_half(A); } STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 R,G,B,A; load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); dr = from_half(R); dg = from_half(G); db = from_half(B); da = from_half(A); } STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) { const uint64_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); auto px = gather(ptr, ix); U16 R,G,B,A; load4((const uint16_t*)&px,0, &R,&G,&B,&A); r = from_half(R); g = from_half(G); b = from_half(B); a = from_half(A); } STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); store4((uint16_t*)ptr,tail, to_half(r) , to_half(g) , to_half(b) , to_half(a)); } STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 4*dx,dy); U16 R = bswap(pack(to_unorm(r, 65535))), G = bswap(pack(to_unorm(g, 65535))), B = bswap(pack(to_unorm(b, 65535))), A = bswap(pack(to_unorm(a, 65535))); store4(ptr,tail, R,G,B,A); } STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); U16 A = load((const uint16_t*)ptr, tail); r = 0; g = 0; b = 0; a = from_half(A); } STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); U16 A = load((const uint16_t*)ptr, tail); dr = dg = db = 0.0f; da = from_half(A); } STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); r = g = b = 0.0f; a = from_half(gather(ptr, ix)); } STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); store(ptr, to_half(a), tail); } STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); U16 R,G; load2((const uint16_t*)ptr, tail, &R, &G); r = from_half(R); g = from_half(G); b = 0; a = 1; } STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); U16 R,G; load2((const uint16_t*)ptr, tail, &R, &G); dr = from_half(R); dg = from_half(G); db = 0; da = 1; } STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) { const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r, g); auto px = gather(ptr, ix); U16 R,G; load2((const uint16_t*)&px, 0, &R, &G); r = from_half(R); g = from_half(G); b = 0; a = 1; } STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx, dy); store2((uint16_t*)ptr, tail, to_half(r) , to_half(g)); } STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 4*dx,4*dy); load4(ptr,tail, &r,&g,&b,&a); } STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 4*dx,4*dy); load4(ptr,tail, &dr,&dg,&db,&da); } STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) { const float* ptr; U32 ix = ix_and_ptr(&ptr, ctx, r,g); r = gather(ptr, 4*ix + 0); g = gather(ptr, 4*ix + 1); b = gather(ptr, 4*ix + 2); a = gather(ptr, 4*ix + 3); } STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 4*dx,4*dy); store4(ptr,tail, r,g,b,a); } STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 2*dx,2*dy); load2(ptr, tail, &r, &g); b = 0; a = 1; } STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, 2*dx,2*dy); store2(ptr, tail, r, g); } SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) { return v - floor_(v*ctx->invScale)*ctx->scale; } SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) { auto limit = ctx->scale; auto invLimit = ctx->invScale; // This is "repeat" over the range 0..2*limit auto u = v - floor_(v*invLimit*0.5f)*2*limit; // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g. // [limit, 2*limit)). auto s = floor_(u*invLimit); // This is the mirror result. auto m = u - 2*s*(u - limit); // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in // the logical infinite image. This is tested by mirror_tile GM. Note that all values // that have a non-zero bias applied are > 0. auto biasInUlps = trunc_(s); return sk_bit_cast(sk_bit_cast(m) + ctx->mirrorBiasDir*biasInUlps); } // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images). // The gather stages will hard clamp the output of these stages to [0,limit)... // we just need to do the basic repeat or mirroring. STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); } STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); } STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); } STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); } STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); } STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); } STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); } STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) { r = min(ctx->max_x, max(ctx->min_x, r)); g = min(ctx->max_y, max(ctx->min_y, g)); } // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain: // mask == 0x00000000 if the coordinate(s) are out of bounds // mask == 0xFFFFFFFF if the coordinate(s) are in bounds // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0 // if either of the coordinates were out of bounds. STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { auto w = ctx->limit_x; auto e = ctx->inclusiveEdge_x; auto cond = ((0 < r) & (r < w)) | (r == e); sk_unaligned_store(ctx->mask, cond_to_mask(cond)); } STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { auto h = ctx->limit_y; auto e = ctx->inclusiveEdge_y; auto cond = ((0 < g) & (g < h)) | (g == e); sk_unaligned_store(ctx->mask, cond_to_mask(cond)); } STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { auto w = ctx->limit_x; auto h = ctx->limit_y; auto ex = ctx->inclusiveEdge_x; auto ey = ctx->inclusiveEdge_y; auto cond = (((0 < r) & (r < w)) | (r == ex)) & (((0 < g) & (g < h)) | (g == ey)); sk_unaligned_store(ctx->mask, cond_to_mask(cond)); } STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { auto mask = sk_unaligned_load(ctx->mask); r = sk_bit_cast(sk_bit_cast(r) & mask); g = sk_bit_cast(sk_bit_cast(g) & mask); b = sk_bit_cast(sk_bit_cast(b) & mask); a = sk_bit_cast(sk_bit_cast(a) & mask); } STAGE(alpha_to_gray, NoCtx) { r = g = b = a; a = 1; } STAGE(alpha_to_gray_dst, NoCtx) { dr = dg = db = da; da = 1; } STAGE(alpha_to_red, NoCtx) { r = a; a = 1; } STAGE(alpha_to_red_dst, NoCtx) { dr = da; da = 1; } STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) { a = r*0.2126f + g*0.7152f + b*0.0722f; r = g = b = 0; } STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) { r = g = b = r*0.2126f + g*0.7152f + b*0.0722f; } STAGE(matrix_translate, const float* m) { r += m[0]; g += m[1]; } STAGE(matrix_scale_translate, const float* m) { r = mad(r,m[0], m[2]); g = mad(g,m[1], m[3]); } STAGE(matrix_2x3, const float* m) { auto R = mad(r,m[0], mad(g,m[1], m[2])), G = mad(r,m[3], mad(g,m[4], m[5])); r = R; g = G; } STAGE(matrix_3x3, const float* m) { auto R = mad(r,m[0], mad(g,m[3], b*m[6])), G = mad(r,m[1], mad(g,m[4], b*m[7])), B = mad(r,m[2], mad(g,m[5], b*m[8])); r = R; g = G; b = B; } STAGE(matrix_3x4, const float* m) { auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))), G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))), B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11]))); r = R; g = G; b = B; } STAGE(matrix_4x5, const float* m) { auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))), G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))), B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))), A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19])))); r = R; g = G; b = B; a = A; } STAGE(matrix_4x3, const float* m) { auto X = r, Y = g; r = mad(X, m[0], mad(Y, m[4], m[ 8])); g = mad(X, m[1], mad(Y, m[5], m[ 9])); b = mad(X, m[2], mad(Y, m[6], m[10])); a = mad(X, m[3], mad(Y, m[7], m[11])); } STAGE(matrix_perspective, const float* m) { // N.B. Unlike the other matrix_ stages, this matrix is row-major. auto R = mad(r,m[0], mad(g,m[1], m[2])), G = mad(r,m[3], mad(g,m[4], m[5])), Z = mad(r,m[6], mad(g,m[7], m[8])); r = R * rcp_precise(Z); g = G * rcp_precise(Z); } SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, F* r, F* g, F* b, F* a) { F fr, br, fg, bg, fb, bb, fa, ba; #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) if (c->stopCount <=8) { fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx); br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx); fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx); bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx); fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx); bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx); fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx); ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx); } else #endif { fr = gather(c->fs[0], idx); br = gather(c->bs[0], idx); fg = gather(c->fs[1], idx); bg = gather(c->bs[1], idx); fb = gather(c->fs[2], idx); bb = gather(c->bs[2], idx); fa = gather(c->fs[3], idx); ba = gather(c->bs[3], idx); } *r = mad(t, fr, br); *g = mad(t, fg, bg); *b = mad(t, fb, bb); *a = mad(t, fa, ba); } STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { auto t = r; auto idx = trunc_(t * (c->stopCount-1)); gradient_lookup(c, idx, t, &r, &g, &b, &a); } STAGE(gradient, const SkRasterPipeline_GradientCtx* c) { auto t = r; U32 idx = 0; // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. for (size_t i = 1; i < c->stopCount; i++) { idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); } gradient_lookup(c, idx, t, &r, &g, &b, &a); } STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { auto t = r; r = mad(t, c->f[0], c->b[0]); g = mad(t, c->f[1], c->b[1]); b = mad(t, c->f[2], c->b[2]); a = mad(t, c->f[3], c->b[3]); } STAGE(xy_to_unit_angle, NoCtx) { F X = r, Y = g; F xabs = abs_(X), yabs = abs_(Y); F slope = min(xabs, yabs)/max(xabs, yabs); F s = slope * slope; // Use a 7th degree polynomial to approximate atan. // This was generated using sollya.gforge.inria.fr. // A float optimized polynomial was generated using the following command. // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); F phi = slope * (0.15912117063999176025390625f + s * (-5.185396969318389892578125e-2f + s * (2.476101927459239959716796875e-2f + s * (-7.0547382347285747528076171875e-3f)))); phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi); phi = if_then_else(Y < 0.0f , 1.0f - phi , phi); phi = if_then_else(phi != phi , 0 , phi); // Check for NaN. r = phi; } STAGE(xy_to_radius, NoCtx) { F X2 = r * r, Y2 = g * g; r = sqrt_(X2 + Y2); } // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works. STAGE(negate_x, NoCtx) { r = -r; } STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) { F x = r, y = g, &t = r; t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0 } STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) { F x = r, y = g, &t = r; t = x + y*y / x; // (x^2 + y^2) / x } STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) { F x = r, y = g, &t = r; t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 } STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) { F x = r, y = g, &t = r; t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 } STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) { F x = r, y = g, &t = r; t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 } STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) { F& t = r; t = t + ctx->fP1; // ctx->fP1 = f } STAGE(alter_2pt_conical_unswap, NoCtx) { F& t = r; t = 1 - t; } STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) { F& t = r; auto is_degenerate = (t != t); // NaN t = if_then_else(is_degenerate, F(0), t); sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); } STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) { F& t = r; auto is_degenerate = (t <= 0) | (t != t); t = if_then_else(is_degenerate, F(0), t); sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); } STAGE(apply_vector_mask, const uint32_t* ctx) { const U32 mask = sk_unaligned_load(ctx); r = sk_bit_cast(sk_bit_cast(r) & mask); g = sk_bit_cast(sk_bit_cast(g) & mask); b = sk_bit_cast(sk_bit_cast(b) & mask); a = sk_bit_cast(sk_bit_cast(a) & mask); } SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) { // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy). // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid // surrounding (x,y) at (0.5,0.5) off-center. F fx = fract(*r + 0.5f), fy = fract(*g + 0.5f); // Samplers will need to load x and fx, or y and fy. sk_unaligned_store(c->x, *r); sk_unaligned_store(c->y, *g); sk_unaligned_store(c->fx, fx); sk_unaligned_store(c->fy, fy); } STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) { // Bilinear and bicubic filters are both separable, so we produce independent contributions // from x and y, multiplying them together here to get each pixel's total scale factor. auto scale = sk_unaligned_load(c->scalex) * sk_unaligned_load(c->scaley); dr = mad(scale, r, dr); dg = mad(scale, g, dg); db = mad(scale, b, db); da = mad(scale, a, da); } // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center // are combined in direct proportion to their area overlapping that logical query pixel. // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x. // The y-axis is symmetric. template SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { *x = sk_unaligned_load(ctx->x) + (kScale * 0.5f); F fx = sk_unaligned_load(ctx->fx); F scalex; if (kScale == -1) { scalex = 1.0f - fx; } if (kScale == +1) { scalex = fx; } sk_unaligned_store(ctx->scalex, scalex); } template SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { *y = sk_unaligned_load(ctx->y) + (kScale * 0.5f); F fy = sk_unaligned_load(ctx->fy); F scaley; if (kScale == -1) { scaley = 1.0f - fy; } if (kScale == +1) { scaley = fy; } sk_unaligned_store(ctx->scaley, scaley); } STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) { save_xy(&r, &g, ctx); // Init for accumulate dr = dg = db = da = 0; } STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); } STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); } STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); } STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); } // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample // pixel center are combined with a non-uniform cubic filter, with higher values near the center. // // This helper computes the total weight along one axis (our bicubic filter is separable), given one // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details. SI F bicubic_wts(F t, float A, float B, float C, float D) { return mad(t, mad(t, mad(t, D, C), B), A); } template SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { *x = sk_unaligned_load(ctx->x) + (kScale * 0.5f); F scalex; if (kScale == -3) { scalex = sk_unaligned_load(ctx->wx[0]); } if (kScale == -1) { scalex = sk_unaligned_load(ctx->wx[1]); } if (kScale == +1) { scalex = sk_unaligned_load(ctx->wx[2]); } if (kScale == +3) { scalex = sk_unaligned_load(ctx->wx[3]); } sk_unaligned_store(ctx->scalex, scalex); } template SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { *y = sk_unaligned_load(ctx->y) + (kScale * 0.5f); F scaley; if (kScale == -3) { scaley = sk_unaligned_load(ctx->wy[0]); } if (kScale == -1) { scaley = sk_unaligned_load(ctx->wy[1]); } if (kScale == +1) { scaley = sk_unaligned_load(ctx->wy[2]); } if (kScale == +3) { scaley = sk_unaligned_load(ctx->wy[3]); } sk_unaligned_store(ctx->scaley, scaley); } STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) { save_xy(&r, &g, ctx); const float* w = ctx->weights; F fx = sk_unaligned_load(ctx->fx); sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12])); sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13])); sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14])); sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15])); F fy = sk_unaligned_load(ctx->fy); sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12])); sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13])); sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14])); sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15])); // Init for accumulate dr = dg = db = da = 0; } STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); } STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); } STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); } STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); } STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); } STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); } STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); } STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); } STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) { sk_unaligned_store(ctx->x, r); sk_unaligned_store(ctx->y, g); } STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) { sk_unaligned_store(ctx->r, r); sk_unaligned_store(ctx->g, g); sk_unaligned_store(ctx->b, b); sk_unaligned_store(ctx->a, a); r = sk_unaligned_load(ctx->x) * ctx->scaleX; g = sk_unaligned_load(ctx->y) * ctx->scaleY; } STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) { r = lerp(sk_unaligned_load(ctx->r), r, ctx->lowerWeight); g = lerp(sk_unaligned_load(ctx->g), g, ctx->lowerWeight); b = lerp(sk_unaligned_load(ctx->b), b, ctx->lowerWeight); a = lerp(sk_unaligned_load(ctx->a), a, ctx->lowerWeight); } STAGE(callback, SkRasterPipeline_CallbackCtx* c) { store4(c->rgba,0, r,g,b,a); c->fn(c, tail ? tail : N); load4(c->read_from,0, &r,&g,&b,&a); } // All control flow stages used by SkSL maintain some state in the common registers: // dr: condition mask // dg: loop mask // db: return mask // da: execution mask (intersection of all three masks) // After updating dr/dg/db, you must invoke update_execution_mask(). #define execution_mask() sk_bit_cast(da) #define update_execution_mask() da = sk_bit_cast(sk_bit_cast(dr) & \ sk_bit_cast(dg) & \ sk_bit_cast(db)) STAGE_TAIL(init_lane_masks, NoCtx) { uint32_t iota[] = {0,1,2,3,4,5,6,7}; I32 mask = tail ? cond_to_mask(sk_unaligned_load(iota) < tail) : I32(~0); dr = dg = db = da = sk_bit_cast(mask); } STAGE_TAIL(load_condition_mask, F* ctx) { dr = sk_unaligned_load(ctx); update_execution_mask(); } STAGE_TAIL(store_condition_mask, F* ctx) { sk_unaligned_store(ctx, dr); } STAGE_TAIL(merge_condition_mask, I32* ptr) { // Set the condition-mask to the intersection of two adjacent masks at the pointer. dr = sk_bit_cast(ptr[0] & ptr[1]); update_execution_mask(); } STAGE_TAIL(load_loop_mask, F* ctx) { dg = sk_unaligned_load(ctx); update_execution_mask(); } STAGE_TAIL(store_loop_mask, F* ctx) { sk_unaligned_store(ctx, dg); } STAGE_TAIL(mask_off_loop_mask, NoCtx) { // We encountered a break statement. If a lane was active, it should be masked off now, and stay // masked-off until the termination of the loop. dg = sk_bit_cast(sk_bit_cast(dg) & ~execution_mask()); update_execution_mask(); } STAGE_TAIL(reenable_loop_mask, I32* ptr) { // Set the loop-mask to the union of the current loop-mask with the mask at the pointer. dg = sk_bit_cast(sk_bit_cast(dg) | ptr[0]); update_execution_mask(); } STAGE_TAIL(merge_loop_mask, I32* ptr) { // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer. // (Note: this behavior subtly differs from merge_condition_mask!) dg = sk_bit_cast(sk_bit_cast(dg) & ptr[0]); update_execution_mask(); } STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* ctx) { // Check each lane to see if the case value matches the expectation. I32* actualValue = (I32*)ctx->ptr; I32 caseMatches = cond_to_mask(*actualValue == ctx->expectedValue); // In lanes where we found a match, enable the loop mask... dg = sk_bit_cast(sk_bit_cast(dg) | caseMatches); update_execution_mask(); // ... and clear the default-case mask. I32* defaultMask = actualValue + 1; *defaultMask &= ~caseMatches; } STAGE_TAIL(load_return_mask, F* ctx) { db = sk_unaligned_load(ctx); update_execution_mask(); } STAGE_TAIL(store_return_mask, F* ctx) { sk_unaligned_store(ctx, db); } STAGE_TAIL(mask_off_return_mask, NoCtx) { // We encountered a return statement. If a lane was active, it should be masked off now, and // stay masked-off until the end of the function. db = sk_bit_cast(sk_bit_cast(db) & ~execution_mask()); update_execution_mask(); } STAGE_BRANCH(branch_if_any_active_lanes, SkRasterPipeline_BranchCtx* ctx) { return any(execution_mask()) ? ctx->offset : 1; } STAGE_BRANCH(branch_if_no_active_lanes, SkRasterPipeline_BranchCtx* ctx) { return any(execution_mask()) ? 1 : ctx->offset; } STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) { return ctx->offset; } STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) { // Compare each lane against the expected value... I32 match = cond_to_mask(*(I32*)ctx->ptr == ctx->value); // ... but mask off lanes that aren't executing. match &= execution_mask(); // If any lanes matched, don't take the branch. return any(match) ? 1 : ctx->offset; } STAGE_TAIL(zero_slot_unmasked, F* dst) { // We don't even bother masking off the tail; we're filling slots, not the destination surface. sk_bzero(dst, sizeof(F) * 1); } STAGE_TAIL(zero_2_slots_unmasked, F* dst) { sk_bzero(dst, sizeof(F) * 2); } STAGE_TAIL(zero_3_slots_unmasked, F* dst) { sk_bzero(dst, sizeof(F) * 3); } STAGE_TAIL(zero_4_slots_unmasked, F* dst) { sk_bzero(dst, sizeof(F) * 4); } STAGE_TAIL(copy_constant, SkRasterPipeline_BinaryOpCtx* ctx) { const float* src = ctx->src; F* dst = (F*)ctx->dst; dst[0] = src[0]; } STAGE_TAIL(copy_2_constants, SkRasterPipeline_BinaryOpCtx* ctx) { const float* src = ctx->src; F* dst = (F*)ctx->dst; dst[0] = src[0]; dst[1] = src[1]; } STAGE_TAIL(copy_3_constants, SkRasterPipeline_BinaryOpCtx* ctx) { const float* src = ctx->src; F* dst = (F*)ctx->dst; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } STAGE_TAIL(copy_4_constants, SkRasterPipeline_BinaryOpCtx* ctx) { const float* src = ctx->src; F* dst = (F*)ctx->dst; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { // We don't even bother masking off the tail; we're filling slots, not the destination surface. memcpy(ctx->dst, ctx->src, sizeof(F) * 1); } STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { memcpy(ctx->dst, ctx->src, sizeof(F) * 2); } STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { memcpy(ctx->dst, ctx->src, sizeof(F) * 3); } STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { memcpy(ctx->dst, ctx->src, sizeof(F) * 4); } template SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* ctx, I32 mask) { if (any(mask)) { // Get pointers to our slots. F* dst = (F*)ctx->dst; F* src = (F*)ctx->src; // Mask off and copy slots. for (int count = 0; count < NumSlots; ++count) { *dst = if_then_else(mask, *src, *dst); dst += 1; src += 1; } } } STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* ctx) { copy_n_slots_masked_fn<1>(ctx, execution_mask()); } STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { copy_n_slots_masked_fn<2>(ctx, execution_mask()); } STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { copy_n_slots_masked_fn<3>(ctx, execution_mask()); } STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { copy_n_slots_masked_fn<4>(ctx, execution_mask()); } template SI void shuffle_fn(F* dst, uint16_t* offsets, int numSlots) { F scratch[16]; std::byte* src = (std::byte*)dst; for (int count = 0; count < LoopCount; ++count) { scratch[count] = *(F*)(src + offsets[count]); } // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when // the number of slots is unknown at compile time, and generates roughly identical code when the // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes // that `numSlots` could be arbitrarily large, and so it emits more code than we need. switch (numSlots) { case 16: dst[15] = scratch[15]; [[fallthrough]]; case 15: dst[14] = scratch[14]; [[fallthrough]]; case 14: dst[13] = scratch[13]; [[fallthrough]]; case 13: dst[12] = scratch[12]; [[fallthrough]]; case 12: dst[11] = scratch[11]; [[fallthrough]]; case 11: dst[10] = scratch[10]; [[fallthrough]]; case 10: dst[ 9] = scratch[ 9]; [[fallthrough]]; case 9: dst[ 8] = scratch[ 8]; [[fallthrough]]; case 8: dst[ 7] = scratch[ 7]; [[fallthrough]]; case 7: dst[ 6] = scratch[ 6]; [[fallthrough]]; case 6: dst[ 5] = scratch[ 5]; [[fallthrough]]; case 5: dst[ 4] = scratch[ 4]; [[fallthrough]]; case 4: dst[ 3] = scratch[ 3]; [[fallthrough]]; case 3: dst[ 2] = scratch[ 2]; [[fallthrough]]; case 2: dst[ 1] = scratch[ 1]; [[fallthrough]]; case 1: dst[ 0] = scratch[ 0]; } } STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* ctx) { shuffle_fn<1>((F*)ctx->ptr, ctx->offsets, 1); } STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* ctx) { shuffle_fn<2>((F*)ctx->ptr, ctx->offsets, 2); } STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* ctx) { shuffle_fn<3>((F*)ctx->ptr, ctx->offsets, 3); } STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* ctx) { shuffle_fn<4>((F*)ctx->ptr, ctx->offsets, 4); } STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) { shuffle_fn<16>((F*)ctx->ptr, ctx->offsets, ctx->count); } template SI void swizzle_copy_masked_fn(F* dst, const F* src, uint16_t* offsets, I32 mask) { std::byte* dstB = (std::byte*)dst; for (int count = 0; count < NumSlots; ++count) { F* dstS = (F*)(dstB + *offsets); *dstS = if_then_else(mask, *src, *dstS); offsets += 1; src += 1; } } STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { swizzle_copy_masked_fn<1>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); } STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { swizzle_copy_masked_fn<2>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); } STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { swizzle_copy_masked_fn<3>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); } STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { swizzle_copy_masked_fn<4>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); } STAGE_TAIL(copy_from_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) { // Clamp the indirect offsets to stay within the limit. U32 offsets = *(U32*)ctx->indirectOffset; offsets = min(offsets, ctx->indirectLimit); // Scale up the offsets to account for the N lanes per value. offsets *= N; // Adjust the offsets forward so that they fetch from the correct lane. static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; offsets += sk_unaligned_load(iota); // Use gather to perform indirect lookups; write the results into `dst`. const float* src = ctx->src; F* dst = (F*)ctx->dst; F* end = dst + ctx->slots; I32 mask = execution_mask(); do { *dst = if_then_else(mask, gather(src, offsets), *dst); dst += 1; src += N; } while (dst != end); } // Unary operations take a single input, and overwrite it with their output. // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually. template SI void apply_adjacent_unary(T* dst, T* end) { do { ApplyFn(dst); dst += 1; } while (dst != end); } SI void bitwise_not_fn(I32* dst) { *dst = ~*dst; } #if defined(JUMPER_IS_SCALAR) template SI void cast_to_float_from_fn(T* dst) { *dst = sk_bit_cast((F)*dst); } SI void cast_to_int_from_fn(F* dst) { *dst = sk_bit_cast((I32)*dst); } SI void cast_to_uint_from_fn(F* dst) { *dst = sk_bit_cast((U32)*dst); } #else template SI void cast_to_float_from_fn(T* dst) { *dst = sk_bit_cast(__builtin_convertvector(*dst, F)); } SI void cast_to_int_from_fn(F* dst) { *dst = sk_bit_cast(__builtin_convertvector(*dst, I32)); } SI void cast_to_uint_from_fn(F* dst) { *dst = sk_bit_cast(__builtin_convertvector(*dst, U32)); } #endif template SI void abs_fn(T* dst) { *dst = abs_(*dst); } SI void floor_fn(F* dst) { *dst = floor_(*dst); } SI void ceil_fn(F* dst) { *dst = ceil_(*dst); } #define DECLARE_UNARY_FLOAT(name) \ STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary(dst, dst + 1); } \ STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary(dst, dst + 2); } \ STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary(dst, dst + 3); } \ STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary(dst, dst + 4); } #define DECLARE_UNARY_INT(name) \ STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary(dst, dst + 1); } \ STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary(dst, dst + 2); } \ STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary(dst, dst + 3); } \ STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary(dst, dst + 4); } #define DECLARE_UNARY_UINT(name) \ STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary(dst, dst + 1); } \ STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary(dst, dst + 2); } \ STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary(dst, dst + 3); } \ STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary(dst, dst + 4); } DECLARE_UNARY_INT(bitwise_not) DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from) DECLARE_UNARY_FLOAT(cast_to_int_from) DECLARE_UNARY_FLOAT(cast_to_uint_from) DECLARE_UNARY_FLOAT(abs) DECLARE_UNARY_INT(abs) DECLARE_UNARY_FLOAT(floor) DECLARE_UNARY_FLOAT(ceil) #undef DECLARE_UNARY_FLOAT #undef DECLARE_UNARY_INT #undef DECLARE_UNARY_UINT // For complex unary ops, we only provide a 1-slot version to reduce code bloat. STAGE_TAIL(sin_float, F* dst) { *dst = sin_(*dst); } STAGE_TAIL(cos_float, F* dst) { *dst = cos_(*dst); } STAGE_TAIL(tan_float, F* dst) { *dst = tan_(*dst); } STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); } STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); } STAGE_TAIL(exp_float, F* dst) { *dst = approx_exp(*dst); } // Binary operations take two adjacent inputs, and write their output in the first position. template SI void apply_adjacent_binary(T* dst, T* src) { T* end = src; do { ApplyFn(dst, src); dst += 1; src += 1; } while (dst != end); } template SI void add_fn(T* dst, T* src) { *dst += *src; } template SI void sub_fn(T* dst, T* src) { *dst -= *src; } template SI void mul_fn(T* dst, T* src) { *dst *= *src; } template SI void div_fn(T* dst, T* src) { *dst /= *src; } SI void bitwise_and_fn(I32* dst, I32* src) { *dst &= *src; } SI void bitwise_or_fn(I32* dst, I32* src) { *dst |= *src; } SI void bitwise_xor_fn(I32* dst, I32* src) { *dst ^= *src; } template SI void max_fn(T* dst, T* src) { *dst = max(*dst, *src); } template SI void min_fn(T* dst, T* src) { *dst = min(*dst, *src); } template SI void cmplt_fn(T* dst, T* src) { static_assert(sizeof(T) == sizeof(I32)); I32 result = cond_to_mask(*dst < *src); memcpy(dst, &result, sizeof(I32)); } template SI void cmple_fn(T* dst, T* src) { static_assert(sizeof(T) == sizeof(I32)); I32 result = cond_to_mask(*dst <= *src); memcpy(dst, &result, sizeof(I32)); } template SI void cmpeq_fn(T* dst, T* src) { static_assert(sizeof(T) == sizeof(I32)); I32 result = cond_to_mask(*dst == *src); memcpy(dst, &result, sizeof(I32)); } template SI void cmpne_fn(T* dst, T* src) { static_assert(sizeof(T) == sizeof(I32)); I32 result = cond_to_mask(*dst != *src); memcpy(dst, &result, sizeof(I32)); } SI void atan2_fn(F* dst, F* src) { *dst = atan2_(*dst, *src); } SI void pow_fn(F* dst, F* src) { *dst = approx_powf(*dst, *src); } #define DECLARE_N_WAY_BINARY_FLOAT(name) \ STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* ctx) { \ apply_adjacent_binary((F*)ctx->dst, (F*)ctx->src); \ } #define DECLARE_BINARY_FLOAT(name) \ STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary(dst, dst + 1); } \ STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary(dst, dst + 2); } \ STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary(dst, dst + 3); } \ STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary(dst, dst + 4); } \ DECLARE_N_WAY_BINARY_FLOAT(name) #define DECLARE_N_WAY_BINARY_INT(name) \ STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* ctx) { \ apply_adjacent_binary((I32*)ctx->dst, (I32*)ctx->src); \ } #define DECLARE_BINARY_INT(name) \ STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary(dst, dst + 1); } \ STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary(dst, dst + 2); } \ STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary(dst, dst + 3); } \ STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary(dst, dst + 4); } \ DECLARE_N_WAY_BINARY_INT(name) #define DECLARE_N_WAY_BINARY_UINT(name) \ STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* ctx) { \ apply_adjacent_binary((U32*)ctx->dst, (U32*)ctx->src); \ } #define DECLARE_BINARY_UINT(name) \ STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary(dst, dst + 1); } \ STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary(dst, dst + 2); } \ STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary(dst, dst + 3); } \ STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary(dst, dst + 4); } \ DECLARE_N_WAY_BINARY_UINT(name) // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.) DECLARE_BINARY_FLOAT(add) DECLARE_BINARY_INT(add) DECLARE_BINARY_FLOAT(sub) DECLARE_BINARY_INT(sub) DECLARE_BINARY_FLOAT(mul) DECLARE_BINARY_INT(mul) DECLARE_BINARY_FLOAT(div) DECLARE_BINARY_INT(div) DECLARE_BINARY_UINT(div) DECLARE_BINARY_INT(bitwise_and) DECLARE_BINARY_INT(bitwise_or) DECLARE_BINARY_INT(bitwise_xor) DECLARE_BINARY_FLOAT(min) DECLARE_BINARY_INT(min) DECLARE_BINARY_UINT(min) DECLARE_BINARY_FLOAT(max) DECLARE_BINARY_INT(max) DECLARE_BINARY_UINT(max) DECLARE_BINARY_FLOAT(cmplt) DECLARE_BINARY_INT(cmplt) DECLARE_BINARY_UINT(cmplt) DECLARE_BINARY_FLOAT(cmple) DECLARE_BINARY_INT(cmple) DECLARE_BINARY_UINT(cmple) DECLARE_BINARY_FLOAT(cmpeq) DECLARE_BINARY_INT(cmpeq) DECLARE_BINARY_FLOAT(cmpne) DECLARE_BINARY_INT(cmpne) // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated // 1-4 slot versions. DECLARE_N_WAY_BINARY_FLOAT(atan2) DECLARE_N_WAY_BINARY_FLOAT(pow) #undef DECLARE_BINARY_FLOAT #undef DECLARE_BINARY_INT #undef DECLARE_BINARY_UINT #undef DECLARE_N_WAY_BINARY_FLOAT #undef DECLARE_N_WAY_BINARY_INT #undef DECLARE_N_WAY_BINARY_UINT // Dots can be represented with multiply and add ops, but they are so foundational that it's worth // having dedicated ops. STAGE_TAIL(dot_2_floats, F* dst) { dst[0] = mad(dst[0], dst[2], dst[1] * dst[3]); } STAGE_TAIL(dot_3_floats, F* dst) { dst[0] = mad(dst[0], dst[3], mad(dst[1], dst[4], dst[2] * dst[5])); } STAGE_TAIL(dot_4_floats, F* dst) { dst[0] = mad(dst[0], dst[4], mad(dst[1], dst[5], mad(dst[2], dst[6], dst[3] * dst[7]))); } // Ternary operations work like binary ops (see immediately above) but take two source inputs. template SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) { T* end = src0; do { ApplyFn(dst, src0, src1); dst += 1; src0 += 1; src1 += 1; } while (dst != end); } SI void mix_fn(F* a, F* x, F* y) { // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last). *a = lerp(*x, *y, *a); } SI void mix_fn(I32* a, I32* x, I32* y) { // We reorder the arguments here to match if_then_else's expected order (y before x). *a = if_then_else(*a, *y, *x); } #define DECLARE_TERNARY_FLOAT(name) \ STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary(p, p+1, p+2); } \ STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary(p, p+2, p+4); } \ STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary(p, p+3, p+6); } \ STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary(p, p+4, p+8); } \ STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* ctx) { \ apply_adjacent_ternary((F*)ctx->dst, (F*)ctx->src0, (F*)ctx->src1); \ } #define DECLARE_TERNARY_INT(name) \ STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary(p, p+1, p+2); } \ STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary(p, p+2, p+4); } \ STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary(p, p+3, p+6); } \ STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary(p, p+4, p+8); } \ STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* ctx) { \ apply_adjacent_ternary((I32*)ctx->dst, (I32*)ctx->src0, (I32*)ctx->src1); \ } DECLARE_TERNARY_FLOAT(mix) DECLARE_TERNARY_INT(mix) #undef DECLARE_TERNARY_FLOAT #undef DECLARE_TERNARY_INT STAGE(gauss_a_to_rgba, NoCtx) { // x = 1 - x; // exp(-x * x * 4) - 0.018f; // ... now approximate with quartic // const float c4 = -2.26661229133605957031f; const float c3 = 2.89795351028442382812f; const float c2 = 0.21345567703247070312f; const float c1 = 0.15489584207534790039f; const float c0 = 0.00030726194381713867f; a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0); r = a; g = a; b = a; } // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { // (cx,cy) are the center of our sample. F cx = r, cy = g; // All sample points are at the same fractional offset (fx,fy). // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. F fx = fract(cx + 0.5f), fy = fract(cy + 0.5f); // We'll accumulate the color of all four samples into {r,g,b,a} directly. r = g = b = a = 0; for (float py = -0.5f; py <= +0.5f; py += 1.0f) for (float px = -0.5f; px <= +0.5f; px += 1.0f) { // (x,y) are the coordinates of this sample point. F x = cx + px, y = cy + py; // ix_and_ptr() will clamp to the image's bounds for us. const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x,y); F sr,sg,sb,sa; from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center // are combined in direct proportion to their area overlapping that logical query pixel. // At positive offsets, the x-axis contribution to that rectangle is fx, // or (1-fx) at negative x. Same deal for y. F sx = (px > 0) ? fx : 1.0f - fx, sy = (py > 0) ? fy : 1.0f - fy, area = sx * sy; r += sr * area; g += sg * area; b += sb * area; a += sa * area; } } // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { // (cx,cy) are the center of our sample. F cx = r, cy = g; // All sample points are at the same fractional offset (fx,fy). // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. F fx = fract(cx + 0.5f), fy = fract(cy + 0.5f); // We'll accumulate the color of all four samples into {r,g,b,a} directly. r = g = b = a = 0; const float* w = ctx->weights; const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]), bicubic_wts(fy, w[1], w[5], w[ 9], w[13]), bicubic_wts(fy, w[2], w[6], w[10], w[14]), bicubic_wts(fy, w[3], w[7], w[11], w[15])}; const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]), bicubic_wts(fx, w[1], w[5], w[ 9], w[13]), bicubic_wts(fx, w[2], w[6], w[10], w[14]), bicubic_wts(fx, w[3], w[7], w[11], w[15])}; F sample_y = cy - 1.5f; for (int yy = 0; yy <= 3; ++yy) { F sample_x = cx - 1.5f; for (int xx = 0; xx <= 3; ++xx) { F scale = scalex[xx] * scaley[yy]; // ix_and_ptr() will clamp to the image's bounds for us. const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y); F sr,sg,sb,sa; from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); r = mad(scale, sr, r); g = mad(scale, sg, g); b = mad(scale, sb, b); a = mad(scale, sa, a); sample_x += 1; } sample_y += 1; } } // ~~~~~~ skgpu::Swizzle stage ~~~~~~ // STAGE(swizzle, void* ctx) { auto ir = r, ig = g, ib = b, ia = a; F* o[] = {&r, &g, &b, &a}; char swiz[4]; memcpy(swiz, &ctx, sizeof(swiz)); for (int i = 0; i < 4; ++i) { switch (swiz[i]) { case 'r': *o[i] = ir; break; case 'g': *o[i] = ig; break; case 'b': *o[i] = ib; break; case 'a': *o[i] = ia; break; case '0': *o[i] = F(0); break; case '1': *o[i] = F(1); break; default: break; } } } namespace lowp { #if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE) // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually), // we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the // highp float pipeline. #define M(st) static void (*st)(void) = nullptr; SK_RASTER_PIPELINE_OPS_LOWP(M) #undef M static void (*just_return)(void) = nullptr; static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*) {} #else // We are compiling vector code with Clang... let's make some lowp stages! #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) using U8 = uint8_t __attribute__((ext_vector_type(16))); using U16 = uint16_t __attribute__((ext_vector_type(16))); using I16 = int16_t __attribute__((ext_vector_type(16))); using I32 = int32_t __attribute__((ext_vector_type(16))); using U32 = uint32_t __attribute__((ext_vector_type(16))); using I64 = int64_t __attribute__((ext_vector_type(16))); using U64 = uint64_t __attribute__((ext_vector_type(16))); using F = float __attribute__((ext_vector_type(16))); #else using U8 = uint8_t __attribute__((ext_vector_type(8))); using U16 = uint16_t __attribute__((ext_vector_type(8))); using I16 = int16_t __attribute__((ext_vector_type(8))); using I32 = int32_t __attribute__((ext_vector_type(8))); using U32 = uint32_t __attribute__((ext_vector_type(8))); using I64 = int64_t __attribute__((ext_vector_type(8))); using U64 = uint64_t __attribute__((ext_vector_type(8))); using F = float __attribute__((ext_vector_type(8))); #endif static constexpr size_t N = sizeof(U16) / sizeof(uint16_t); // Once again, some platforms benefit from a restricted Stage calling convention, // but others can pass tons and tons of registers and we're happy to exploit that. // It's exactly the same decision and implementation strategy as the F stages above. #if JUMPER_NARROW_STAGES struct Params { size_t dx, dy, tail; U16 dr,dg,db,da; }; using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a); #else using Stage = void (ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, U16 r, U16 g, U16 b, U16 a, U16 dr, U16 dg, U16 db, U16 da); #endif static void start_pipeline(const size_t x0, const size_t y0, const size_t xlimit, const size_t ylimit, SkRasterPipelineStage* program) { auto start = (Stage)program->fn; for (size_t dy = y0; dy < ylimit; dy++) { #if JUMPER_NARROW_STAGES Params params = { x0,dy,0, 0,0,0,0 }; for (; params.dx + N <= xlimit; params.dx += N) { start(¶ms, program, 0,0,0,0); } if (size_t tail = xlimit - params.dx) { params.tail = tail; start(¶ms, program, 0,0,0,0); } #else size_t dx = x0; for (; dx + N <= xlimit; dx += N) { start( 0, program, dx,dy, 0,0,0,0, 0,0,0,0); } if (size_t tail = xlimit - dx) { start(tail, program, dx,dy, 0,0,0,0, 0,0,0,0); } #endif } } #if JUMPER_NARROW_STAGES static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {} #else static void ABI just_return(size_t, SkRasterPipelineStage*,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {} #endif // All stages use the same function call ABI to chain into each other, but there are three types: // GG: geometry in, geometry out -- think, a matrix // GP: geometry in, pixels out. -- think, a memory gather // PP: pixels in, pixels out. -- think, a blend mode // // (Some stages ignore their inputs or produce no logical output. That's perfectly fine.) // // These three STAGE_ macros let you define each type of stage, // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate. #if JUMPER_NARROW_STAGES #define STAGE_GG(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ static void ABI name(Params* params, SkRasterPipelineStage* program, \ U16 r, U16 g, U16 b, U16 a) { \ auto x = join(r,g), \ y = join(b,a); \ name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \ split(x, &r,&g); \ split(y, &b,&a); \ auto fn = (Stage)(++program)->fn; \ fn(params, program, r,g,b,a); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) #define STAGE_GP(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da); \ static void ABI name(Params* params, SkRasterPipelineStage* program, \ U16 r, U16 g, U16 b, U16 a) { \ auto x = join(r,g), \ y = join(b,a); \ name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \ params->dr,params->dg,params->db,params->da); \ auto fn = (Stage)(++program)->fn; \ fn(params, program, r,g,b,a); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da) #define STAGE_PP(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da); \ static void ABI name(Params* params, SkRasterPipelineStage* program, \ U16 r, U16 g, U16 b, U16 a) { \ name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \ params->dr,params->dg,params->db,params->da); \ auto fn = (Stage)(++program)->fn; \ fn(params, program, r,g,b,a); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da) #else #define STAGE_GG(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ static void ABI name(size_t tail, SkRasterPipelineStage* program, \ size_t dx, size_t dy, \ U16 r, U16 g, U16 b, U16 a, \ U16 dr, U16 dg, U16 db, U16 da) { \ auto x = join(r,g), \ y = join(b,a); \ name##_k(Ctx{program}, dx,dy,tail, x,y); \ split(x, &r,&g); \ split(y, &b,&a); \ auto fn = (Stage)(++program)->fn; \ fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) #define STAGE_GP(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da); \ static void ABI name(size_t tail, SkRasterPipelineStage* program, \ size_t dx, size_t dy, \ U16 r, U16 g, U16 b, U16 a, \ U16 dr, U16 dg, U16 db, U16 da) { \ auto x = join(r,g), \ y = join(b,a); \ name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \ auto fn = (Stage)(++program)->fn; \ fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da) #define STAGE_PP(name, ARG) \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da); \ static void ABI name(size_t tail, SkRasterPipelineStage* program, \ size_t dx, size_t dy, \ U16 r, U16 g, U16 b, U16 a, \ U16 dr, U16 dg, U16 db, U16 da) { \ name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \ auto fn = (Stage)(++program)->fn; \ fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ } \ SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ U16& r, U16& g, U16& b, U16& a, \ U16& dr, U16& dg, U16& db, U16& da) #endif // ~~~~~~ Commonly used helper functions ~~~~~~ // /** * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow, * thanks to a division by a non-power of two: * [1] (v + 127) / 255 * * There is a two-step process that computes the correct answer for all inputs: * [2] (v + 128 + ((v + 128) >> 8)) >> 8 * * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time: * [3] (v + 255) >> 8; * * We offer two different implementations here, depending on the requirements of the calling stage. */ /** * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast * as [3]), and uses [3] elsewhere. */ SI U16 div255(U16 v) { #if defined(JUMPER_IS_NEON) // With NEON we can compute [2] just as fast as [3], so let's be correct. // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up: return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8); #else // Otherwise, use [3], which is never wrong by more than 1: return (v+255)/256; #endif } /** * div255_accurate guarantees the right answer on all platforms, at the expense of performance. */ SI U16 div255_accurate(U16 v) { #if defined(JUMPER_IS_NEON) // Our NEON implementation of div255 is already correct for all inputs: return div255(v); #else // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics: v += 128; return (v+(v/256))/256; #endif } SI U16 inv(U16 v) { return 255-v; } SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); } SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); } SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); } SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); } SI U16 from_float(float f) { return f * 255.0f + 0.5f; } SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); } template SI D cast(S src) { return __builtin_convertvector(src, D); } template SI void split(S v, D* lo, D* hi) { static_assert(2*sizeof(D) == sizeof(S), ""); memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D)); memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D)); } template SI D join(S lo, S hi) { static_assert(sizeof(D) == 2*sizeof(S), ""); D v; memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S)); memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S)); return v; } SI F if_then_else(I32 c, F t, F e) { return sk_bit_cast( (sk_bit_cast(t) & c) | (sk_bit_cast(e) & ~c) ); } SI F max(F x, F y) { return if_then_else(x < y, y, x); } SI F min(F x, F y) { return if_then_else(x < y, x, y); } SI I32 if_then_else(I32 c, I32 t, I32 e) { return (t & c) | (e & ~c); } SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); } SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); } SI F mad(F f, F m, F a) { return f*m+a; } SI U32 trunc_(F x) { return (U32)cast(x); } // Use approximate instructions and one Newton-Raphson step to calculate 1/x. SI F rcp_precise(F x) { #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) __m256 lo,hi; split(x, &lo,&hi); return join(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) __m128 lo,hi; split(x, &lo,&hi); return join(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); #elif defined(JUMPER_IS_NEON) float32x4_t lo,hi; split(x, &lo,&hi); return join(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); #else return 1.0f / x; #endif } SI F sqrt_(F x) { #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) __m256 lo,hi; split(x, &lo,&hi); return join(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi)); #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) __m128 lo,hi; split(x, &lo,&hi); return join(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi)); #elif defined(SK_CPU_ARM64) float32x4_t lo,hi; split(x, &lo,&hi); return join(vsqrtq_f32(lo), vsqrtq_f32(hi)); #elif defined(JUMPER_IS_NEON) auto sqrt = [](float32x4_t v) { auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v). est *= vrsqrtsq_f32(v,est*est); est *= vrsqrtsq_f32(v,est*est); return v*est; // sqrt(v) == v*rsqrt(v). }; float32x4_t lo,hi; split(x, &lo,&hi); return join(sqrt(lo), sqrt(hi)); #else return F{ sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]), sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]), }; #endif } SI F floor_(F x) { #if defined(SK_CPU_ARM64) float32x4_t lo,hi; split(x, &lo,&hi); return join(vrndmq_f32(lo), vrndmq_f32(hi)); #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) __m256 lo,hi; split(x, &lo,&hi); return join(_mm256_floor_ps(lo), _mm256_floor_ps(hi)); #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) __m128 lo,hi; split(x, &lo,&hi); return join(_mm_floor_ps(lo), _mm_floor_ps(hi)); #else F roundtrip = cast(cast(x)); return roundtrip - if_then_else(roundtrip > x, F(1), F(0)); #endif } // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally // this multiply is: // (2 * a * b + (1 << 15)) >> 16 // The result is a number on [-1, 1). // Note: on neon this is a saturating multiply while the others are not. SI I16 scaled_mult(I16 a, I16 b) { #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) return _mm256_mulhrs_epi16(a, b); #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) return _mm_mulhrs_epi16(a, b); #elif defined(SK_CPU_ARM64) return vqrdmulhq_s16(a, b); #elif defined(JUMPER_IS_NEON) return vqrdmulhq_s16(a, b); #else const I32 roundingTerm = 1 << 14; return cast((cast(a) * cast(b) + roundingTerm) >> 15); #endif } // This sum is to support lerp where the result will always be a positive number. In general, // a sum like this would require an additional bit, but because we know the range of the result // we know that the extra bit will always be zero. SI U16 constrained_add(I16 a, U16 b) { #if defined(SK_DEBUG) for (size_t i = 0; i < N; i++) { // Ensure that a + b is on the interval [0, UINT16_MAX] int ia = a[i], ib = b[i]; // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be // interpreted as an uint32_t. SkASSERT(-ib <= ia && ia <= 65535 - ib); } #endif return b + a; } SI F fract(F x) { return x - floor_(x); } SI F abs_(F x) { return sk_bit_cast( sk_bit_cast(x) & 0x7fffffff ); } // ~~~~~~ Basic / misc. stages ~~~~~~ // STAGE_GG(seed_shader, NoCtx) { static constexpr float iota[] = { 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, }; x = cast(I32(dx)) + sk_unaligned_load(iota); y = cast(I32(dy)) + 0.5f; } STAGE_GG(matrix_translate, const float* m) { x += m[0]; y += m[1]; } STAGE_GG(matrix_scale_translate, const float* m) { x = mad(x,m[0], m[2]); y = mad(y,m[1], m[3]); } STAGE_GG(matrix_2x3, const float* m) { auto X = mad(x,m[0], mad(y,m[1], m[2])), Y = mad(x,m[3], mad(y,m[4], m[5])); x = X; y = Y; } STAGE_GG(matrix_perspective, const float* m) { // N.B. Unlike the other matrix_ stages, this matrix is row-major. auto X = mad(x,m[0], mad(y,m[1], m[2])), Y = mad(x,m[3], mad(y,m[4], m[5])), Z = mad(x,m[6], mad(y,m[7], m[8])); x = X * rcp_precise(Z); y = Y * rcp_precise(Z); } STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { r = c->rgba[0]; g = c->rgba[1]; b = c->rgba[2]; a = c->rgba[3]; } STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { dr = c->rgba[0]; dg = c->rgba[1]; db = c->rgba[2]; da = c->rgba[3]; } STAGE_PP(black_color, NoCtx) { r = g = b = 0; a = 255; } STAGE_PP(white_color, NoCtx) { r = g = b = 255; a = 255; } STAGE_PP(set_rgb, const float rgb[3]) { r = from_float(rgb[0]); g = from_float(rgb[1]); b = from_float(rgb[2]); } // No need to clamp against 0 here (values are unsigned) STAGE_PP(clamp_01, NoCtx) { r = min(r, 255); g = min(g, 255); b = min(b, 255); a = min(a, 255); } STAGE_PP(clamp_gamut, NoCtx) { a = min(a, 255); r = min(r, a); g = min(g, a); b = min(b, a); } STAGE_PP(premul, NoCtx) { r = div255_accurate(r * a); g = div255_accurate(g * a); b = div255_accurate(b * a); } STAGE_PP(premul_dst, NoCtx) { dr = div255_accurate(dr * da); dg = div255_accurate(dg * da); db = div255_accurate(db * da); } STAGE_PP(force_opaque , NoCtx) { a = 255; } STAGE_PP(force_opaque_dst, NoCtx) { da = 255; } STAGE_PP(swap_rb, NoCtx) { auto tmp = r; r = b; b = tmp; } STAGE_PP(swap_rb_dst, NoCtx) { auto tmp = dr; dr = db; db = tmp; } STAGE_PP(move_src_dst, NoCtx) { dr = r; dg = g; db = b; da = a; } STAGE_PP(move_dst_src, NoCtx) { r = dr; g = dg; b = db; a = da; } STAGE_PP(swap_src_dst, NoCtx) { std::swap(r, dr); std::swap(g, dg); std::swap(b, db); std::swap(a, da); } // ~~~~~~ Blend modes ~~~~~~ // // The same logic applied to all 4 channels. #define BLEND_MODE(name) \ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ STAGE_PP(name, NoCtx) { \ r = name##_channel(r,dr,a,da); \ g = name##_channel(g,dg,a,da); \ b = name##_channel(b,db,a,da); \ a = name##_channel(a,da,a,da); \ } \ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) BLEND_MODE(clear) { return 0; } BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); } BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); } BLEND_MODE(srcin) { return div255( s*da ); } BLEND_MODE(dstin) { return div255( d*sa ); } BLEND_MODE(srcout) { return div255( s*inv(da) ); } BLEND_MODE(dstout) { return div255( d*inv(sa) ); } BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); } BLEND_MODE(dstover) { return d + div255( s*inv(da) ); } BLEND_MODE(modulate) { return div255( s*d ); } BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); } BLEND_MODE(plus_) { return min(s+d, 255); } BLEND_MODE(screen) { return s + d - div255( s*d ); } BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); } #undef BLEND_MODE // The same logic applied to color, and srcover for alpha. #define BLEND_MODE(name) \ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ STAGE_PP(name, NoCtx) { \ r = name##_channel(r,dr,a,da); \ g = name##_channel(g,dg,a,da); \ b = name##_channel(b,db,a,da); \ a = a + div255( da*inv(a) ); \ } \ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); } BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); } BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); } BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); } BLEND_MODE(hardlight) { return div255( s*inv(da) + d*inv(sa) + if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); } BLEND_MODE(overlay) { return div255( s*inv(da) + d*inv(sa) + if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); } #undef BLEND_MODE // ~~~~~~ Helpers for interacting with memory ~~~~~~ // template SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { return (T*)ctx->pixels + dy*ctx->stride + dx; } template SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { // Exclusive -> inclusive. const F w = sk_bit_cast( sk_bit_cast(ctx->width ) - 1), h = sk_bit_cast( sk_bit_cast(ctx->height) - 1); const F z = std::numeric_limits::min(); x = min(max(z, x), w); y = min(max(z, y), h); x = sk_bit_cast(sk_bit_cast(x) - (uint32_t)ctx->roundDownAtInteger); y = sk_bit_cast(sk_bit_cast(y) - (uint32_t)ctx->roundDownAtInteger); *ptr = (const T*)ctx->pixels; return trunc_(y)*ctx->stride + trunc_(x); } template SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) { // This flag doesn't make sense when the coords are integers. SkASSERT(ctx->roundDownAtInteger == 0); // Exclusive -> inclusive. const I32 w = ctx->width - 1, h = ctx->height - 1; U32 ax = cast(min(max(0, x), w)), ay = cast(min(max(0, y), h)); *ptr = (const T*)ctx->pixels; return ay * ctx->stride + ax; } template SI V load(const T* ptr, size_t tail) { V v = 0; switch (tail & (N-1)) { case 0: memcpy(&v, ptr, sizeof(v)); break; #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) case 15: v[14] = ptr[14]; [[fallthrough]]; case 14: v[13] = ptr[13]; [[fallthrough]]; case 13: v[12] = ptr[12]; [[fallthrough]]; case 12: memcpy(&v, ptr, 12*sizeof(T)); break; case 11: v[10] = ptr[10]; [[fallthrough]]; case 10: v[ 9] = ptr[ 9]; [[fallthrough]]; case 9: v[ 8] = ptr[ 8]; [[fallthrough]]; case 8: memcpy(&v, ptr, 8*sizeof(T)); break; #endif case 7: v[ 6] = ptr[ 6]; [[fallthrough]]; case 6: v[ 5] = ptr[ 5]; [[fallthrough]]; case 5: v[ 4] = ptr[ 4]; [[fallthrough]]; case 4: memcpy(&v, ptr, 4*sizeof(T)); break; case 3: v[ 2] = ptr[ 2]; [[fallthrough]]; case 2: memcpy(&v, ptr, 2*sizeof(T)); break; case 1: v[ 0] = ptr[ 0]; } return v; } template SI void store(T* ptr, size_t tail, V v) { switch (tail & (N-1)) { case 0: memcpy(ptr, &v, sizeof(v)); break; #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) case 15: ptr[14] = v[14]; [[fallthrough]]; case 14: ptr[13] = v[13]; [[fallthrough]]; case 13: ptr[12] = v[12]; [[fallthrough]]; case 12: memcpy(ptr, &v, 12*sizeof(T)); break; case 11: ptr[10] = v[10]; [[fallthrough]]; case 10: ptr[ 9] = v[ 9]; [[fallthrough]]; case 9: ptr[ 8] = v[ 8]; [[fallthrough]]; case 8: memcpy(ptr, &v, 8*sizeof(T)); break; #endif case 7: ptr[ 6] = v[ 6]; [[fallthrough]]; case 6: ptr[ 5] = v[ 5]; [[fallthrough]]; case 5: ptr[ 4] = v[ 4]; [[fallthrough]]; case 4: memcpy(ptr, &v, 4*sizeof(T)); break; case 3: ptr[ 2] = v[ 2]; [[fallthrough]]; case 2: memcpy(ptr, &v, 2*sizeof(T)); break; case 1: ptr[ 0] = v[ 0]; } } #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) template SI V gather(const T* ptr, U32 ix) { return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]], ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], }; } template<> F gather(const float* ptr, U32 ix) { __m256i lo, hi; split(ix, &lo, &hi); return join(_mm256_i32gather_ps(ptr, lo, 4), _mm256_i32gather_ps(ptr, hi, 4)); } template<> U32 gather(const uint32_t* ptr, U32 ix) { __m256i lo, hi; split(ix, &lo, &hi); return join(_mm256_i32gather_epi32(ptr, lo, 4), _mm256_i32gather_epi32(ptr, hi, 4)); } #else template SI V gather(const T* ptr, U32 ix) { return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], }; } #endif // ~~~~~~ 32-bit memory loads and stores ~~~~~~ // SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) { #if 1 && defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely. __m256i _01,_23; split(rgba, &_01, &_23); __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20), _13 = _mm256_permute2x128_si256(_01,_23, 0x31); rgba = join(_02, _13); auto cast_U16 = [](U32 v) -> U16 { __m256i _02,_13; split(v, &_02,&_13); return _mm256_packus_epi32(_02,_13); }; #else auto cast_U16 = [](U32 v) -> U16 { return cast(v); }; #endif *r = cast_U16(rgba & 65535) & 255; *g = cast_U16(rgba & 65535) >> 8; *b = cast_U16(rgba >> 16) & 255; *a = cast_U16(rgba >> 16) >> 8; } SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { #if 1 && defined(JUMPER_IS_NEON) uint8x8x4_t rgba; switch (tail & (N-1)) { case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break; case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6); [[fallthrough]]; case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5); [[fallthrough]]; case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4); [[fallthrough]]; case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3); [[fallthrough]]; case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2); [[fallthrough]]; case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1); [[fallthrough]]; case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0); } *r = cast(rgba.val[0]); *g = cast(rgba.val[1]); *b = cast(rgba.val[2]); *a = cast(rgba.val[3]); #else from_8888(load(ptr, tail), r,g,b,a); #endif } SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { r = min(r, 255); g = min(g, 255); b = min(b, 255); a = min(a, 255); #if 1 && defined(JUMPER_IS_NEON) uint8x8x4_t rgba = {{ cast(r), cast(g), cast(b), cast(a), }}; switch (tail & (N-1)) { case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break; case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6); [[fallthrough]]; case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5); [[fallthrough]]; case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4); [[fallthrough]]; case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3); [[fallthrough]]; case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2); [[fallthrough]]; case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1); [[fallthrough]]; case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0); } #else store(ptr, tail, cast(r | (g<<8)) << 0 | cast(b | (a<<8)) << 16); #endif } STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { load_8888_(ptr_at_xy(ctx, dx,dy), tail, &r,&g,&b,&a); } STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { load_8888_(ptr_at_xy(ctx, dx,dy), tail, &dr,&dg,&db,&da); } STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { store_8888_(ptr_at_xy(ctx, dx,dy), tail, r,g,b,a); } STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x,y); from_8888(gather(ptr, ix), &r, &g, &b, &a); } // ~~~~~~ 16-bit memory loads and stores ~~~~~~ // SI void from_565(U16 rgb, U16* r, U16* g, U16* b) { // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0 U16 R = (rgb >> 11) & 31, G = (rgb >> 5) & 63, B = (rgb >> 0) & 31; // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit. *r = (R << 3) | (R >> 2); *g = (G << 2) | (G >> 4); *b = (B << 3) | (B >> 2); } SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { from_565(load(ptr, tail), r,g,b); } SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) { r = min(r, 255); g = min(g, 255); b = min(b, 255); // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f. // (Don't feel like you need to find some fundamental truth in these... // they were brute-force searched.) U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half. G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly. B = (b * 9 + 36) / 74; // Pack them back into 15|rrrrr gggggg bbbbb|0. store(ptr, tail, R << 11 | G << 5 | B << 0); } STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) { load_565_(ptr_at_xy(ctx, dx,dy), tail, &r,&g,&b); a = 255; } STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { load_565_(ptr_at_xy(ctx, dx,dy), tail, &dr,&dg,&db); da = 255; } STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) { store_565_(ptr_at_xy(ctx, dx,dy), tail, r,g,b); } STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x,y); from_565(gather(ptr, ix), &r, &g, &b); a = 255; } SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) { // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0. U16 R = (rgba >> 12) & 15, G = (rgba >> 8) & 15, B = (rgba >> 4) & 15, A = (rgba >> 0) & 15; // Scale [0,15] to [0,255]. *r = (R << 4) | R; *g = (G << 4) | G; *b = (B << 4) | B; *a = (A << 4) | A; } SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { from_4444(load(ptr, tail), r,g,b,a); } SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { r = min(r, 255); g = min(g, 255); b = min(b, 255); a = min(a, 255); // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f). U16 R = (r + 8) / 17, G = (g + 8) / 17, B = (b + 8) / 17, A = (a + 8) / 17; // Pack them back into 15|rrrr gggg bbbb aaaa|0. store(ptr, tail, R << 12 | G << 8 | B << 4 | A << 0); } STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { load_4444_(ptr_at_xy(ctx, dx,dy), tail, &r,&g,&b,&a); } STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { load_4444_(ptr_at_xy(ctx, dx,dy), tail, &dr,&dg,&db,&da); } STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { store_4444_(ptr_at_xy(ctx, dx,dy), tail, r,g,b,a); } STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x,y); from_4444(gather(ptr, ix), &r,&g,&b,&a); } SI void from_88(U16 rg, U16* r, U16* g) { *r = (rg & 0xFF); *g = (rg >> 8); } SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) { #if 1 && defined(JUMPER_IS_NEON) uint8x8x2_t rg; switch (tail & (N-1)) { case 0: rg = vld2_u8 ((const uint8_t*)(ptr+0) ); break; case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6); [[fallthrough]]; case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5); [[fallthrough]]; case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4); [[fallthrough]]; case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3); [[fallthrough]]; case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2); [[fallthrough]]; case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1); [[fallthrough]]; case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0); } *r = cast(rg.val[0]); *g = cast(rg.val[1]); #else from_88(load(ptr, tail), r,g); #endif } SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) { r = min(r, 255); g = min(g, 255); #if 1 && defined(JUMPER_IS_NEON) uint8x8x2_t rg = {{ cast(r), cast(g), }}; switch (tail & (N-1)) { case 0: vst2_u8 ((uint8_t*)(ptr+0), rg ); break; case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6); [[fallthrough]]; case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5); [[fallthrough]]; case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4); [[fallthrough]]; case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3); [[fallthrough]]; case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2); [[fallthrough]]; case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1); [[fallthrough]]; case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0); } #else store(ptr, tail, cast(r | (g<<8)) << 0); #endif } STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { load_88_(ptr_at_xy(ctx, dx, dy), tail, &r, &g); b = 0; a = 255; } STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { load_88_(ptr_at_xy(ctx, dx, dy), tail, &dr, &dg); db = 0; da = 255; } STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { store_88_(ptr_at_xy(ctx, dx, dy), tail, r, g); } STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { const uint16_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x, y); from_88(gather(ptr, ix), &r, &g); b = 0; a = 255; } // ~~~~~~ 8-bit memory loads and stores ~~~~~~ // SI U16 load_8(const uint8_t* ptr, size_t tail) { return cast(load(ptr, tail)); } SI void store_8(uint8_t* ptr, size_t tail, U16 v) { v = min(v, 255); store(ptr, tail, cast(v)); } STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { r = g = b = 0; a = load_8(ptr_at_xy(ctx, dx,dy), tail); } STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { dr = dg = db = 0; da = load_8(ptr_at_xy(ctx, dx,dy), tail); } STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { store_8(ptr_at_xy(ctx, dx,dy), tail, a); } STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { const uint8_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, x,y); r = g = b = 0; a = cast(gather(ptr, ix)); } STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { store_8(ptr_at_xy(ctx, dx,dy), tail, r); } STAGE_PP(alpha_to_gray, NoCtx) { r = g = b = a; a = 255; } STAGE_PP(alpha_to_gray_dst, NoCtx) { dr = dg = db = da; da = 255; } STAGE_PP(alpha_to_red, NoCtx) { r = a; a = 255; } STAGE_PP(alpha_to_red_dst, NoCtx) { dr = da; da = 255; } STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) { a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. r = g = b = 0; } STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) { r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. } // ~~~~~~ Coverage scales / lerps ~~~~~~ // STAGE_PP(load_src, const uint16_t* ptr) { r = sk_unaligned_load(ptr + 0*N); g = sk_unaligned_load(ptr + 1*N); b = sk_unaligned_load(ptr + 2*N); a = sk_unaligned_load(ptr + 3*N); } STAGE_PP(store_src, uint16_t* ptr) { sk_unaligned_store(ptr + 0*N, r); sk_unaligned_store(ptr + 1*N, g); sk_unaligned_store(ptr + 2*N, b); sk_unaligned_store(ptr + 3*N, a); } STAGE_PP(store_src_a, uint16_t* ptr) { sk_unaligned_store(ptr, a); } STAGE_PP(load_dst, const uint16_t* ptr) { dr = sk_unaligned_load(ptr + 0*N); dg = sk_unaligned_load(ptr + 1*N); db = sk_unaligned_load(ptr + 2*N); da = sk_unaligned_load(ptr + 3*N); } STAGE_PP(store_dst, uint16_t* ptr) { sk_unaligned_store(ptr + 0*N, dr); sk_unaligned_store(ptr + 1*N, dg); sk_unaligned_store(ptr + 2*N, db); sk_unaligned_store(ptr + 3*N, da); } // ~~~~~~ Coverage scales / lerps ~~~~~~ // STAGE_PP(scale_1_float, const float* f) { U16 c = from_float(*f); r = div255( r * c ); g = div255( g * c ); b = div255( b * c ); a = div255( a * c ); } STAGE_PP(lerp_1_float, const float* f) { U16 c = from_float(*f); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } STAGE_PP(scale_native, const uint16_t scales[]) { auto c = sk_unaligned_load(scales); r = div255( r * c ); g = div255( g * c ); b = div255( b * c ); a = div255( a * c ); } STAGE_PP(lerp_native, const uint16_t scales[]) { auto c = sk_unaligned_load(scales); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { U16 c = load_8(ptr_at_xy(ctx, dx,dy), tail); r = div255( r * c ); g = div255( g * c ); b = div255( b * c ); a = div255( a * c ); } STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { U16 c = load_8(ptr_at_xy(ctx, dx,dy), tail); r = lerp(dr, r, c); g = lerp(dg, g, c); b = lerp(db, b, c); a = lerp(da, a, c); } // Derive alpha's coverage from rgb coverage and the values of src and dst alpha. SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) { return if_then_else(a < da, min(cr, min(cg,cb)) , max(cr, max(cg,cb))); } STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { U16 cr,cg,cb; load_565_(ptr_at_xy(ctx, dx,dy), tail, &cr,&cg,&cb); U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); r = div255( r * cr ); g = div255( g * cg ); b = div255( b * cb ); a = div255( a * ca ); } STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { U16 cr,cg,cb; load_565_(ptr_at_xy(ctx, dx,dy), tail, &cr,&cg,&cb); U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); r = lerp(dr, r, cr); g = lerp(dg, g, cg); b = lerp(db, b, cb); a = lerp(da, a, ca); } STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) { U16 mul = load_8(ptr_at_xy(&ctx->mul, dx,dy), tail), add = load_8(ptr_at_xy(&ctx->add, dx,dy), tail); r = min(div255(r*mul) + add, a); g = min(div255(g*mul) + add, a); b = min(div255(b*mul) + add, a); } // ~~~~~~ Gradient stages ~~~~~~ // // Clamp x to [0,1], both sides inclusive (think, gradients). // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN. SI F clamp_01_(F v) { return min(max(0, v), 1); } STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); } STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); } STAGE_GG(mirror_x_1, NoCtx) { auto two = [](F x){ return x+x; }; x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f )); } SI I16 cond_to_mask_16(I32 cond) { return cast(cond); } STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { auto w = ctx->limit_x; sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w))); } STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { auto h = ctx->limit_y; sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h))); } STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { auto w = ctx->limit_x; auto h = ctx->limit_y; sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h))); } STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) { x = min(ctx->max_x, max(ctx->min_x, x)); y = min(ctx->max_y, max(ctx->min_y, y)); } STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { auto mask = sk_unaligned_load(ctx->mask); r = r & mask; g = g & mask; b = b & mask; a = a & mask; } SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) { auto round = [](F x) { return cast(x * 255.0f + 0.5f); }; *r = round(min(max(0, R), 1)); *g = round(min(max(0, G), 1)); *b = round(min(max(0, B), 1)); *a = round(A); // we assume alpha is already in [0,1]. } SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, U16* r, U16* g, U16* b, U16* a) { F fr, fg, fb, fa, br, bg, bb, ba; #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) if (c->stopCount <=8) { __m256i lo, hi; split(idx, &lo, &hi); fr = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi)); br = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi)); fg = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi)); bg = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi)); fb = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi)); bb = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi)); fa = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi)); ba = join(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo), _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi)); } else #endif { fr = gather(c->fs[0], idx); fg = gather(c->fs[1], idx); fb = gather(c->fs[2], idx); fa = gather(c->fs[3], idx); br = gather(c->bs[0], idx); bg = gather(c->bs[1], idx); bb = gather(c->bs[2], idx); ba = gather(c->bs[3], idx); } round_F_to_U16(mad(t, fr, br), mad(t, fg, bg), mad(t, fb, bb), mad(t, fa, ba), r,g,b,a); } STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) { auto t = x; U32 idx = 0; // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. for (size_t i = 1; i < c->stopCount; i++) { idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); } gradient_lookup(c, idx, t, &r, &g, &b, &a); } STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { auto t = x; auto idx = trunc_(t * (c->stopCount-1)); gradient_lookup(c, idx, t, &r, &g, &b, &a); } STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { auto t = x; round_F_to_U16(mad(t, c->f[0], c->b[0]), mad(t, c->f[1], c->b[1]), mad(t, c->f[2], c->b[2]), mad(t, c->f[3], c->b[3]), &r,&g,&b,&a); } STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed // point number. I32 qx = cast(floor_(65536.0f * x + 0.5f)) - 32768, qy = cast(floor_(65536.0f * y + 0.5f)) - 32768; // Calculate screen coordinates sx & sy by flooring qx and qy. I32 sx = qx >> 16, sy = qy >> 16; // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1). // This will put tx in Q15 format for use with q_mult. // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows // the same math: // tx = 2 * {qx} - 1, so // {qx} = (tx + 1) / 2. // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1 // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in // order to use the full 16-bit resolution. I16 tx = cast(qx ^ 0x8000), ty = cast(qy ^ 0x8000); // Substituting the {qx} by the equation for tx from above into the lerp equation where v is // the lerped value: // v = {qx}*(R - L) + L, // v = 1/2*(tx + 1)*(R - L) + L // 2 * v = (tx + 1)*(R - L) + 2*L // = tx*R - tx*L + R - L + 2*L // = tx*(R - L) + (R + L). // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In // code, we can multiply by 2^7 to get the value directly. // 2 * v = tx*(R - L) + (R + L) // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9 // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L)) // v = 1/2 * (tx*(R - L) + (R + L)) auto lerpX = [&](U16 left, U16 right) -> U16 { I16 width = (I16)(right - left) << 7; U16 middle = (right + left) << 7; // The constrained_add is the most subtle part of lerp. The first term is on the interval // [-1, 1), and the second term is on the interval is on the interval [0, 1) because // both terms are too high by a factor of 2 which will be handled below. (Both R and L are // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below // should overflow, but because we know that sum produces an output on the // interval [0, 1) we know that the extra bit that would be needed will always be 0. So // we need to be careful to treat this sum as an unsigned positive number in the divide // by 2 below. Add +1 for rounding. U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1; // Divide by 2 to calculate v and at the same time bring the intermediate value onto the // interval [0, 1/2] to set up for the lerpY. return v2 >> 1; }; const uint32_t* ptr; U32 ix = ix_and_ptr(&ptr, ctx, sx, sy); U16 leftR, leftG, leftB, leftA; from_8888(gather(ptr, ix), &leftR,&leftG,&leftB,&leftA); ix = ix_and_ptr(&ptr, ctx, sx+1, sy); U16 rightR, rightG, rightB, rightA; from_8888(gather(ptr, ix), &rightR,&rightG,&rightB,&rightA); U16 topR = lerpX(leftR, rightR), topG = lerpX(leftG, rightG), topB = lerpX(leftB, rightB), topA = lerpX(leftA, rightA); ix = ix_and_ptr(&ptr, ctx, sx, sy+1); from_8888(gather(ptr, ix), &leftR,&leftG,&leftB,&leftA); ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1); from_8888(gather(ptr, ix), &rightR,&rightG,&rightB,&rightA); U16 bottomR = lerpX(leftR, rightR), bottomG = lerpX(leftG, rightG), bottomB = lerpX(leftB, rightB), bottomA = lerpX(leftA, rightA); // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting // in a value on [0, 255]. auto lerpY = [&](U16 top, U16 bottom) -> U16 { I16 width = (I16)bottom - top; U16 middle = bottom + top; // Add + 0x80 for rounding. U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80; return blend >> 8; }; r = lerpY(topR, bottomR); g = lerpY(topG, bottomG); b = lerpY(topB, bottomB); a = lerpY(topA, bottomA); } STAGE_GG(xy_to_unit_angle, NoCtx) { F xabs = abs_(x), yabs = abs_(y); F slope = min(xabs, yabs)/max(xabs, yabs); F s = slope * slope; // Use a 7th degree polynomial to approximate atan. // This was generated using sollya.gforge.inria.fr. // A float optimized polynomial was generated using the following command. // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); F phi = slope * (0.15912117063999176025390625f + s * (-5.185396969318389892578125e-2f + s * (2.476101927459239959716796875e-2f + s * (-7.0547382347285747528076171875e-3f)))); phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi); phi = if_then_else(y < 0.0f , 1.0f - phi , phi); phi = if_then_else(phi != phi , 0 , phi); // Check for NaN. x = phi; } STAGE_GG(xy_to_radius, NoCtx) { x = sqrt_(x*x + y*y); } // ~~~~~~ Compound stages ~~~~~~ // STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { auto ptr = ptr_at_xy(ctx, dx,dy); load_8888_(ptr, tail, &dr,&dg,&db,&da); r = r + div255( dr*inv(a) ); g = g + div255( dg*inv(a) ); b = b + div255( db*inv(a) ); a = a + div255( da*inv(a) ); store_8888_(ptr, tail, r,g,b,a); } // ~~~~~~ skgpu::Swizzle stage ~~~~~~ // STAGE_PP(swizzle, void* ctx) { auto ir = r, ig = g, ib = b, ia = a; U16* o[] = {&r, &g, &b, &a}; char swiz[4]; memcpy(swiz, &ctx, sizeof(swiz)); for (int i = 0; i < 4; ++i) { switch (swiz[i]) { case 'r': *o[i] = ir; break; case 'g': *o[i] = ig; break; case 'b': *o[i] = ib; break; case 'a': *o[i] = ia; break; case '0': *o[i] = U16(0); break; case '1': *o[i] = U16(255); break; default: break; } } } #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages } // namespace lowp /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */ namespace lowp { static constexpr size_t lowp_N = N; } /** Allow outside code to access the Raster Pipeline pixel stride. */ constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; } constexpr size_t raster_pipeline_highp_stride() { return N; } } // namespace SK_OPTS_NS #undef SI #endif//SkRasterPipeline_opts_DEFINED