/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/SkOpts_spi.h" #include "include/private/SkSLIRNode.h" #include "include/private/SkSLProgramElement.h" #include "include/private/SkSLStatement.h" #include "include/private/SkSLSymbol.h" #include "include/private/base/SkTArray.h" #include "include/sksl/DSLCore.h" #include "include/sksl/DSLExpression.h" #include "include/sksl/DSLType.h" #include "include/sksl/DSLVar.h" #include "include/sksl/SkSLErrorReporter.h" #include "include/sksl/SkSLOperator.h" #include "include/sksl/SkSLPosition.h" #include "src/sksl/GLSL.std.450.h" #include "src/sksl/SkSLAnalysis.h" #include "src/sksl/SkSLBuiltinTypes.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLConstantFolder.h" #include "src/sksl/SkSLContext.h" #include "src/sksl/SkSLIntrinsicList.h" #include "src/sksl/SkSLModifiersPool.h" #include "src/sksl/SkSLOutputStream.h" #include "src/sksl/SkSLPool.h" #include "src/sksl/SkSLProgramSettings.h" #include "src/sksl/SkSLThreadContext.h" #include "src/sksl/SkSLUtil.h" #include "src/sksl/analysis/SkSLProgramUsage.h" #include "src/sksl/ir/SkSLBinaryExpression.h" #include "src/sksl/ir/SkSLBlock.h" #include "src/sksl/ir/SkSLConstructor.h" #include "src/sksl/ir/SkSLConstructorArrayCast.h" #include "src/sksl/ir/SkSLConstructorCompound.h" #include "src/sksl/ir/SkSLConstructorCompoundCast.h" #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" #include "src/sksl/ir/SkSLConstructorMatrixResize.h" #include "src/sksl/ir/SkSLConstructorScalarCast.h" #include "src/sksl/ir/SkSLConstructorSplat.h" #include "src/sksl/ir/SkSLDoStatement.h" #include "src/sksl/ir/SkSLExpression.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLField.h" #include "src/sksl/ir/SkSLFieldAccess.h" #include "src/sksl/ir/SkSLForStatement.h" #include "src/sksl/ir/SkSLFunctionCall.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLFunctionDefinition.h" #include "src/sksl/ir/SkSLIfStatement.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLInterfaceBlock.h" #include "src/sksl/ir/SkSLLiteral.h" #include "src/sksl/ir/SkSLPostfixExpression.h" #include "src/sksl/ir/SkSLPrefixExpression.h" #include "src/sksl/ir/SkSLProgram.h" #include "src/sksl/ir/SkSLReturnStatement.h" #include "src/sksl/ir/SkSLSetting.h" #include "src/sksl/ir/SkSLSwitchCase.h" #include "src/sksl/ir/SkSLSwitchStatement.h" #include "src/sksl/ir/SkSLSwizzle.h" #include "src/sksl/ir/SkSLTernaryExpression.h" #include "src/sksl/ir/SkSLVarDeclarations.h" #include "src/sksl/ir/SkSLVariableReference.h" #include "src/utils/SkBitSet.h" #include #include #include #include #define kLast_Capability SpvCapabilityMultiViewport constexpr int DEVICE_FRAGCOORDS_BUILTIN = -1000; constexpr int DEVICE_CLOCKWISE_BUILTIN = -1001; namespace SkSL { // Equality and hash operators for Instructions. bool SPIRVCodeGenerator::Instruction::operator==(const SPIRVCodeGenerator::Instruction& that) const { return fOp == that.fOp && fResultKind == that.fResultKind && fWords == that.fWords; } struct SPIRVCodeGenerator::Instruction::Hash { uint32_t operator()(const SPIRVCodeGenerator::Instruction& key) const { uint32_t hash = key.fResultKind; hash = SkOpts::hash_fn(&key.fOp, sizeof(key.fOp), hash); hash = SkOpts::hash_fn(key.fWords.data(), key.fWords.size() * sizeof(int32_t), hash); return hash; } }; // This class is used to pass values and result placeholder slots to writeInstruction. struct SPIRVCodeGenerator::Word { enum Kind { kNone, // intended for use as a sentinel, not part of any Instruction kSpvId, kNumber, kDefaultPrecisionResult, kRelaxedPrecisionResult, kUniqueResult, kKeyedResult, }; Word(SpvId id) : fValue(id), fKind(Kind::kSpvId) {} Word(int32_t val, Kind kind) : fValue(val), fKind(kind) {} static Word Number(int32_t val) { return Word{val, Kind::kNumber}; } static Word Result(const Type& type) { return (type.hasPrecision() && !type.highPrecision()) ? RelaxedResult() : Result(); } static Word RelaxedResult() { return Word{(int32_t)NA, kRelaxedPrecisionResult}; } static Word UniqueResult() { return Word{(int32_t)NA, kUniqueResult}; } static Word Result() { return Word{(int32_t)NA, kDefaultPrecisionResult}; } // Unlike a Result (where the result ID is always deduplicated to its first instruction) or a // UniqueResult (which always produces a new instruction), a KeyedResult allows an instruction // to be deduplicated among those that share the same `key`. static Word KeyedResult(int32_t key) { return Word{key, Kind::kKeyedResult}; } bool isResult() const { return fKind >= Kind::kDefaultPrecisionResult; } int32_t fValue; Kind fKind; }; // Skia's magic number is 31 and goes in the top 16 bits. We can use the lower bits to version the // sksl generator if we want. // https://github.com/KhronosGroup/SPIRV-Headers/blob/master/include/spirv/spir-v.xml#L84 static const int32_t SKSL_MAGIC = 0x001F0000; SPIRVCodeGenerator::Intrinsic SPIRVCodeGenerator::getIntrinsic(IntrinsicKind ik) const { #define ALL_GLSL(x) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, GLSLstd450 ## x, \ GLSLstd450 ## x, GLSLstd450 ## x, GLSLstd450 ## x} #define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, \ GLSLstd450 ## ifFloat, \ GLSLstd450 ## ifInt, \ GLSLstd450 ## ifUInt, \ SpvOpUndef} #define ALL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOp ## x, SpvOp ## x, SpvOp ## x, SpvOp ## x} #define BOOL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOp ## x} #define FLOAT_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOp ## x, SpvOpUndef, SpvOpUndef, SpvOpUndef} #define SPECIAL(x) Intrinsic{kSpecial_IntrinsicOpcodeKind, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic} switch (ik) { case k_round_IntrinsicKind: return ALL_GLSL(Round); case k_roundEven_IntrinsicKind: return ALL_GLSL(RoundEven); case k_trunc_IntrinsicKind: return ALL_GLSL(Trunc); case k_abs_IntrinsicKind: return BY_TYPE_GLSL(FAbs, SAbs, SAbs); case k_sign_IntrinsicKind: return BY_TYPE_GLSL(FSign, SSign, SSign); case k_floor_IntrinsicKind: return ALL_GLSL(Floor); case k_ceil_IntrinsicKind: return ALL_GLSL(Ceil); case k_fract_IntrinsicKind: return ALL_GLSL(Fract); case k_radians_IntrinsicKind: return ALL_GLSL(Radians); case k_degrees_IntrinsicKind: return ALL_GLSL(Degrees); case k_sin_IntrinsicKind: return ALL_GLSL(Sin); case k_cos_IntrinsicKind: return ALL_GLSL(Cos); case k_tan_IntrinsicKind: return ALL_GLSL(Tan); case k_asin_IntrinsicKind: return ALL_GLSL(Asin); case k_acos_IntrinsicKind: return ALL_GLSL(Acos); case k_atan_IntrinsicKind: return SPECIAL(Atan); case k_sinh_IntrinsicKind: return ALL_GLSL(Sinh); case k_cosh_IntrinsicKind: return ALL_GLSL(Cosh); case k_tanh_IntrinsicKind: return ALL_GLSL(Tanh); case k_asinh_IntrinsicKind: return ALL_GLSL(Asinh); case k_acosh_IntrinsicKind: return ALL_GLSL(Acosh); case k_atanh_IntrinsicKind: return ALL_GLSL(Atanh); case k_pow_IntrinsicKind: return ALL_GLSL(Pow); case k_exp_IntrinsicKind: return ALL_GLSL(Exp); case k_log_IntrinsicKind: return ALL_GLSL(Log); case k_exp2_IntrinsicKind: return ALL_GLSL(Exp2); case k_log2_IntrinsicKind: return ALL_GLSL(Log2); case k_sqrt_IntrinsicKind: return ALL_GLSL(Sqrt); case k_inverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); case k_outerProduct_IntrinsicKind: return ALL_SPIRV(OuterProduct); case k_transpose_IntrinsicKind: return ALL_SPIRV(Transpose); case k_isinf_IntrinsicKind: return ALL_SPIRV(IsInf); case k_isnan_IntrinsicKind: return ALL_SPIRV(IsNan); case k_inversesqrt_IntrinsicKind: return ALL_GLSL(InverseSqrt); case k_determinant_IntrinsicKind: return ALL_GLSL(Determinant); case k_matrixCompMult_IntrinsicKind: return SPECIAL(MatrixCompMult); case k_matrixInverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); case k_mod_IntrinsicKind: return SPECIAL(Mod); case k_modf_IntrinsicKind: return ALL_GLSL(Modf); case k_min_IntrinsicKind: return SPECIAL(Min); case k_max_IntrinsicKind: return SPECIAL(Max); case k_clamp_IntrinsicKind: return SPECIAL(Clamp); case k_saturate_IntrinsicKind: return SPECIAL(Saturate); case k_dot_IntrinsicKind: return FLOAT_SPIRV(Dot); case k_mix_IntrinsicKind: return SPECIAL(Mix); case k_step_IntrinsicKind: return SPECIAL(Step); case k_smoothstep_IntrinsicKind: return SPECIAL(SmoothStep); case k_fma_IntrinsicKind: return ALL_GLSL(Fma); case k_frexp_IntrinsicKind: return ALL_GLSL(Frexp); case k_ldexp_IntrinsicKind: return ALL_GLSL(Ldexp); #define PACK(type) case k_pack##type##_IntrinsicKind: return ALL_GLSL(Pack##type); \ case k_unpack##type##_IntrinsicKind: return ALL_GLSL(Unpack##type) PACK(Snorm4x8); PACK(Unorm4x8); PACK(Snorm2x16); PACK(Unorm2x16); PACK(Half2x16); PACK(Double2x32); #undef PACK case k_length_IntrinsicKind: return ALL_GLSL(Length); case k_distance_IntrinsicKind: return ALL_GLSL(Distance); case k_cross_IntrinsicKind: return ALL_GLSL(Cross); case k_normalize_IntrinsicKind: return ALL_GLSL(Normalize); case k_faceforward_IntrinsicKind: return ALL_GLSL(FaceForward); case k_reflect_IntrinsicKind: return ALL_GLSL(Reflect); case k_refract_IntrinsicKind: return ALL_GLSL(Refract); case k_bitCount_IntrinsicKind: return ALL_SPIRV(BitCount); case k_findLSB_IntrinsicKind: return ALL_GLSL(FindILsb); case k_findMSB_IntrinsicKind: return BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb); case k_dFdx_IntrinsicKind: return FLOAT_SPIRV(DPdx); case k_dFdy_IntrinsicKind: return SPECIAL(DFdy); case k_fwidth_IntrinsicKind: return FLOAT_SPIRV(Fwidth); case k_makeSampler2D_IntrinsicKind: return SPECIAL(SampledImage); case k_sample_IntrinsicKind: return SPECIAL(Texture); case k_sampleGrad_IntrinsicKind: return SPECIAL(TextureGrad); case k_sampleLod_IntrinsicKind: return SPECIAL(TextureLod); case k_subpassLoad_IntrinsicKind: return SPECIAL(SubpassLoad); case k_floatBitsToInt_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_floatBitsToUint_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_intBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_uintBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_any_IntrinsicKind: return BOOL_SPIRV(Any); case k_all_IntrinsicKind: return BOOL_SPIRV(All); case k_not_IntrinsicKind: return BOOL_SPIRV(LogicalNot); case k_equal_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual}; case k_notEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual}; case k_lessThan_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef}; case k_lessThanEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef}; case k_greaterThan_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef}; case k_greaterThanEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef}; default: return Intrinsic{kInvalid_IntrinsicOpcodeKind, 0, 0, 0, 0}; } } void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) { out.write((const char*) &word, sizeof(word)); } static bool is_float(const Type& type) { return (type.isScalar() || type.isVector() || type.isMatrix()) && type.componentType().isFloat(); } static bool is_signed(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isSigned(); } static bool is_unsigned(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isUnsigned(); } static bool is_bool(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isBoolean(); } template static T pick_by_type(const Type& type, T ifFloat, T ifInt, T ifUInt, T ifBool) { if (is_float(type)) { return ifFloat; } if (is_signed(type)) { return ifInt; } if (is_unsigned(type)) { return ifUInt; } if (is_bool(type)) { return ifBool; } SkDEBUGFAIL("unrecognized type"); return ifFloat; } static bool is_out(const Modifiers& m) { return (m.fFlags & Modifiers::kOut_Flag) != 0; } static bool is_in(const Modifiers& m) { switch (m.fFlags & (Modifiers::kOut_Flag | Modifiers::kIn_Flag)) { case Modifiers::kOut_Flag: // out return false; case 0: // implicit in case Modifiers::kIn_Flag: // explicit in case Modifiers::kOut_Flag | Modifiers::kIn_Flag: // inout return true; default: SkUNREACHABLE; } } static bool is_control_flow_op(SpvOp_ op) { switch (op) { case SpvOpReturn: case SpvOpReturnValue: case SpvOpKill: case SpvOpSwitch: case SpvOpBranch: case SpvOpBranchConditional: return true; default: return false; } } static bool is_globally_reachable_op(SpvOp_ op) { switch (op) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstantComposite: case SpvOpTypeVoid: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeBool: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeArray: case SpvOpTypePointer: case SpvOpTypeFunction: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeImage: case SpvOpTypeSampledImage: case SpvOpTypeSampler: case SpvOpVariable: case SpvOpFunction: case SpvOpFunctionParameter: case SpvOpFunctionEnd: case SpvOpExecutionMode: case SpvOpMemoryModel: case SpvOpCapability: case SpvOpExtInstImport: case SpvOpEntryPoint: case SpvOpSource: case SpvOpSourceExtension: case SpvOpName: case SpvOpMemberName: case SpvOpDecorate: case SpvOpMemberDecorate: return true; default: return false; } } void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) { SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer); SkASSERT(opCode != SpvOpUndef); bool foundDeadCode = false; if (is_control_flow_op(opCode)) { // This instruction causes us to leave the current block. foundDeadCode = (fCurrentBlock == 0); fCurrentBlock = 0; } else if (!is_globally_reachable_op(opCode)) { foundDeadCode = (fCurrentBlock == 0); } if (foundDeadCode) { // We just encountered dead code--an instruction that don't have an associated block. // Synthesize a label if this happens; this is necessary to satisfy the validator. this->writeLabel(this->nextId(nullptr), kBranchlessBlock, out); } this->writeWord((length << 16) | opCode, out); } void SPIRVCodeGenerator::writeLabel(SpvId label, StraightLineLabelType, OutputStream& out) { // The straight-line label type is not important; in any case, no caches are invalidated. SkASSERT(!fCurrentBlock); fCurrentBlock = label; this->writeInstruction(SpvOpLabel, label, out); } void SPIRVCodeGenerator::writeLabel(SpvId label, BranchingLabelType type, ConditionalOpCounts ops, OutputStream& out) { switch (type) { case kBranchIsBelow: case kBranchesOnBothSides: // With a backward or bidirectional branch, we haven't seen the code between the label // and the branch yet, so any stored value is potentially suspect. Without scanning // ahead to check, the only safe option is to ditch the store cache entirely. fStoreCache.reset(); [[fallthrough]]; case kBranchIsAbove: // With a forward branch, we can rely on stores that we had cached at the start of the // statement/expression, if they haven't been touched yet. Anything newer than that is // pruned. this->pruneConditionalOps(ops); break; } // Emit the label. this->writeLabel(label, kBranchlessBlock, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) { this->writeOpCode(opCode, 1, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) { this->writeOpCode(opCode, 2, out); this->writeWord(word1, out); } void SPIRVCodeGenerator::writeString(std::string_view s, OutputStream& out) { out.write(s.data(), s.length()); switch (s.length() % 4) { case 1: out.write8(0); [[fallthrough]]; case 2: out.write8(0); [[fallthrough]]; case 3: out.write8(0); break; default: this->writeWord(0, out); break; } } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 1 + (string.length() + 4) / 4, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 2 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 3 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, OutputStream& out) { this->writeOpCode(opCode, 3, out); this->writeWord(word1, out); this->writeWord(word2, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, OutputStream& out) { this->writeOpCode(opCode, 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, OutputStream& out) { this->writeOpCode(opCode, 5, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, OutputStream& out) { this->writeOpCode(opCode, 6, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, OutputStream& out) { this->writeOpCode(opCode, 7, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, OutputStream& out) { this->writeOpCode(opCode, 8, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, int32_t word8, OutputStream& out) { this->writeOpCode(opCode, 9, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); this->writeWord(word8, out); } SPIRVCodeGenerator::Instruction SPIRVCodeGenerator::BuildInstructionKey( SpvOp_ opCode, const SkTArray& words) { // Assemble a cache key for this instruction. Instruction key; key.fOp = opCode; key.fWords.resize(words.size()); key.fResultKind = Word::Kind::kNone; for (int index = 0; index < words.size(); ++index) { const Word& word = words[index]; key.fWords[index] = word.fValue; if (word.isResult()) { SkASSERT(key.fResultKind == Word::Kind::kNone); key.fResultKind = word.fKind; } } return key; } SpvId SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, const SkTArray& words, OutputStream& out) { // writeOpLoad and writeOpStore have dedicated code. SkASSERT(opCode != SpvOpLoad); SkASSERT(opCode != SpvOpStore); // If this instruction exists in our op cache, return the cached SpvId. Instruction key = BuildInstructionKey(opCode, words); if (SpvId* cachedOp = fOpCache.find(key)) { return *cachedOp; } SpvId result = NA; Precision precision = Precision::kDefault; switch (key.fResultKind) { case Word::Kind::kUniqueResult: // The instruction returns a SpvId, but we do not want deduplication. result = this->nextId(Precision::kDefault); fSpvIdCache.set(result, key); break; case Word::Kind::kNone: // The instruction doesn't return a SpvId, but we can still cache and deduplicate it. fOpCache.set(key, result); break; case Word::Kind::kRelaxedPrecisionResult: precision = Precision::kRelaxed; [[fallthrough]]; case Word::Kind::kKeyedResult: [[fallthrough]]; case Word::Kind::kDefaultPrecisionResult: // Consume a new SpvId. result = this->nextId(precision); fOpCache.set(key, result); fSpvIdCache.set(result, key); // Globally-reachable ops are not subject to the whims of flow control. if (!is_globally_reachable_op(opCode)) { fReachableOps.push_back(result); } break; default: SkDEBUGFAIL("unexpected result kind"); break; } // Write the requested instruction. this->writeOpCode(opCode, words.size() + 1, out); for (const Word& word : words) { if (word.isResult()) { SkASSERT(result != NA); this->writeWord(result, out); } else { this->writeWord(word.fValue, out); } } // Return the result. return result; } SpvId SPIRVCodeGenerator::writeOpLoad(SpvId type, Precision precision, SpvId pointer, OutputStream& out) { // Look for this pointer in our load-cache. if (SpvId* cachedOp = fStoreCache.find(pointer)) { return *cachedOp; } // Write the requested OpLoad instruction. SpvId result = this->nextId(precision); this->writeInstruction(SpvOpLoad, type, result, pointer, out); return result; } void SPIRVCodeGenerator::writeOpStore(SpvStorageClass_ storageClass, SpvId pointer, SpvId value, OutputStream& out) { // Write the uncached SpvOpStore directly. this->writeInstruction(SpvOpStore, pointer, value, out); if (storageClass == SpvStorageClassFunction) { // Insert a pointer-to-SpvId mapping into the load cache. A writeOpLoad to this pointer will // return the cached value as-is. fStoreCache.set(pointer, value); fStoreOps.push_back(pointer); } } SpvId SPIRVCodeGenerator::writeOpConstantTrue(const Type& type) { return this->writeInstruction(SpvOpConstantTrue, Words{this->getType(type), Word::Result()}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstantFalse(const Type& type) { return this->writeInstruction(SpvOpConstantFalse, Words{this->getType(type), Word::Result()}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstant(const Type& type, int32_t valueBits) { return this->writeInstruction( SpvOpConstant, Words{this->getType(type), Word::Result(), Word::Number(valueBits)}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstantComposite(const Type& type, const SkTArray& values) { SkASSERT(values.size() == (type.isStruct() ? (int)type.fields().size() : type.columns())); Words words; words.push_back(this->getType(type)); words.push_back(Word::Result()); for (SpvId value : values) { words.push_back(value); } return this->writeInstruction(SpvOpConstantComposite, words, fConstantBuffer); } bool SPIRVCodeGenerator::toConstants(SpvId value, SkTArray* constants) { Instruction* instr = fSpvIdCache.find(value); if (!instr) { return false; } switch (instr->fOp) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: constants->push_back(value); return true; case SpvOpConstantComposite: // OpConstantComposite ResultType ResultID Constituents... // Start at word 2 to skip past ResultType and ResultID. for (int i = 2; i < instr->fWords.size(); ++i) { if (!this->toConstants(instr->fWords[i], constants)) { return false; } } return true; default: return false; } } bool SPIRVCodeGenerator::toConstants(SkSpan values, SkTArray* constants) { for (SpvId value : values) { if (!this->toConstants(value, constants)) { return false; } } return true; } SpvId SPIRVCodeGenerator::writeOpCompositeConstruct(const Type& type, const SkTArray& values, OutputStream& out) { // If this is a vector composed entirely of literals, write a constant-composite instead. if (type.isVector()) { SkSTArray<4, SpvId> constants; if (this->toConstants(SkSpan(values), &constants)) { // Create a vector from literals. return this->writeOpConstantComposite(type, constants); } } // If this is a matrix composed entirely of literals, constant-composite them instead. if (type.isMatrix()) { SkSTArray<16, SpvId> constants; if (this->toConstants(SkSpan(values), &constants)) { // Create each matrix column. SkASSERT(type.isMatrix()); const Type& vecType = type.componentType().toCompound(fContext, /*columns=*/type.rows(), /*rows=*/1); SkSTArray<4, SpvId> columnIDs; for (int index=0; index < type.columns(); ++index) { SkSTArray<4, SpvId> columnConstants(&constants[index * type.rows()], type.rows()); columnIDs.push_back(this->writeOpConstantComposite(vecType, columnConstants)); } // Compose the matrix from its columns. return this->writeOpConstantComposite(type, columnIDs); } } Words words; words.push_back(this->getType(type)); words.push_back(Word::Result(type)); for (SpvId value : values) { words.push_back(value); } return this->writeInstruction(SpvOpCompositeConstruct, words, out); } SPIRVCodeGenerator::Instruction* SPIRVCodeGenerator::resultTypeForInstruction( const Instruction& instr) { // This list should contain every op that we cache that has a result and result-type. // (If one is missing, we will not find some optimization opportunities.) // Generally, the result type of an op is in the 0th word, but I'm not sure if this is // universally true, so it's configurable on a per-op basis. int resultTypeWord; switch (instr.fOp) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstantComposite: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpLoad: resultTypeWord = 0; break; default: return nullptr; } Instruction* typeInstr = fSpvIdCache.find(instr.fWords[resultTypeWord]); SkASSERT(typeInstr); return typeInstr; } int SPIRVCodeGenerator::numComponentsForVecInstruction(const Instruction& instr) { // If an instruction is in the op cache, its type should be as well. Instruction* typeInstr = this->resultTypeForInstruction(instr); SkASSERT(typeInstr); SkASSERT(typeInstr->fOp == SpvOpTypeVector || typeInstr->fOp == SpvOpTypeFloat || typeInstr->fOp == SpvOpTypeInt || typeInstr->fOp == SpvOpTypeBool); // For vectors, extract their column count. Scalars have one component by definition. // SpvOpTypeVector ResultID ComponentType NumComponents return (typeInstr->fOp == SpvOpTypeVector) ? typeInstr->fWords[2] : 1; } SpvId SPIRVCodeGenerator::toComponent(SpvId id, int component) { Instruction* instr = fSpvIdCache.find(id); if (!instr) { return NA; } if (instr->fOp == SpvOpConstantComposite) { // SpvOpConstantComposite ResultType ResultID [components...] // Add 2 to the component index to skip past ResultType and ResultID. return instr->fWords[2 + component]; } if (instr->fOp == SpvOpCompositeConstruct) { // SpvOpCompositeConstruct ResultType ResultID [components...] // Vectors have special rules; check to see if we are composing a vector. Instruction* composedType = fSpvIdCache.find(instr->fWords[0]); SkASSERT(composedType); // When composing a non-vector, each instruction word maps 1:1 to the component index. // We can just extract out the associated component directly. if (composedType->fOp != SpvOpTypeVector) { return instr->fWords[2 + component]; } // When composing a vector, components can be either scalars or vectors. // This means we need to check the op type on each component. (+2 to skip ResultType/Result) for (int index = 2; index < instr->fWords.size(); ++index) { int32_t currentWord = instr->fWords[index]; // Retrieve the sub-instruction pointed to by OpCompositeConstruct. Instruction* subinstr = fSpvIdCache.find(currentWord); if (!subinstr) { return NA; } // If this subinstruction contains the component we're looking for... int numComponents = this->numComponentsForVecInstruction(*subinstr); if (component < numComponents) { if (numComponents == 1) { // ... it's a scalar. Return it. SkASSERT(component == 0); return currentWord; } else { // ... it's a vector. Recurse into it. return this->toComponent(currentWord, component); } } // This sub-instruction doesn't contain our component. Keep walking forward. component -= numComponents; } SkDEBUGFAIL("component index goes past the end of this composite value"); return NA; } return NA; } SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, SpvId base, int component, OutputStream& out) { // If the base op is a composite, we can extract from it directly. SpvId result = this->toComponent(base, component); if (result != NA) { return result; } return this->writeInstruction( SpvOpCompositeExtract, {this->getType(type), Word::Result(type), base, Word::Number(component)}, out); } SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, SpvId base, int componentA, int componentB, OutputStream& out) { // If the base op is a composite, we can extract from it directly. SpvId result = this->toComponent(base, componentA); if (result != NA) { return this->writeOpCompositeExtract(type, result, componentB, out); } return this->writeInstruction(SpvOpCompositeExtract, {this->getType(type), Word::Result(type), base, Word::Number(componentA), Word::Number(componentB)}, out); } void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) { for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) { if (fCapabilities & bit) { this->writeInstruction(SpvOpCapability, (SpvId) i, out); } } this->writeInstruction(SpvOpCapability, SpvCapabilityShader, out); } SpvId SPIRVCodeGenerator::nextId(const Type* type) { return this->nextId(type && type->hasPrecision() && !type->highPrecision() ? Precision::kRelaxed : Precision::kDefault); } SpvId SPIRVCodeGenerator::nextId(Precision precision) { if (precision == Precision::kRelaxed && !fProgram.fConfig->fSettings.fForceHighPrecision) { this->writeInstruction(SpvOpDecorate, fIdCount, SpvDecorationRelaxedPrecision, fDecorationBuffer); } return fIdCount++; } SpvId SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout) { // If we've already written out this struct, return its existing SpvId. if (SpvId* cachedStructId = fStructMap.find(&type)) { return *cachedStructId; } // Write all of the field types first, so we don't inadvertently write them while we're in the // middle of writing the struct instruction. Words words; words.push_back(Word::UniqueResult()); for (const auto& f : type.fields()) { words.push_back(this->getType(*f.fType, memoryLayout)); } SpvId resultId = this->writeInstruction(SpvOpTypeStruct, words, fConstantBuffer); this->writeInstruction(SpvOpName, resultId, type.name(), fNameBuffer); fStructMap.set(&type, resultId); size_t offset = 0; for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) { const Type::Field& field = type.fields()[i]; if (!memoryLayout.isSupported(*field.fType)) { fContext.fErrors->error(type.fPosition, "type '" + field.fType->displayName() + "' is not permitted here"); return resultId; } size_t size = memoryLayout.size(*field.fType); size_t alignment = memoryLayout.alignment(*field.fType); const Layout& fieldLayout = field.fModifiers.fLayout; if (fieldLayout.fOffset >= 0) { if (fieldLayout.fOffset < (int) offset) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be at least " + std::to_string(offset)); } if (fieldLayout.fOffset % alignment) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be a multiple of " + std::to_string(alignment)); } offset = fieldLayout.fOffset; } else { size_t mod = offset % alignment; if (mod) { offset += alignment - mod; } } this->writeInstruction(SpvOpMemberName, resultId, i, field.fName, fNameBuffer); this->writeFieldLayout(fieldLayout, resultId, i); if (field.fModifiers.fLayout.fBuiltin < 0) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset, (SpvId) offset, fDecorationBuffer); } if (field.fType->isMatrix()) { this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor, fDecorationBuffer); this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride, (SpvId) memoryLayout.stride(*field.fType), fDecorationBuffer); } if (!field.fType->highPrecision()) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationRelaxedPrecision, fDecorationBuffer); } offset += size; if ((field.fType->isArray() || field.fType->isStruct()) && offset % alignment != 0) { offset += alignment - offset % alignment; } } return resultId; } SpvId SPIRVCodeGenerator::getType(const Type& type) { return this->getType(type, fDefaultLayout); } SpvId SPIRVCodeGenerator::getType(const Type& rawType, const MemoryLayout& layout) { const Type* type = &rawType; switch (type->typeKind()) { case Type::TypeKind::kVoid: { return this->writeInstruction(SpvOpTypeVoid, Words{Word::Result()}, fConstantBuffer); } case Type::TypeKind::kScalar: case Type::TypeKind::kLiteral: { if (type->isBoolean()) { return this->writeInstruction(SpvOpTypeBool, {Word::Result()}, fConstantBuffer); } if (type->isSigned()) { return this->writeInstruction( SpvOpTypeInt, Words{Word::Result(), Word::Number(32), Word::Number(1)}, fConstantBuffer); } if (type->isUnsigned()) { return this->writeInstruction( SpvOpTypeInt, Words{Word::Result(), Word::Number(32), Word::Number(0)}, fConstantBuffer); } if (type->isFloat()) { return this->writeInstruction( SpvOpTypeFloat, Words{Word::Result(), Word::Number(32)}, fConstantBuffer); } SkDEBUGFAILF("unrecognized scalar type '%s'", type->description().c_str()); return (SpvId)-1; } case Type::TypeKind::kVector: { SpvId scalarTypeId = this->getType(type->componentType(), layout); return this->writeInstruction( SpvOpTypeVector, Words{Word::Result(), scalarTypeId, Word::Number(type->columns())}, fConstantBuffer); } case Type::TypeKind::kMatrix: { SpvId vectorTypeId = this->getType(IndexExpression::IndexType(fContext, *type), layout); return this->writeInstruction( SpvOpTypeMatrix, Words{Word::Result(), vectorTypeId, Word::Number(type->columns())}, fConstantBuffer); } case Type::TypeKind::kArray: { if (!layout.isSupported(*type)) { fContext.fErrors->error(type->fPosition, "type '" + type->displayName() + "' is not permitted here"); return NA; } if (type->columns() == 0) { // We do not support runtime-sized arrays. fContext.fErrors->error(type->fPosition, "runtime-sized arrays are not supported"); return NA; } size_t stride = layout.stride(*type); SpvId typeId = this->getType(type->componentType(), layout); SpvId countId = this->writeLiteral(type->columns(), *fContext.fTypes.fInt); SpvId result = this->writeInstruction(SpvOpTypeArray, Words{Word::KeyedResult(stride), typeId, countId}, fConstantBuffer); this->writeInstruction(SpvOpDecorate, {result, SpvDecorationArrayStride, Word::Number(stride)}, fDecorationBuffer); return result; } case Type::TypeKind::kStruct: { return this->writeStruct(*type, layout); } case Type::TypeKind::kSeparateSampler: { return this->writeInstruction(SpvOpTypeSampler, Words{Word::Result()}, fConstantBuffer); } case Type::TypeKind::kSampler: { // Subpass inputs should use the Texture type, not a Sampler. SkASSERT(type->dimensions() != SpvDimSubpassData); if (SpvDimBuffer == type->dimensions()) { fCapabilities |= 1ULL << SpvCapabilitySampledBuffer; } SpvId imageTypeId = this->getType(type->textureType(), layout); return this->writeInstruction(SpvOpTypeSampledImage, Words{Word::Result(), imageTypeId}, fConstantBuffer); } case Type::TypeKind::kTexture: { SpvId floatTypeId = this->getType(*fContext.fTypes.fFloat, layout); int sampled = (type->textureAccess() == Type::TextureAccess::kSample) ? 1 : 2; return this->writeInstruction(SpvOpTypeImage, Words{Word::Result(), floatTypeId, Word::Number(type->dimensions()), Word::Number(type->isDepth()), Word::Number(type->isArrayedTexture()), Word::Number(type->isMultisampled()), Word::Number(sampled), SpvImageFormatUnknown}, fConstantBuffer); } default: { SkDEBUGFAILF("invalid type: %s", type->description().c_str()); return NA; } } } SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) { Words words; words.push_back(Word::Result()); words.push_back(this->getType(function.returnType())); for (const Variable* parameter : function.parameters()) { if (parameter->type().typeKind() == Type::TypeKind::kSampler && fProgram.fConfig->fSettings.fSPIRVDawnCompatMode) { words.push_back(this->getFunctionParameterType(parameter->type().textureType())); words.push_back(this->getFunctionParameterType(*fContext.fTypes.fSampler)); } else { words.push_back(this->getFunctionParameterType(parameter->type())); } } return this->writeInstruction(SpvOpTypeFunction, words, fConstantBuffer); } SpvId SPIRVCodeGenerator::getFunctionParameterType(const Type& parameterType) { // glslang treats all function arguments as pointers whether they need to be or // not. I was initially puzzled by this until I ran bizarre failures with certain // patterns of function calls and control constructs, as exemplified by this minimal // failure case: // // void sphere(float x) { // } // // void map() { // sphere(1.0); // } // // void main() { // for (int i = 0; i < 1; i++) { // map(); // } // } // // As of this writing, compiling this in the "obvious" way (with sphere taking a float) // crashes. Making it take a float* and storing the argument in a temporary variable, // as glslang does, fixes it. // // The consensus among shader compiler authors seems to be that GPU driver generally don't // handle value-based parameters consistently. It is highly likely that they fit their // implementations to conform to glslang. We take care to do so ourselves. // // Our implementation first stores every parameter value into a function storage-class pointer // before calling a function. The exception is for opaque handle types (samplers and textures) // which must be stored in a pointer with UniformConstant storage-class. This prevents // unnecessary temporaries (becuase opaque handles are always rooted in a pointer variable), // matches glslang's behavior, and translates into WGSL more easily when targeting Dawn. SpvStorageClass_ storageClass; if (parameterType.typeKind() == Type::TypeKind::kSampler || parameterType.typeKind() == Type::TypeKind::kSeparateSampler || parameterType.typeKind() == Type::TypeKind::kTexture) { storageClass = SpvStorageClassUniformConstant; } else { storageClass = SpvStorageClassFunction; } return this->getPointerType(parameterType, storageClass); } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) { return this->getPointerType( type, this->memoryLayoutForStorageClass(storageClass), storageClass); } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, const MemoryLayout& layout, SpvStorageClass_ storageClass) { return this->writeInstruction( SpvOpTypePointer, Words{Word::Result(), Word::Number(storageClass), this->getType(type, layout)}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) { switch (expr.kind()) { case Expression::Kind::kBinary: return this->writeBinaryExpression(expr.as(), out); case Expression::Kind::kConstructorArrayCast: return this->writeExpression(*expr.as().argument(), out); case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorStruct: return this->writeCompositeConstructor(expr.asAnyConstructor(), out); case Expression::Kind::kConstructorDiagonalMatrix: return this->writeConstructorDiagonalMatrix(expr.as(), out); case Expression::Kind::kConstructorMatrixResize: return this->writeConstructorMatrixResize(expr.as(), out); case Expression::Kind::kConstructorScalarCast: return this->writeConstructorScalarCast(expr.as(), out); case Expression::Kind::kConstructorSplat: return this->writeConstructorSplat(expr.as(), out); case Expression::Kind::kConstructorCompound: return this->writeConstructorCompound(expr.as(), out); case Expression::Kind::kConstructorCompoundCast: return this->writeConstructorCompoundCast(expr.as(), out); case Expression::Kind::kFieldAccess: return this->writeFieldAccess(expr.as(), out); case Expression::Kind::kFunctionCall: return this->writeFunctionCall(expr.as(), out); case Expression::Kind::kLiteral: return this->writeLiteral(expr.as()); case Expression::Kind::kPrefix: return this->writePrefixExpression(expr.as(), out); case Expression::Kind::kPostfix: return this->writePostfixExpression(expr.as(), out); case Expression::Kind::kSwizzle: return this->writeSwizzle(expr.as(), out); case Expression::Kind::kVariableReference: return this->writeVariableReference(expr.as(), out); case Expression::Kind::kTernary: return this->writeTernaryExpression(expr.as(), out); case Expression::Kind::kIndex: return this->writeIndexExpression(expr.as(), out); case Expression::Kind::kSetting: return this->writeExpression(*expr.as().toLiteral(fContext), out); default: SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); break; } return NA; } SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) { const FunctionDeclaration& function = c.function(); Intrinsic intrinsic = this->getIntrinsic(function.intrinsicKind()); if (intrinsic.opKind == kInvalid_IntrinsicOpcodeKind) { fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + function.description() + "'"); return NA; } const ExpressionArray& arguments = c.arguments(); int32_t intrinsicId = intrinsic.floatOp; if (arguments.size() > 0) { const Type& type = arguments[0]->type(); if (intrinsic.opKind == kSpecial_IntrinsicOpcodeKind) { // Keep the default float op. } else { intrinsicId = pick_by_type(type, intrinsic.floatOp, intrinsic.signedOp, intrinsic.unsignedOp, intrinsic.boolOp); } } switch (intrinsic.opKind) { case kGLSL_STD_450_IntrinsicOpcodeKind: { SpvId result = this->nextId(&c.type()); SkTArray argumentIds; std::vector tempVars; argumentIds.reserve_back(arguments.size()); for (int i = 0; i < arguments.size(); i++) { argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(intrinsicId, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSPIRV_IntrinsicOpcodeKind: { // GLSL supports dot(float, float), but SPIR-V does not. Convert it to FMul if (intrinsicId == SpvOpDot && arguments[0]->type().isScalar()) { intrinsicId = SpvOpFMul; } SpvId result = this->nextId(&c.type()); SkTArray argumentIds; std::vector tempVars; argumentIds.reserve_back(arguments.size()); for (int i = 0; i < arguments.size(); i++) { argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out)); } if (!c.type().isVoid()) { this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); } else { this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out); } for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSpecial_IntrinsicOpcodeKind: return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out); default: fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + function.description() + "'"); return NA; } } SpvId SPIRVCodeGenerator::vectorize(const Expression& arg, int vectorSize, OutputStream& out) { SkASSERT(vectorSize >= 1 && vectorSize <= 4); const Type& argType = arg.type(); if (argType.isScalar() && vectorSize > 1) { ConstructorSplat splat{arg.fPosition, argType.toCompound(fContext, vectorSize, /*rows=*/1), arg.clone()}; return this->writeConstructorSplat(splat, out); } SkASSERT(vectorSize == argType.columns()); return this->writeExpression(arg, out); } SkTArray SPIRVCodeGenerator::vectorize(const ExpressionArray& args, OutputStream& out) { int vectorSize = 1; for (const auto& a : args) { if (a->type().isVector()) { if (vectorSize > 1) { SkASSERT(a->type().columns() == vectorSize); } else { vectorSize = a->type().columns(); } } } SkTArray result; result.reserve_back(args.size()); for (const auto& arg : args) { result.push_back(this->vectorize(*arg, vectorSize, out)); } return result; } void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst, SpvId signedInst, SpvId unsignedInst, const SkTArray& args, OutputStream& out) { this->writeOpCode(SpvOpExtInst, 5 + args.size(), out); this->writeWord(this->getType(type), out); this->writeWord(id, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(pick_by_type(type, floatInst, signedInst, unsignedInst, NA), out); for (SpvId a : args) { this->writeWord(a, out); } } SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, OutputStream& out) { const ExpressionArray& arguments = c.arguments(); const Type& callType = c.type(); SpvId result = this->nextId(nullptr); switch (kind) { case kAtan_SpecialIntrinsic: { SkSTArray<2, SpvId> argumentIds; for (const std::unique_ptr& arg : arguments) { argumentIds.push_back(this->writeExpression(*arg, out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(argumentIds.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } break; } case kSampledImage_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId img = this->writeExpression(*arguments[0], out); SpvId sampler = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpSampledImage, this->getType(callType), result, img, sampler, out); break; } case kSubpassLoad_SpecialIntrinsic: { SpvId img = this->writeExpression(*arguments[0], out); ExpressionArray args; args.reserve_back(2); args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); ConstructorCompound ctor(Position(), *fContext.fTypes.fInt2, std::move(args)); SpvId coords = this->writeExpression(ctor, out); if (arguments.size() == 1) { this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, out); } else { SkASSERT(arguments.size() == 2); SpvId sample = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, SpvImageOperandsSampleMask, sample, out); } break; } case kTexture_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleImplicitLod; const Type& arg1Type = arguments[1]->type(); switch (arguments[0]->type().dimensions()) { case SpvDim1D: if (arg1Type.matches(*fContext.fTypes.fFloat2)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat)); } break; case SpvDim2D: if (arg1Type.matches(*fContext.fTypes.fFloat3)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); } break; case SpvDim3D: if (arg1Type.matches(*fContext.fTypes.fFloat4)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat3)); } break; case SpvDimCube: // fall through case SpvDimRect: // fall through case SpvDimBuffer: // fall through case SpvDimSubpassData: break; } SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); if (arguments.size() == 3) { this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, this->writeExpression(*arguments[2], out), out); } else { SkASSERT(arguments.size() == 2); if (fProgram.fConfig->fSettings.fSharpenTextures) { SpvId lodBias = this->writeLiteral(kSharpenTexturesBias, *fContext.fTypes.fFloat); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, lodBias, out); } else { this->writeInstruction(op, type, result, sampler, uv, out); } } break; } case kTextureGrad_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleExplicitLod; SkASSERT(arguments.size() == 4); SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[1]->type().matches(*fContext.fTypes.fFloat2)); SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat2)); SkASSERT(arguments[3]->type().matches(*fContext.fTypes.fFloat2)); SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); SpvId dPdx = this->writeExpression(*arguments[2], out); SpvId dPdy = this->writeExpression(*arguments[3], out); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsGradMask, dPdx, dPdy, out); break; } case kTextureLod_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleExplicitLod; SkASSERT(arguments.size() == 3); SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat)); const Type& arg1Type = arguments[1]->type(); if (arg1Type.matches(*fContext.fTypes.fFloat3)) { op = SpvOpImageSampleProjExplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); } SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsLodMask, this->writeExpression(*arguments[2], out), out); break; } case kMod_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); const Type& operandType = arguments[0]->type(); SpvOp_ op = pick_by_type(operandType, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef); SkASSERT(op != SpvOpUndef); this->writeOpCode(op, 5, out); this->writeWord(this->getType(operandType), out); this->writeWord(result, out); this->writeWord(args[0], out); this->writeWord(args[1], out); break; } case kDFdy_SpecialIntrinsic: { SpvId fn = this->writeExpression(*arguments[0], out); this->writeOpCode(SpvOpDPdy, 4, out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fn, out); if (!fProgram.fConfig->fSettings.fForceNoRTFlip) { this->addRTFlipUniform(c.fPosition); using namespace dsl; DSLExpression rtFlip( ThreadContext::Compiler().convertIdentifier(Position(), SKSL_RTFLIP_NAME)); SpvId rtFlipY = this->vectorize(*rtFlip.y().release(), callType.columns(), out); SpvId flipped = this->nextId(&callType); this->writeInstruction( SpvOpFMul, this->getType(callType), flipped, result, rtFlipY, out); result = flipped; } break; } case kClamp_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, args, out); break; } case kMax_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMax, GLSLstd450SMax, GLSLstd450UMax, args, out); break; } case kMin_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMin, GLSLstd450SMin, GLSLstd450UMin, args, out); break; } case kMix_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); if (arguments[2]->type().componentType().isBoolean()) { // Use OpSelect to implement Boolean mix(). SpvId falseId = this->writeExpression(*arguments[0], out); SpvId trueId = this->writeExpression(*arguments[1], out); SpvId conditionId = this->writeExpression(*arguments[2], out); this->writeInstruction(SpvOpSelect, this->getType(arguments[0]->type()), result, conditionId, trueId, falseId, out); } else { this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMix, SpvOpUndef, SpvOpUndef, args, out); } break; } case kSaturate_SpecialIntrinsic: { SkASSERT(arguments.size() == 1); ExpressionArray finalArgs; finalArgs.reserve_back(3); finalArgs.push_back(arguments[0]->clone()); finalArgs.push_back(Literal::MakeFloat(fContext, Position(), /*value=*/0)); finalArgs.push_back(Literal::MakeFloat(fContext, Position(), /*value=*/1)); SkTArray spvArgs = this->vectorize(finalArgs, out); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, spvArgs, out); break; } case kSmoothStep_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450SmoothStep, SpvOpUndef, SpvOpUndef, args, out); break; } case kStep_SpecialIntrinsic: { SkTArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450Step, SpvOpUndef, SpvOpUndef, args, out); break; } case kMatrixCompMult_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId lhs = this->writeExpression(*arguments[0], out); SpvId rhs = this->writeExpression(*arguments[1], out); result = this->writeComponentwiseMatrixBinary(callType, lhs, rhs, SpvOpFMul, out); break; } } return result; } SpvId SPIRVCodeGenerator::writeFunctionCallArgument(const FunctionCall& call, int argIndex, std::vector* tempVars, OutputStream& out, SpvId* outSynthesizedSamplerId) { const FunctionDeclaration& funcDecl = call.function(); const Expression& arg = *call.arguments()[argIndex]; const Modifiers& paramModifiers = funcDecl.parameters()[argIndex]->modifiers(); // ID of temporary variable that we will use to hold this argument, or 0 if it is being // passed directly SpvId tmpVar; // if we need a temporary var to store this argument, this is the value to store in the var SpvId tmpValueId = NA; if (is_out(paramModifiers)) { std::unique_ptr lv = this->getLValue(arg, out); // We handle out params with a temp var that we copy back to the original variable at the // end of the call. GLSL guarantees that the original variable will be unchanged until the // end of the call, and also that out params are written back to their original variables in // a specific order (left-to-right), so it's unsafe to pass a pointer to the original value. if (is_in(paramModifiers)) { tmpValueId = lv->load(out); } tmpVar = this->nextId(&arg.type()); tempVars->push_back(TempVar{tmpVar, &arg.type(), std::move(lv)}); } else if (funcDecl.isIntrinsic()) { // Unlike user function calls, non-out intrinsic arguments don't need pointer parameters. return this->writeExpression(arg, out); } else if (arg.is() && (arg.type().typeKind() == Type::TypeKind::kSampler || arg.type().typeKind() == Type::TypeKind::kSeparateSampler || arg.type().typeKind() == Type::TypeKind::kTexture)) { // Opaque handle (sampler/texture) arguments are always declared as pointers but never // stored in intermediates when calling user-defined functions. // // The case for intrinsics (which take opaque arguments by value) is handled above just like // regular pointers. // // See getFunctionParameterType for further explanation. const Variable* var = arg.as().variable(); // In Dawn-mode the texture and sampler arguments are forwarded to the helper function. if (const auto* p = fSynthesizedSamplerMap.find(var)) { SkASSERT(fProgram.fConfig->fSettings.fSPIRVDawnCompatMode); SkASSERT(arg.type().typeKind() == Type::TypeKind::kSampler); SkASSERT(outSynthesizedSamplerId); SpvId* img = fVariableMap.find((*p)->fTexture.get()); SpvId* sampler = fVariableMap.find((*p)->fSampler.get()); SkASSERT(img); SkASSERT(sampler); *outSynthesizedSamplerId = *sampler; return *img; } SpvId* entry = fVariableMap.find(var); SkASSERTF(entry, "%s", arg.description().c_str()); return *entry; } else { // We always use pointer parameters when calling user functions. // See getFunctionParameterType for further explanation. tmpValueId = this->writeExpression(arg, out); tmpVar = this->nextId(nullptr); } this->writeInstruction(SpvOpVariable, this->getPointerType(arg.type(), SpvStorageClassFunction), tmpVar, SpvStorageClassFunction, fVariableBuffer); if (tmpValueId != NA) { this->writeOpStore(SpvStorageClassFunction, tmpVar, tmpValueId, out); } return tmpVar; } void SPIRVCodeGenerator::copyBackTempVars(const std::vector& tempVars, OutputStream& out) { for (const TempVar& tempVar : tempVars) { SpvId load = this->nextId(tempVar.type); this->writeInstruction(SpvOpLoad, this->getType(*tempVar.type), load, tempVar.spvId, out); tempVar.lvalue->store(load, out); } } SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) { const FunctionDeclaration& function = c.function(); if (function.isIntrinsic() && !function.definition()) { return this->writeIntrinsicCall(c, out); } const ExpressionArray& arguments = c.arguments(); SpvId* entry = fFunctionMap.find(&function); if (!entry) { fContext.fErrors->error(c.fPosition, "function '" + function.description() + "' is not defined"); return NA; } // Temp variables are used to write back out-parameters after the function call is complete. std::vector tempVars; SkTArray argumentIds; argumentIds.reserve_back(arguments.size()); for (int i = 0; i < arguments.size(); i++) { SpvId samplerId = NA; argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out, &samplerId)); if (samplerId != NA) { argumentIds.push_back(samplerId); } } SpvId result = this->nextId(nullptr); this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t)argumentIds.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(*entry, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } // Now that the call is complete, we copy temp out-variables back to their real lvalues. this->copyBackTempVars(tempVars, out); return result; } SpvId SPIRVCodeGenerator::castScalarToType(SpvId inputExprId, const Type& inputType, const Type& outputType, OutputStream& out) { if (outputType.isFloat()) { return this->castScalarToFloat(inputExprId, inputType, outputType, out); } if (outputType.isSigned()) { return this->castScalarToSignedInt(inputExprId, inputType, outputType, out); } if (outputType.isUnsigned()) { return this->castScalarToUnsignedInt(inputExprId, inputType, outputType, out); } if (outputType.isBoolean()) { return this->castScalarToBoolean(inputExprId, inputType, outputType, out); } fContext.fErrors->error(Position(), "unsupported cast: " + inputType.description() + " to " + outputType.description()); return inputExprId; } SpvId SPIRVCodeGenerator::writeFloatConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isFloat()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToFloat(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToFloat(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a float to float is a no-op. if (inputType.isFloat()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to float. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1.0 or 0.0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fFloat); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpConvertSToF, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpConvertUToF, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for float typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::writeIntConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isSigned()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToSignedInt(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToSignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a signed int to signed int is a no-op. if (inputType.isSigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to signed int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1 or 0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToS, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for signed int typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::writeUIntConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isUnsigned()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToUnsignedInt(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToUnsignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting an unsigned int to unsigned int is a no-op. if (inputType.isUnsigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to unsigned int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1u or 0u. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fUInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToU, this->getType(outputType), result, inputId, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for unsigned int typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::writeBooleanConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.argumentSpan().size() == 1); SkASSERT(c.type().isBoolean()); const Expression& ctorExpr = *c.argumentSpan().front(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToBoolean(expressionId, ctorExpr.type(), c.type(), out); } SpvId SPIRVCodeGenerator::castScalarToBoolean(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a bool to bool is a no-op. if (inputType.isBoolean()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to bool. SpvId result = this->nextId(nullptr); if (inputType.isSigned()) { // Synthesize a boolean result by comparing the input against a signed zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isUnsigned()) { // Synthesize a boolean result by comparing the input against an unsigned zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isFloat()) { // Synthesize a boolean result by comparing the input against a floating-point zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpFUnordNotEqual, this->getType(outputType), result, inputId, zeroID, out); } else { SkDEBUGFAILF("unsupported type for boolean typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::writeMatrixCopy(SpvId src, const Type& srcType, const Type& dstType, OutputStream& out) { SkASSERT(srcType.isMatrix()); SkASSERT(dstType.isMatrix()); SkASSERT(srcType.componentType().matches(dstType.componentType())); const Type& srcColumnType = srcType.componentType().toCompound(fContext, srcType.rows(), 1); const Type& dstColumnType = dstType.componentType().toCompound(fContext, dstType.rows(), 1); SkASSERT(dstType.componentType().isFloat()); SpvId dstColumnTypeId = this->getType(dstColumnType); const SpvId zeroId = this->writeLiteral(0.0, dstType.componentType()); const SpvId oneId = this->writeLiteral(1.0, dstType.componentType()); SkSTArray<4, SpvId> columns; for (int i = 0; i < dstType.columns(); i++) { if (i < srcType.columns()) { // we're still inside the src matrix, copy the column SpvId srcColumn = this->writeOpCompositeExtract(srcColumnType, src, i, out); SpvId dstColumn; if (srcType.rows() == dstType.rows()) { // columns are equal size, don't need to do anything dstColumn = srcColumn; } else if (dstType.rows() > srcType.rows()) { // dst column is bigger, need to zero-pad it SkSTArray<4, SpvId> values; values.push_back(srcColumn); for (int j = srcType.rows(); j < dstType.rows(); ++j) { values.push_back((i == j) ? oneId : zeroId); } dstColumn = this->writeOpCompositeConstruct(dstColumnType, values, out); } else { // dst column is smaller, need to swizzle the src column dstColumn = this->nextId(&dstType); this->writeOpCode(SpvOpVectorShuffle, 5 + dstType.rows(), out); this->writeWord(dstColumnTypeId, out); this->writeWord(dstColumn, out); this->writeWord(srcColumn, out); this->writeWord(srcColumn, out); for (int j = 0; j < dstType.rows(); j++) { this->writeWord(j, out); } } columns.push_back(dstColumn); } else { // we're past the end of the src matrix, need to synthesize an identity-matrix column SkSTArray<4, SpvId> values; for (int j = 0; j < dstType.rows(); ++j) { values.push_back((i == j) ? oneId : zeroId); } columns.push_back(this->writeOpCompositeConstruct(dstColumnType, values, out)); } } return this->writeOpCompositeConstruct(dstType, columns, out); } void SPIRVCodeGenerator::addColumnEntry(const Type& columnType, SkTArray* currentColumn, SkTArray* columnIds, int rows, SpvId entry, OutputStream& out) { SkASSERT(currentColumn->size() < rows); currentColumn->push_back(entry); if (currentColumn->size() == rows) { // Synthesize this column into a vector. SpvId columnId = this->writeOpCompositeConstruct(columnType, *currentColumn, out); columnIds->push_back(columnId); currentColumn->clear(); } } SpvId SPIRVCodeGenerator::writeMatrixConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(!c.arguments().empty()); const Type& arg0Type = c.arguments()[0]->type(); // go ahead and write the arguments so we don't try to write new instructions in the middle of // an instruction SkSTArray<16, SpvId> arguments; for (const std::unique_ptr& arg : c.arguments()) { arguments.push_back(this->writeExpression(*arg, out)); } if (arguments.size() == 1 && arg0Type.isVector()) { // Special-case handling of float4 -> mat2x2. SkASSERT(type.rows() == 2 && type.columns() == 2); SkASSERT(arg0Type.columns() == 4); SpvId v[4]; for (int i = 0; i < 4; ++i) { v[i] = this->writeOpCompositeExtract(type.componentType(), arguments[0], i, out); } const Type& vecType = type.componentType().toCompound(fContext, /*columns=*/2, /*rows=*/1); SpvId v0v1 = this->writeOpCompositeConstruct(vecType, {v[0], v[1]}, out); SpvId v2v3 = this->writeOpCompositeConstruct(vecType, {v[2], v[3]}, out); return this->writeOpCompositeConstruct(type, {v0v1, v2v3}, out); } int rows = type.rows(); const Type& columnType = type.componentType().toCompound(fContext, /*columns=*/rows, /*rows=*/1); // SpvIds of completed columns of the matrix. SkSTArray<4, SpvId> columnIds; // SpvIds of scalars we have written to the current column so far. SkSTArray<4, SpvId> currentColumn; for (int i = 0; i < arguments.size(); i++) { const Type& argType = c.arguments()[i]->type(); if (currentColumn.empty() && argType.isVector() && argType.columns() == rows) { // This vector is a complete matrix column by itself and can be used as-is. columnIds.push_back(arguments[i]); } else if (argType.columns() == 1) { // This argument is a lone scalar and can be added to the current column as-is. this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, arguments[i], out); } else { // This argument needs to be decomposed into its constituent scalars. for (int j = 0; j < argType.columns(); ++j) { SpvId swizzle = this->writeOpCompositeExtract(argType.componentType(), arguments[i], j, out); this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, swizzle, out); } } } SkASSERT(columnIds.size() == type.columns()); return this->writeOpCompositeConstruct(type, columnIds, out); } SpvId SPIRVCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, OutputStream& out) { return c.type().isMatrix() ? this->writeMatrixConstructor(c, out) : this->writeVectorConstructor(c, out); } SpvId SPIRVCodeGenerator::writeVectorConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); const Type& componentType = type.componentType(); SkASSERT(type.isVector()); SkSTArray<4, SpvId> arguments; for (int i = 0; i < c.arguments().size(); i++) { const Type& argType = c.arguments()[i]->type(); SkASSERT(componentType.numberKind() == argType.componentType().numberKind()); SpvId arg = this->writeExpression(*c.arguments()[i], out); if (argType.isMatrix()) { // CompositeConstruct cannot take a 2x2 matrix as an input, so we need to extract out // each scalar separately. SkASSERT(argType.rows() == 2); SkASSERT(argType.columns() == 2); for (int j = 0; j < 4; ++j) { arguments.push_back(this->writeOpCompositeExtract(componentType, arg, j / 2, j % 2, out)); } } else if (argType.isVector()) { // There's a bug in the Intel Vulkan driver where OpCompositeConstruct doesn't handle // vector arguments at all, so we always extract each vector component and pass them // into OpCompositeConstruct individually. for (int j = 0; j < argType.columns(); j++) { arguments.push_back(this->writeOpCompositeExtract(componentType, arg, j, out)); } } else { arguments.push_back(arg); } } return this->writeOpCompositeConstruct(type, arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorSplat(const ConstructorSplat& c, OutputStream& out) { // Write the splat argument. SpvId argument = this->writeExpression(*c.argument(), out); // Generate a OpCompositeConstruct which repeats the argument N times. SkSTArray<4, SpvId> values; values.push_back_n(/*n=*/c.type().columns(), /*t=*/argument); return this->writeOpCompositeConstruct(c.type(), values, out); } SpvId SPIRVCodeGenerator::writeCompositeConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.type().isArray() || c.type().isStruct()); auto ctorArgs = c.argumentSpan(); SkSTArray<4, SpvId> arguments; for (const std::unique_ptr& arg : ctorArgs) { arguments.push_back(this->writeExpression(*arg, out)); } return this->writeOpCompositeConstruct(c.type(), arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorScalarCast(const ConstructorScalarCast& c, OutputStream& out) { const Type& type = c.type(); if (type.componentType().numberKind() == c.argument()->type().componentType().numberKind()) { return this->writeExpression(*c.argument(), out); } const Expression& ctorExpr = *c.argument(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToType(expressionId, ctorExpr.type(), type, out); } SpvId SPIRVCodeGenerator::writeConstructorCompoundCast(const ConstructorCompoundCast& c, OutputStream& out) { const Type& ctorType = c.type(); const Type& argType = c.argument()->type(); SkASSERT(ctorType.isVector() || ctorType.isMatrix()); // Write the composite that we are casting. If the actual type matches, we are done. SpvId compositeId = this->writeExpression(*c.argument(), out); if (ctorType.componentType().numberKind() == argType.componentType().numberKind()) { return compositeId; } // writeMatrixCopy can cast matrices to a different type. if (ctorType.isMatrix()) { return this->writeMatrixCopy(compositeId, argType, ctorType, out); } // SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to extract the // components and convert each one manually. const Type& srcType = argType.componentType(); const Type& dstType = ctorType.componentType(); SkSTArray<4, SpvId> arguments; for (int index = 0; index < argType.columns(); ++index) { SpvId componentId = this->writeOpCompositeExtract(srcType, compositeId, index, out); arguments.push_back(this->castScalarToType(componentId, srcType, dstType, out)); } return this->writeOpCompositeConstruct(ctorType, arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(c.argument()->type().isScalar()); // Write out the scalar argument. SpvId diagonal = this->writeExpression(*c.argument(), out); // Build the diagonal matrix. SpvId zeroId = this->writeLiteral(0.0, *fContext.fTypes.fFloat); const Type& vecType = type.componentType().toCompound(fContext, /*columns=*/type.rows(), /*rows=*/1); SkSTArray<4, SpvId> columnIds; SkSTArray<4, SpvId> arguments; arguments.resize(type.rows()); for (int column = 0; column < type.columns(); column++) { for (int row = 0; row < type.rows(); row++) { arguments[row] = (row == column) ? diagonal : zeroId; } columnIds.push_back(this->writeOpCompositeConstruct(vecType, arguments, out)); } return this->writeOpCompositeConstruct(type, columnIds, out); } SpvId SPIRVCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, OutputStream& out) { // Write the input matrix. SpvId argument = this->writeExpression(*c.argument(), out); // Use matrix-copy to resize the input matrix to its new size. return this->writeMatrixCopy(argument, c.argument()->type(), c.type(), out); } static SpvStorageClass_ get_storage_class_for_global_variable( const Variable& var, SpvStorageClass_ fallbackStorageClass) { SkASSERT(var.storage() == Variable::Storage::kGlobal); const Modifiers& modifiers = var.modifiers(); if (modifiers.fFlags & Modifiers::kIn_Flag) { SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); return SpvStorageClassInput; } if (modifiers.fFlags & Modifiers::kOut_Flag) { SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); return SpvStorageClassOutput; } if (modifiers.fFlags & Modifiers::kUniform_Flag) { if (modifiers.fLayout.fFlags & Layout::kPushConstant_Flag) { return SpvStorageClassPushConstant; } if (var.type().typeKind() == Type::TypeKind::kSampler || var.type().typeKind() == Type::TypeKind::kSeparateSampler || var.type().typeKind() == Type::TypeKind::kTexture) { return SpvStorageClassUniformConstant; } return SpvStorageClassUniform; } return fallbackStorageClass; } static SpvStorageClass_ get_storage_class(const Expression& expr) { switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); if (var.storage() != Variable::Storage::kGlobal) { return SpvStorageClassFunction; } return get_storage_class_for_global_variable(var, SpvStorageClassPrivate); } case Expression::Kind::kFieldAccess: return get_storage_class(*expr.as().base()); case Expression::Kind::kIndex: return get_storage_class(*expr.as().base()); default: return SpvStorageClassFunction; } } SkTArray SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) { switch (expr.kind()) { case Expression::Kind::kIndex: { const IndexExpression& indexExpr = expr.as(); SkTArray chain = this->getAccessChain(*indexExpr.base(), out); chain.push_back(this->writeExpression(*indexExpr.index(), out)); return chain; } case Expression::Kind::kFieldAccess: { const FieldAccess& fieldExpr = expr.as(); SkTArray chain = this->getAccessChain(*fieldExpr.base(), out); chain.push_back(this->writeLiteral(fieldExpr.fieldIndex(), *fContext.fTypes.fInt)); return chain; } default: { SpvId id = this->getLValue(expr, out)->getPointer(); SkASSERT(id != NA); return SkTArray{id}; } } SkUNREACHABLE; } class PointerLValue : public SPIRVCodeGenerator::LValue { public: PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, bool isMemoryObject, SpvId type, SPIRVCodeGenerator::Precision precision, SpvStorageClass_ storageClass) : fGen(gen) , fPointer(pointer) , fIsMemoryObject(isMemoryObject) , fType(type) , fPrecision(precision) , fStorageClass(storageClass) {} SpvId getPointer() override { return fPointer; } bool isMemoryObjectPointer() const override { return fIsMemoryObject; } SpvId load(OutputStream& out) override { return fGen.writeOpLoad(fType, fPrecision, fPointer, out); } void store(SpvId value, OutputStream& out) override { if (!fIsMemoryObject) { // We are going to write into an access chain; this could represent one component of a // vector, or one element of an array. This has the potential to invalidate other, // *unknown* elements of our store cache. (e.g. if the store cache holds `%50 = myVec4`, // and we store `%60 = myVec4.z`, this invalidates the cached value for %50.) To avoid // relying on stale data, reset the store cache entirely when this happens. fGen.fStoreCache.reset(); } fGen.writeOpStore(fStorageClass, fPointer, value, out); } private: SPIRVCodeGenerator& fGen; const SpvId fPointer; const bool fIsMemoryObject; const SpvId fType; const SPIRVCodeGenerator::Precision fPrecision; const SpvStorageClass_ fStorageClass; }; class SwizzleLValue : public SPIRVCodeGenerator::LValue { public: SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const ComponentArray& components, const Type& baseType, const Type& swizzleType, SpvStorageClass_ storageClass) : fGen(gen) , fVecPointer(vecPointer) , fComponents(components) , fBaseType(&baseType) , fSwizzleType(&swizzleType) , fStorageClass(storageClass) {} bool applySwizzle(const ComponentArray& components, const Type& newType) override { ComponentArray updatedSwizzle; for (int8_t component : components) { if (component < 0 || component >= fComponents.size()) { SkDEBUGFAILF("swizzle accessed nonexistent component %d", (int)component); return false; } updatedSwizzle.push_back(fComponents[component]); } fComponents = updatedSwizzle; fSwizzleType = &newType; return true; } SpvId load(OutputStream& out) override { SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId result = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out); fGen.writeWord(fGen.getType(*fSwizzleType), out); fGen.writeWord(result, out); fGen.writeWord(base, out); fGen.writeWord(base, out); for (int component : fComponents) { fGen.writeWord(component, out); } return result; } void store(SpvId value, OutputStream& out) override { // use OpVectorShuffle to mix and match the vector components. We effectively create // a virtual vector out of the concatenation of the left and right vectors, and then // select components from this virtual vector to make the result vector. For // instance, given: // float3L = ...; // float3R = ...; // L.xz = R.xy; // we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want // our result vector to look like (R.x, L.y, R.y), so we need to select indices // (3, 1, 4). SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId shuffle = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType->columns(), out); fGen.writeWord(fGen.getType(*fBaseType), out); fGen.writeWord(shuffle, out); fGen.writeWord(base, out); fGen.writeWord(value, out); for (int i = 0; i < fBaseType->columns(); i++) { // current offset into the virtual vector, defaults to pulling the unmodified // value from the left side int offset = i; // check to see if we are writing this component for (int j = 0; j < fComponents.size(); j++) { if (fComponents[j] == i) { // we're writing to this component, so adjust the offset to pull from // the correct component of the right side instead of preserving the // value from the left offset = (int) (j + fBaseType->columns()); break; } } fGen.writeWord(offset, out); } fGen.writeOpStore(fStorageClass, fVecPointer, shuffle, out); } private: SPIRVCodeGenerator& fGen; const SpvId fVecPointer; ComponentArray fComponents; const Type* fBaseType; const Type* fSwizzleType; const SpvStorageClass_ fStorageClass; }; int SPIRVCodeGenerator::findUniformFieldIndex(const Variable& var) const { int* fieldIndex = fTopLevelUniformMap.find(&var); return fieldIndex ? *fieldIndex : -1; } std::unique_ptr SPIRVCodeGenerator::getLValue(const Expression& expr, OutputStream& out) { const Type& type = expr.type(); Precision precision = type.highPrecision() ? Precision::kDefault : Precision::kRelaxed; switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); int uniformIdx = this->findUniformFieldIndex(var); if (uniformIdx >= 0) { SpvId memberId = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, SpvStorageClassUniform); SpvId uniformIdxId = this->writeLiteral((double)uniformIdx, *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, memberId, fUniformBufferId, uniformIdxId, out); return std::make_unique( *this, memberId, /*isMemoryObjectPointer=*/true, this->getType(type, this->memoryLayoutForVariable(var)), precision, SpvStorageClassUniform); } SpvId typeId = this->getType(type, this->memoryLayoutForVariable(var)); SpvId* entry = fVariableMap.find(&var); SkASSERTF(entry, "%s", expr.description().c_str()); return std::make_unique(*this, *entry, /*isMemoryObjectPointer=*/true, typeId, precision, get_storage_class(expr)); } case Expression::Kind::kIndex: // fall through case Expression::Kind::kFieldAccess: { SkTArray chain = this->getAccessChain(expr, out); SpvId member = this->nextId(nullptr); SpvStorageClass_ storageClass = get_storage_class(expr); this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out); this->writeWord(this->getPointerType(type, storageClass), out); this->writeWord(member, out); for (SpvId idx : chain) { this->writeWord(idx, out); } return std::make_unique( *this, member, /*isMemoryObjectPointer=*/false, this->getType(type, this->memoryLayoutForStorageClass(storageClass)), precision, storageClass); } case Expression::Kind::kSwizzle: { const Swizzle& swizzle = expr.as(); std::unique_ptr lvalue = this->getLValue(*swizzle.base(), out); if (lvalue->applySwizzle(swizzle.components(), type)) { return lvalue; } SpvId base = lvalue->getPointer(); if (base == NA) { fContext.fErrors->error(swizzle.fPosition, "unable to retrieve lvalue from swizzle"); } SpvStorageClass_ storageClass = get_storage_class(*swizzle.base()); if (swizzle.components().size() == 1) { SpvId member = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, storageClass); SpvId indexId = this->writeLiteral(swizzle.components()[0], *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, member, base, indexId, out); return std::make_unique(*this, member, /*isMemoryObjectPointer=*/false, this->getType(type), precision, storageClass); } else { return std::make_unique(*this, base, swizzle.components(), swizzle.base()->type(), type, storageClass); } } default: { // expr isn't actually an lvalue, create a placeholder variable for it. This case // happens due to the need to store values in temporary variables during function // calls (see comments in getFunctionParameterType); erroneous uses of rvalues as // lvalues should have been caught before code generation. // // This is with the exception of opaque handle types (textures/samplers) which are // always defined as UniformConstant pointers and don't need to be explicitly stored // into a temporary (which is handled explicitly in writeFunctionCallArgument). SpvId result = this->nextId(nullptr); SpvId pointerType = this->getPointerType(type, SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, pointerType, result, SpvStorageClassFunction, fVariableBuffer); this->writeOpStore(SpvStorageClassFunction, result, this->writeExpression(expr, out), out); return std::make_unique(*this, result, /*isMemoryObjectPointer=*/true, this->getType(type), precision, SpvStorageClassFunction); } } } SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) { const Variable* variable = ref.variable(); switch (variable->modifiers().fLayout.fBuiltin) { case DEVICE_FRAGCOORDS_BUILTIN: { // Down below, we rewrite raw references to sk_FragCoord with expressions that reference // DEVICE_FRAGCOORDS_BUILTIN. This is a fake variable that means we need to directly // access the fragcoord; do so now. dsl::DSLGlobalVar fragCoord("sk_FragCoord"); return this->getLValue(*dsl::DSLExpression(fragCoord).release(), out)->load(out); } case DEVICE_CLOCKWISE_BUILTIN: { // Down below, we rewrite raw references to sk_Clockwise with expressions that reference // DEVICE_CLOCKWISE_BUILTIN. This is a fake variable that means we need to directly // access front facing; do so now. dsl::DSLGlobalVar clockwise("sk_Clockwise"); return this->getLValue(*dsl::DSLExpression(clockwise).release(), out)->load(out); } case SK_SECONDARYFRAGCOLOR_BUILTIN: { // sk_SecondaryFragColor corresponds to gl_SecondaryFragColorEXT, which isn't supposed // to appear in a SPIR-V program (it's only valid in ES2). Report an error. fContext.fErrors->error(ref.fPosition, "sk_SecondaryFragColor is not allowed in SPIR-V"); return NA; } case SK_FRAGCOORD_BUILTIN: { if (fProgram.fConfig->fSettings.fForceNoRTFlip) { dsl::DSLGlobalVar fragCoord("sk_FragCoord"); return this->getLValue(*dsl::DSLExpression(fragCoord).release(), out)->load(out); } // Handle inserting use of uniform to flip y when referencing sk_FragCoord. this->addRTFlipUniform(ref.fPosition); // Use sk_RTAdjust to compute the flipped coordinate using namespace dsl; const char* DEVICE_COORDS_NAME = "$device_FragCoords"; SymbolTable& symbols = *ThreadContext::SymbolTable(); // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of $device_FragCoords, which is a fake variable that means "access the // underlying fragcoords directly without flipping it". DSLExpression rtFlip(ThreadContext::Compiler().convertIdentifier(Position(), SKSL_RTFLIP_NAME)); if (!symbols.find(DEVICE_COORDS_NAME)) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers; modifiers.fLayout.fBuiltin = DEVICE_FRAGCOORDS_BUILTIN; auto coordsVar = std::make_unique(/*pos=*/Position(), /*modifiersPosition=*/Position(), fContext.fModifiersPool->add(modifiers), DEVICE_COORDS_NAME, fContext.fTypes.fFloat4.get(), /*builtin=*/true, Variable::Storage::kGlobal); fSPIRVBonusVariables.add(coordsVar.get()); symbols.add(std::move(coordsVar)); } DSLGlobalVar deviceCoord(DEVICE_COORDS_NAME); std::unique_ptr rtFlipSkSLExpr = rtFlip.release(); DSLExpression x = DSLExpression(rtFlipSkSLExpr->clone()).x(); DSLExpression y = DSLExpression(std::move(rtFlipSkSLExpr)).y(); return this->writeExpression(*dsl::Float4(deviceCoord.x(), std::move(x) + std::move(y) * deviceCoord.y(), deviceCoord.z(), deviceCoord.w()).release(), out); } case SK_CLOCKWISE_BUILTIN: { if (fProgram.fConfig->fSettings.fForceNoRTFlip) { dsl::DSLGlobalVar clockwise("sk_Clockwise"); return this->getLValue(*dsl::DSLExpression(clockwise).release(), out)->load(out); } // Handle flipping sk_Clockwise. this->addRTFlipUniform(ref.fPosition); using namespace dsl; const char* DEVICE_CLOCKWISE_NAME = "$device_Clockwise"; SymbolTable& symbols = *ThreadContext::SymbolTable(); // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of $device_Clockwise, which is a fake variable that means "access the // underlying FrontFacing directly". DSLExpression rtFlip(ThreadContext::Compiler().convertIdentifier(Position(), SKSL_RTFLIP_NAME)); if (!symbols.find(DEVICE_CLOCKWISE_NAME)) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers; modifiers.fLayout.fBuiltin = DEVICE_CLOCKWISE_BUILTIN; auto clockwiseVar = std::make_unique(/*pos=*/Position(), /*modifiersPosition=*/Position(), fContext.fModifiersPool->add(modifiers), DEVICE_CLOCKWISE_NAME, fContext.fTypes.fBool.get(), /*builtin=*/true, Variable::Storage::kGlobal); fSPIRVBonusVariables.add(clockwiseVar.get()); symbols.add(std::move(clockwiseVar)); } DSLGlobalVar deviceClockwise(DEVICE_CLOCKWISE_NAME); // FrontFacing in Vulkan is defined in terms of a top-down render target. In skia, // we use the default convention of "counter-clockwise face is front". return this->writeExpression(*dsl::Bool(Select(rtFlip.y() > 0, !deviceClockwise, deviceClockwise)).release(), out); } default: { // Constant-propagate variables that have a known compile-time value. if (const Expression* expr = ConstantFolder::GetConstantValueOrNullForVariable(ref)) { return this->writeExpression(*expr, out); } // A reference to a sampler variable at global scope with synthesized texture/sampler // backing should construct a function-scope combined image-sampler from the synthesized // constituents. This is the case in which a sample intrinsic was invoked. // // Variable references to opaque handles (texture/sampler) that appear as the argument // of a user-defined function call are explicitly handled in writeFunctionCallArgument. if (const auto* p = fSynthesizedSamplerMap.find(variable)) { SkASSERT(fProgram.fConfig->fSettings.fSPIRVDawnCompatMode); SpvId* imgPtr = fVariableMap.find((*p)->fTexture.get()); SpvId* samplerPtr = fVariableMap.find((*p)->fSampler.get()); SkASSERT(imgPtr); SkASSERT(samplerPtr); SpvId img = this->writeOpLoad( this->getType((*p)->fTexture->type()), Precision::kDefault, *imgPtr, out); SpvId sampler = this->writeOpLoad(this->getType((*p)->fSampler->type()), Precision::kDefault, *samplerPtr, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpSampledImage, this->getType(variable->type()), result, img, sampler, out); return result; } return this->getLValue(ref, out)->load(out); } } } SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, OutputStream& out) { if (expr.base()->type().isVector()) { SpvId base = this->writeExpression(*expr.base(), out); SpvId index = this->writeExpression(*expr.index(), out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpVectorExtractDynamic, this->getType(expr.type()), result, base, index, out); return result; } return getLValue(expr, out)->load(out); } SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, OutputStream& out) { return getLValue(f, out)->load(out); } SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, OutputStream& out) { SpvId base = this->writeExpression(*swizzle.base(), out); size_t count = swizzle.components().size(); if (count == 1) { return this->writeOpCompositeExtract(swizzle.type(), base, swizzle.components()[0], out); } SpvId result = this->nextId(&swizzle.type()); this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out); this->writeWord(this->getType(swizzle.type()), out); this->writeWord(result, out); this->writeWord(base, out); this->writeWord(base, out); for (int component : swizzle.components()) { this->writeWord(component, out); } return result; } SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) { SpvId result = this->nextId(&resultType); SpvOp_ op = pick_by_type(operandType, ifFloat, ifInt, ifUInt, ifBool); if (op == SpvOpUndef) { fContext.fErrors->error(operandType.fPosition, "unsupported operand for binary expression: " + operandType.description()); return NA; } this->writeInstruction(op, this->getType(resultType), result, lhs, rhs, out); return result; } SpvId SPIRVCodeGenerator::foldToBool(SpvId id, const Type& operandType, SpvOp op, OutputStream& out) { if (operandType.isVector()) { SpvId result = this->nextId(nullptr); this->writeInstruction(op, this->getType(*fContext.fTypes.fBool), result, id, out); return result; } return id; } SpvId SPIRVCodeGenerator::writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ floatOperator, SpvOp_ intOperator, SpvOp_ vectorMergeOperator, SpvOp_ mergeOperator, OutputStream& out) { SpvOp_ compareOp = is_float(operandType) ? floatOperator : intOperator; SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.componentType().toCompound(fContext, operandType.rows(), 1); SpvId bvecType = this->getType(fContext.fTypes.fBool->toCompound(fContext, operandType.rows(), 1)); SpvId boolType = this->getType(*fContext.fTypes.fBool); SpvId result = 0; for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->writeOpCompositeExtract(columnType, lhs, i, out); SpvId columnR = this->writeOpCompositeExtract(columnType, rhs, i, out); SpvId compare = this->nextId(&operandType); this->writeInstruction(compareOp, bvecType, compare, columnL, columnR, out); SpvId merge = this->nextId(nullptr); this->writeInstruction(vectorMergeOperator, boolType, merge, compare, out); if (result != 0) { SpvId next = this->nextId(nullptr); this->writeInstruction(mergeOperator, boolType, next, result, merge, out); result = next; } else { result = merge; } } return result; } SpvId SPIRVCodeGenerator::writeComponentwiseMatrixUnary(const Type& operandType, SpvId operand, SpvOp_ op, OutputStream& out) { SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.componentType().toCompound(fContext, /*columns=*/operandType.rows(), /*rows=*/1); SpvId columnTypeId = this->getType(columnType); SkSTArray<4, SpvId> columns; for (int i = 0; i < operandType.columns(); i++) { SpvId srcColumn = this->writeOpCompositeExtract(columnType, operand, i, out); SpvId dstColumn = this->nextId(&operandType); this->writeInstruction(op, columnTypeId, dstColumn, srcColumn, out); columns.push_back(dstColumn); } return this->writeOpCompositeConstruct(operandType, columns, out); } SpvId SPIRVCodeGenerator::writeComponentwiseMatrixBinary(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ op, OutputStream& out) { SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.componentType().toCompound(fContext, /*columns=*/operandType.rows(), /*rows=*/1); SpvId columnTypeId = this->getType(columnType); SkSTArray<4, SpvId> columns; for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->writeOpCompositeExtract(columnType, lhs, i, out); SpvId columnR = this->writeOpCompositeExtract(columnType, rhs, i, out); columns.push_back(this->nextId(&operandType)); this->writeInstruction(op, columnTypeId, columns[i], columnL, columnR, out); } return this->writeOpCompositeConstruct(operandType, columns, out); } SpvId SPIRVCodeGenerator::writeReciprocal(const Type& type, SpvId value, OutputStream& out) { SkASSERT(type.isFloat()); SpvId one = this->writeLiteral(1.0, type); SpvId reciprocal = this->nextId(&type); this->writeInstruction(SpvOpFDiv, this->getType(type), reciprocal, one, value, out); return reciprocal; } SpvId SPIRVCodeGenerator::writeScalarToMatrixSplat(const Type& matrixType, SpvId scalarId, OutputStream& out) { // Splat the scalar into a vector. const Type& vectorType = matrixType.componentType().toCompound(fContext, /*columns=*/matrixType.rows(), /*rows=*/1); SkSTArray<4, SpvId> vecArguments; vecArguments.push_back_n(/*n=*/matrixType.rows(), /*t=*/scalarId); SpvId vectorId = this->writeOpCompositeConstruct(vectorType, vecArguments, out); // Splat the vector into a matrix. SkSTArray<4, SpvId> matArguments; matArguments.push_back_n(/*n=*/matrixType.columns(), /*t=*/vectorId); return this->writeOpCompositeConstruct(matrixType, matArguments, out); } static bool types_match(const Type& a, const Type& b) { if (a.matches(b)) { return true; } return (a.typeKind() == b.typeKind()) && (a.isScalar() || a.isVector() || a.isMatrix()) && (a.columns() == b.columns() && a.rows() == b.rows()) && a.componentType().numberKind() == b.componentType().numberKind(); } SpvId SPIRVCodeGenerator::writeBinaryExpression(const Type& leftType, SpvId lhs, Operator op, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out) { // The comma operator ignores the type of the left-hand side entirely. if (op.kind() == Operator::Kind::COMMA) { return rhs; } // overall type we are operating on: float2, int, uint4... const Type* operandType; if (types_match(leftType, rightType)) { operandType = &leftType; } else { // IR allows mismatched types in expressions (e.g. float2 * float), but they need special // handling in SPIR-V if (leftType.isVector() && rightType.isNumber()) { if (resultType.componentType().isFloat()) { switch (op.kind()) { case Operator::Kind::SLASH: { rhs = this->writeReciprocal(rightType, rhs, out); [[fallthrough]]; } case Operator::Kind::STAR: { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, lhs, rhs, out); return result; } default: break; } } // Vectorize the right-hand side. SkSTArray<4, SpvId> arguments; arguments.push_back_n(/*n=*/leftType.columns(), /*t=*/rhs); rhs = this->writeOpCompositeConstruct(leftType, arguments, out); operandType = &leftType; } else if (rightType.isVector() && leftType.isNumber()) { if (resultType.componentType().isFloat()) { if (op.kind() == Operator::Kind::STAR) { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, rhs, lhs, out); return result; } } // Vectorize the left-hand side. SkSTArray<4, SpvId> arguments; arguments.push_back_n(/*n=*/rightType.columns(), /*t=*/lhs); lhs = this->writeOpCompositeConstruct(rightType, arguments, out); operandType = &rightType; } else if (leftType.isMatrix()) { if (op.kind() == Operator::Kind::STAR) { // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvOp_ spvop; if (rightType.isMatrix()) { spvop = SpvOpMatrixTimesMatrix; } else if (rightType.isVector()) { spvop = SpvOpMatrixTimesVector; } else { SkASSERT(rightType.isScalar()); spvop = SpvOpMatrixTimesScalar; } SpvId result = this->nextId(&resultType); this->writeInstruction(spvop, this->getType(resultType), result, lhs, rhs, out); return result; } else { // Matrix-op-vector is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(rightType.isScalar()); // Splat rhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId rhsMatrix = this->writeScalarToMatrixSplat(leftType, rhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(leftType, lhs, op, leftType, rhsMatrix, resultType, out); } } else if (rightType.isMatrix()) { if (op.kind() == Operator::Kind::STAR) { // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvId result = this->nextId(&resultType); if (leftType.isVector()) { this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(resultType), result, lhs, rhs, out); } else { SkASSERT(leftType.isScalar()); this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(resultType), result, rhs, lhs, out); } return result; } else { // Vector-op-matrix is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(leftType.isScalar()); // Splat lhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId lhsMatrix = this->writeScalarToMatrixSplat(rightType, lhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(rightType, lhsMatrix, op, rightType, rhs, resultType, out); } } else { fContext.fErrors->error(leftType.fPosition, "unsupported mixed-type expression"); return NA; } } switch (op.kind()) { case Operator::Kind::EQEQ: { if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpAll, SpvOpLogicalAnd, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } if (lhs == rhs) { // This ignores the effects of NaN. return this->writeOpConstantTrue(*fContext.fTypes.fBool); } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual, out), *operandType, SpvOpAll, out); } case Operator::Kind::NEQ: if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpAny, SpvOpLogicalOr, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } [[fallthrough]]; case Operator::Kind::LOGICALXOR: SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } if (lhs == rhs) { // This ignores the effects of NaN. return this->writeOpConstantFalse(*fContext.fTypes.fBool); } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual, out), *operandType, SpvOpAny, out); case Operator::Kind::GT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef, out); case Operator::Kind::LT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out); case Operator::Kind::GTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef, out); case Operator::Kind::LTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef, out); case Operator::Kind::PLUS: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType.matches(rightType)); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFAdd, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); case Operator::Kind::MINUS: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType.matches(rightType)); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFSub, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); case Operator::Kind::STAR: if (leftType.isMatrix() && rightType.isMatrix()) { // matrix multiply SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result, lhs, rhs, out); return result; } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul, SpvOpIMul, SpvOpIMul, SpvOpUndef, out); case Operator::Kind::SLASH: if (leftType.isMatrix() && rightType.isMatrix()) { SkASSERT(leftType.matches(rightType)); return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs, SpvOpFDiv, out); } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv, SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out); case Operator::Kind::PERCENT: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef, out); case Operator::Kind::SHL: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftLeftLogical, SpvOpShiftLeftLogical, SpvOpUndef, out); case Operator::Kind::SHR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftRightArithmetic, SpvOpShiftRightLogical, SpvOpUndef, out); case Operator::Kind::BITWISEAND: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseAnd, SpvOpBitwiseAnd, SpvOpUndef, out); case Operator::Kind::BITWISEOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseOr, SpvOpBitwiseOr, SpvOpUndef, out); case Operator::Kind::BITWISEXOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseXor, SpvOpBitwiseXor, SpvOpUndef, out); default: fContext.fErrors->error(Position(), "unsupported token"); return NA; } } SpvId SPIRVCodeGenerator::writeArrayComparison(const Type& arrayType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be arrays, and the op must be == or !=. SkASSERT(op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ); SkASSERT(arrayType.isArray()); const Type& componentType = arrayType.componentType(); const int arraySize = arrayType.columns(); SkASSERT(arraySize > 0); // Synthesize equality checks for each item in the array. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = NA; for (int index = 0; index < arraySize; ++index) { // Get the left and right item in the array. SpvId itemL = this->writeOpCompositeExtract(componentType, lhs, index, out); SpvId itemR = this->writeOpCompositeExtract(componentType, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these items. SpvId comparison = this->writeBinaryExpression(componentType, itemL, op, componentType, itemR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::writeStructComparison(const Type& structType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be structs containing fields, and the op must be == or !=. SkASSERT(op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ); SkASSERT(structType.isStruct()); const std::vector& fields = structType.fields(); SkASSERT(!fields.empty()); // Synthesize equality checks for each field in the struct. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = NA; for (int index = 0; index < (int)fields.size(); ++index) { // Get the left and right versions of this field. const Type& fieldType = *fields[index].fType; SpvId fieldL = this->writeOpCompositeExtract(fieldType, lhs, index, out); SpvId fieldR = this->writeOpCompositeExtract(fieldType, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these fields. SpvId comparison = this->writeBinaryExpression(fieldType, fieldL, op, fieldType, fieldR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::mergeComparisons(SpvId comparison, SpvId allComparisons, Operator op, OutputStream& out) { // If this is the first entry, we don't need to merge comparison results with anything. if (allComparisons == NA) { return comparison; } // Use LogicalAnd or LogicalOr to combine the comparison with all the other comparisons. const Type& boolType = *fContext.fTypes.fBool; SpvId boolTypeId = this->getType(boolType); SpvId logicalOp = this->nextId(&boolType); switch (op.kind()) { case Operator::Kind::EQEQ: this->writeInstruction(SpvOpLogicalAnd, boolTypeId, logicalOp, comparison, allComparisons, out); break; case Operator::Kind::NEQ: this->writeInstruction(SpvOpLogicalOr, boolTypeId, logicalOp, comparison, allComparisons, out); break; default: SkDEBUGFAILF("mergeComparisons only supports == and !=, not %s", op.operatorName()); return NA; } return logicalOp; } SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, OutputStream& out) { const Expression* left = b.left().get(); const Expression* right = b.right().get(); Operator op = b.getOperator(); switch (op.kind()) { case Operator::Kind::EQ: { // Handles assignment. SpvId rhs = this->writeExpression(*right, out); this->getLValue(*left, out)->store(rhs, out); return rhs; } case Operator::Kind::LOGICALAND: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalAnd(*b.left(), *b.right(), out); case Operator::Kind::LOGICALOR: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalOr(*b.left(), *b.right(), out); default: break; } std::unique_ptr lvalue; SpvId lhs; if (op.isAssignment()) { lvalue = this->getLValue(*left, out); lhs = lvalue->load(out); } else { lvalue = nullptr; lhs = this->writeExpression(*left, out); } SpvId rhs = this->writeExpression(*right, out); SpvId result = this->writeBinaryExpression(left->type(), lhs, op.removeAssignment(), right->type(), rhs, b.type(), out); if (lvalue) { lvalue->store(result, out); } return result; } SpvId SPIRVCodeGenerator::writeLogicalAnd(const Expression& left, const Expression& right, OutputStream& out) { SpvId falseConstant = this->writeLiteral(0.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out); this->writeLabel(rhsLabel, kBranchIsOnPreviousLine, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, falseConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeLogicalOr(const Expression& left, const Expression& right, OutputStream& out) { SpvId trueConstant = this->writeLiteral(1.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out); this->writeLabel(rhsLabel, kBranchIsOnPreviousLine, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, trueConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, OutputStream& out) { const Type& type = t.type(); SpvId test = this->writeExpression(*t.test(), out); if (t.ifTrue()->type().columns() == 1 && Analysis::IsCompileTimeConstant(*t.ifTrue()) && Analysis::IsCompileTimeConstant(*t.ifFalse())) { // both true and false are constants, can just use OpSelect SpvId result = this->nextId(nullptr); SpvId trueId = this->writeExpression(*t.ifTrue(), out); SpvId falseId = this->writeExpression(*t.ifFalse(), out); this->writeInstruction(SpvOpSelect, this->getType(type), result, test, trueId, falseId, out); return result; } ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // was originally using OpPhi to choose the result, but for some reason that is crashing on // Adreno. Switched to storing the result in a temp variable as glslang does. SpvId var = this->nextId(nullptr); this->writeInstruction(SpvOpVariable, this->getPointerType(type, SpvStorageClassFunction), var, SpvStorageClassFunction, fVariableBuffer); SpvId trueLabel = this->nextId(nullptr); SpvId falseLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out); this->writeLabel(trueLabel, kBranchIsOnPreviousLine, out); this->writeOpStore(SpvStorageClassFunction, var, this->writeExpression(*t.ifTrue(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(falseLabel, kBranchIsAbove, conditionalOps, out); this->writeOpStore(SpvStorageClassFunction, var, this->writeExpression(*t.ifFalse(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(&type); this->writeInstruction(SpvOpLoad, this->getType(type), result, var, out); return result; } SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, OutputStream& out) { const Type& type = p.type(); if (p.getOperator().kind() == Operator::Kind::MINUS) { SpvOp_ negateOp = pick_by_type(type, SpvOpFNegate, SpvOpSNegate, SpvOpSNegate, SpvOpUndef); SkASSERT(negateOp != SpvOpUndef); SpvId expr = this->writeExpression(*p.operand(), out); if (type.isMatrix()) { return this->writeComponentwiseMatrixUnary(type, expr, negateOp, out); } SpvId result = this->nextId(&type); SpvId typeId = this->getType(type); this->writeInstruction(negateOp, typeId, result, expr, out); return result; } switch (p.getOperator().kind()) { case Operator::Kind::PLUS: return this->writeExpression(*p.operand(), out); case Operator::Kind::PLUSPLUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type); SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(result, out); return result; } case Operator::Kind::MINUSMINUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type); SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(result, out); return result; } case Operator::Kind::LOGICALNOT: { SkASSERT(p.operand()->type().isBoolean()); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpLogicalNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } case Operator::Kind::BITWISENOT: { SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } default: SkDEBUGFAILF("unsupported prefix expression: %s", p.description(OperatorPrecedence::kTopLevel).c_str()); return NA; } } SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, OutputStream& out) { const Type& type = p.type(); std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId result = lv->load(out); SpvId one = this->writeLiteral(1.0, type); switch (p.getOperator().kind()) { case Operator::Kind::PLUSPLUS: { SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(temp, out); return result; } case Operator::Kind::MINUSMINUS: { SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(temp, out); return result; } default: SkDEBUGFAILF("unsupported postfix expression %s", p.description(OperatorPrecedence::kTopLevel).c_str()); return NA; } } SpvId SPIRVCodeGenerator::writeLiteral(const Literal& l) { return this->writeLiteral(l.value(), l.type()); } SpvId SPIRVCodeGenerator::writeLiteral(double value, const Type& type) { switch (type.numberKind()) { case Type::NumberKind::kFloat: { float floatVal = value; int32_t valueBits; memcpy(&valueBits, &floatVal, sizeof(valueBits)); return this->writeOpConstant(type, valueBits); } case Type::NumberKind::kBoolean: { return value ? this->writeOpConstantTrue(type) : this->writeOpConstantFalse(type); } default: { return this->writeOpConstant(type, (SKSL_INT)value); } } } SpvId SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, OutputStream& out) { SpvId result = fFunctionMap[&f]; SpvId returnTypeId = this->getType(f.returnType()); SpvId functionTypeId = this->getFunctionType(f); this->writeInstruction(SpvOpFunction, returnTypeId, result, SpvFunctionControlMaskNone, functionTypeId, out); std::string mangledName = f.mangledName(); this->writeInstruction(SpvOpName, result, std::string_view(mangledName.c_str(), mangledName.size()), fNameBuffer); for (const Variable* parameter : f.parameters()) { if (parameter->type().typeKind() == Type::TypeKind::kSampler && fProgram.fConfig->fSettings.fSPIRVDawnCompatMode) { auto [texture, sampler] = this->synthesizeTextureAndSampler(*parameter); SpvId textureId = this->nextId(nullptr); SpvId samplerId = this->nextId(nullptr); fVariableMap.set(texture, textureId); fVariableMap.set(sampler, samplerId); SpvId textureType = this->getFunctionParameterType(texture->type()); SpvId samplerType = this->getFunctionParameterType(sampler->type()); this->writeInstruction(SpvOpFunctionParameter, textureType, textureId, out); this->writeInstruction(SpvOpFunctionParameter, samplerType, samplerId, out); } else { SpvId id = this->nextId(nullptr); fVariableMap.set(parameter, id); SpvId type = this->getFunctionParameterType(parameter->type()); this->writeInstruction(SpvOpFunctionParameter, type, id, out); } } return result; } SpvId SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, OutputStream& out) { ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); fVariableBuffer.reset(); SpvId result = this->writeFunctionStart(f.declaration(), out); fCurrentBlock = 0; this->writeLabel(this->nextId(nullptr), kBranchlessBlock, out); StringStream bodyBuffer; this->writeBlock(f.body()->as(), bodyBuffer); write_stringstream(fVariableBuffer, out); if (f.declaration().isMain()) { write_stringstream(fGlobalInitializersBuffer, out); } write_stringstream(bodyBuffer, out); if (fCurrentBlock) { if (f.declaration().returnType().isVoid()) { this->writeInstruction(SpvOpReturn, out); } else { this->writeInstruction(SpvOpUnreachable, out); } } this->writeInstruction(SpvOpFunctionEnd, out); this->pruneConditionalOps(conditionalOps); return result; } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, Position pos) { bool isPushConstant = (layout.fFlags & Layout::kPushConstant_Flag); if (layout.fLocation >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { if (isPushConstant) { fContext.fErrors->error(pos, "Can't apply 'binding' to push constants"); } else { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { if (isPushConstant) { fContext.fErrors->error(pos, "Can't apply 'set' to push constants"); } else { this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); fCapabilities |= (((uint64_t) 1) << SpvCapabilityInputAttachment); } if (layout.fBuiltin >= 0 && layout.fBuiltin != SK_FRAGCOLOR_BUILTIN) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } void SPIRVCodeGenerator::writeFieldLayout(const Layout& layout, SpvId target, int member) { // 'binding' and 'set' can not be applied to struct members SkASSERT(layout.fBinding == -1); SkASSERT(layout.fSet == -1); if (layout.fLocation >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, member, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); } if (layout.fBuiltin >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } MemoryLayout SPIRVCodeGenerator::memoryLayoutForStorageClass(SpvStorageClass_ storageClass) { return storageClass == SpvStorageClassPushConstant ? MemoryLayout(MemoryLayout::Standard::k430) : fDefaultLayout; } MemoryLayout SPIRVCodeGenerator::memoryLayoutForVariable(const Variable& v) const { bool pushConstant = ((v.modifiers().fLayout.fFlags & Layout::kPushConstant_Flag) != 0); return pushConstant ? MemoryLayout(MemoryLayout::Standard::k430) : fDefaultLayout; } SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf, bool appendRTFlip) { MemoryLayout memoryLayout = this->memoryLayoutForVariable(*intf.var()); SpvId result = this->nextId(nullptr); const Variable& intfVar = *intf.var(); const Type& type = intfVar.type(); if (!memoryLayout.isSupported(type)) { fContext.fErrors->error(type.fPosition, "type '" + type.displayName() + "' is not permitted here"); return this->nextId(nullptr); } SpvStorageClass_ storageClass = get_storage_class_for_global_variable(intfVar, SpvStorageClassFunction); if (fProgram.fInputs.fUseFlipRTUniform && appendRTFlip && type.isStruct()) { // We can only have one interface block (because we use push_constant and that is limited // to one per program), so we need to append rtflip to this one rather than synthesize an // entirely new block when the variable is referenced. And we can't modify the existing // block, so we instead create a modified copy of it and write that. std::vector fields = type.fields(); fields.emplace_back(Position(), Modifiers(Layout(/*flags=*/0, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), /*flags=*/0), SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); { AutoAttachPoolToThread attach(fProgram.fPool.get()); const Type* rtFlipStructType = fProgram.fSymbols->takeOwnershipOfSymbol( Type::MakeStructType(fContext, type.fPosition, type.name(), std::move(fields), /*interfaceBlock=*/true)); InterfaceBlockVariable* modifiedVar = fProgram.fSymbols->takeOwnershipOfSymbol( std::make_unique(intfVar.fPosition, intfVar.modifiersPosition(), &intfVar.modifiers(), intfVar.name(), rtFlipStructType, intfVar.isBuiltin(), intfVar.storage())); fSPIRVBonusVariables.add(modifiedVar); InterfaceBlock modifiedCopy(intf.fPosition, modifiedVar, intf.typeOwner()); result = this->writeInterfaceBlock(modifiedCopy, /*appendRTFlip=*/false); fProgram.fSymbols->add(std::make_unique( Position(), modifiedVar, rtFlipStructType->fields().size() - 1)); } fVariableMap.set(&intfVar, result); fWroteRTFlip = true; return result; } const Modifiers& intfModifiers = intfVar.modifiers(); SpvId typeId = this->getType(type, memoryLayout); if (intfModifiers.fLayout.fBuiltin == -1) { this->writeInstruction(SpvOpDecorate, typeId, SpvDecorationBlock, fDecorationBuffer); } SpvId ptrType = this->nextId(nullptr); this->writeInstruction(SpvOpTypePointer, ptrType, storageClass, typeId, fConstantBuffer); this->writeInstruction(SpvOpVariable, ptrType, result, storageClass, fConstantBuffer); Layout layout = intfModifiers.fLayout; if (storageClass == SpvStorageClassUniform && layout.fSet < 0) { layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; } this->writeLayout(layout, result, intfVar.fPosition); fVariableMap.set(&intfVar, result); return result; } bool SPIRVCodeGenerator::isDead(const Variable& var) const { // During SPIR-V code generation, we synthesize some extra bonus variables that don't actually // exist in the Program at all and aren't tracked by the ProgramUsage. They aren't dead, though. if (fSPIRVBonusVariables.contains(&var)) { return false; } ProgramUsage::VariableCounts counts = fProgram.usage()->get(var); if (counts.fRead || counts.fWrite) { return false; } // It's not entirely clear what the rules are for eliding interface variables. Generally, it // causes problems to elide them, even when they're dead. return !(var.modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag)); } // This function determines whether to skip an OpVariable (of pointer type) declaration for // compile-time constant scalars and vectors which we turn into OpConstant/OpConstantComposite and // always reference by value. // // Accessing a matrix or array member with a dynamic index requires the use of OpAccessChain which // requires a base operand of pointer type. However, a vector can always be accessed by value using // OpVectorExtractDynamic (see writeIndexExpression). // // This is why we always emit an OpVariable for all non-scalar and non-vector types in case they get // accessed via a dynamic index. static bool is_vardecl_compile_time_constant(const VarDeclaration& varDecl) { return varDecl.var()->modifiers().fFlags & Modifiers::kConst_Flag && (varDecl.var()->type().isScalar() || varDecl.var()->type().isVector()) && (ConstantFolder::GetConstantValueOrNullForVariable(*varDecl.value()) || Analysis::IsCompileTimeConstant(*varDecl.value())); } bool SPIRVCodeGenerator::writeGlobalVarDeclaration(ProgramKind kind, const VarDeclaration& varDecl) { const Variable* var = varDecl.var(); const bool inDawnMode = fProgram.fConfig->fSettings.fSPIRVDawnCompatMode; const int backendFlags = var->modifiers().fLayout.fFlags & Layout::kAllBackendFlagsMask; const int permittedBackendFlags = Layout::kSPIRV_Flag | (inDawnMode ? Layout::kWGSL_Flag : 0); if (backendFlags & ~permittedBackendFlags) { fContext.fErrors->error(var->fPosition, "incompatible backend flag in SPIR-V codegen"); return false; } // If this global variable is a compile-time constant then we'll emit OpConstant or // OpConstantComposite later when the variable is referenced. Avoid declaring an OpVariable now. if (is_vardecl_compile_time_constant(varDecl)) { return true; } SpvStorageClass_ storageClass = get_storage_class_for_global_variable(*var, SpvStorageClassPrivate); if (storageClass == SpvStorageClassUniform) { // Top-level uniforms are emitted in writeUniformBuffer. fTopLevelUniforms.push_back(&varDecl); return true; } if (this->isDead(*var)) { return true; } if (var->type().typeKind() == Type::TypeKind::kSampler && inDawnMode) { if (var->modifiers().fLayout.fTexture == -1 || var->modifiers().fLayout.fSampler == -1 || !(var->modifiers().fLayout.fFlags & Layout::kWGSL_Flag)) { fContext.fErrors->error(var->fPosition, "SPIR-V dawn compatibility mode requires an explicit texture " "and sampler index"); return false; } SkASSERT(storageClass == SpvStorageClassUniformConstant); auto [texture, sampler] = this->synthesizeTextureAndSampler(*var); this->writeGlobalVar(kind, storageClass, *texture); this->writeGlobalVar(kind, storageClass, *sampler); return true; } SpvId id = this->writeGlobalVar(kind, storageClass, *var); if (id != NA && varDecl.value()) { SkASSERT(!fCurrentBlock); fCurrentBlock = NA; SpvId value = this->writeExpression(*varDecl.value(), fGlobalInitializersBuffer); this->writeOpStore(storageClass, id, value, fGlobalInitializersBuffer); fCurrentBlock = 0; } return true; } SpvId SPIRVCodeGenerator::writeGlobalVar(ProgramKind kind, SpvStorageClass_ storageClass, const Variable& var) { if (var.modifiers().fLayout.fBuiltin == SK_FRAGCOLOR_BUILTIN && !ProgramConfig::IsFragment(kind)) { SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); return NA; } // Add this global to the variable map. const Type& type = var.type(); SpvId id = this->nextId(&type); fVariableMap.set(&var, id); Layout layout = var.modifiers().fLayout; if (layout.fSet < 0 && storageClass == SpvStorageClassUniformConstant) { layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; } SpvId typeId = this->getPointerType(type, storageClass); this->writeInstruction(SpvOpVariable, typeId, id, storageClass, fConstantBuffer); this->writeInstruction(SpvOpName, id, var.name(), fNameBuffer); this->writeLayout(layout, id, var.fPosition); if (var.modifiers().fFlags & Modifiers::kFlat_Flag) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationFlat, fDecorationBuffer); } if (var.modifiers().fFlags & Modifiers::kNoPerspective_Flag) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationNoPerspective, fDecorationBuffer); } return id; } void SPIRVCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl, OutputStream& out) { // If this variable is a compile-time constant then we'll emit OpConstant or // OpConstantComposite later when the variable is referenced. Avoid declaring an OpVariable now. if (is_vardecl_compile_time_constant(varDecl)) { return; } const Variable* var = varDecl.var(); SpvId id = this->nextId(&var->type()); fVariableMap.set(var, id); SpvId type = this->getPointerType(var->type(), SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpName, id, var->name(), fNameBuffer); if (varDecl.value()) { SpvId value = this->writeExpression(*varDecl.value(), out); this->writeOpStore(SpvStorageClassFunction, id, value, out); } } void SPIRVCodeGenerator::writeStatement(const Statement& s, OutputStream& out) { switch (s.kind()) { case Statement::Kind::kNop: break; case Statement::Kind::kBlock: this->writeBlock(s.as(), out); break; case Statement::Kind::kExpression: this->writeExpression(*s.as().expression(), out); break; case Statement::Kind::kReturn: this->writeReturnStatement(s.as(), out); break; case Statement::Kind::kVarDeclaration: this->writeVarDeclaration(s.as(), out); break; case Statement::Kind::kIf: this->writeIfStatement(s.as(), out); break; case Statement::Kind::kFor: this->writeForStatement(s.as(), out); break; case Statement::Kind::kDo: this->writeDoStatement(s.as(), out); break; case Statement::Kind::kSwitch: this->writeSwitchStatement(s.as(), out); break; case Statement::Kind::kBreak: this->writeInstruction(SpvOpBranch, fBreakTarget.back(), out); break; case Statement::Kind::kContinue: this->writeInstruction(SpvOpBranch, fContinueTarget.back(), out); break; case Statement::Kind::kDiscard: this->writeInstruction(SpvOpKill, out); break; default: SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); break; } } void SPIRVCodeGenerator::writeBlock(const Block& b, OutputStream& out) { for (const std::unique_ptr& stmt : b.children()) { this->writeStatement(*stmt, out); } } SPIRVCodeGenerator::ConditionalOpCounts SPIRVCodeGenerator::getConditionalOpCounts() { return {fReachableOps.size(), fStoreOps.size()}; } void SPIRVCodeGenerator::pruneConditionalOps(ConditionalOpCounts ops) { // Remove ops which are no longer reachable. while (fReachableOps.size() > ops.numReachableOps) { SpvId prunableSpvId = fReachableOps.back(); const Instruction* prunableOp = fSpvIdCache.find(prunableSpvId); if (prunableOp) { fOpCache.remove(*prunableOp); fSpvIdCache.remove(prunableSpvId); } else { SkDEBUGFAIL("reachable-op list contains unrecognized SpvId"); } fReachableOps.pop_back(); } // Remove any cached stores that occurred during the conditional block. while (fStoreOps.size() > ops.numStoreOps) { if (fStoreCache.find(fStoreOps.back())) { fStoreCache.remove(fStoreOps.back()); } fStoreOps.pop_back(); } } void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, OutputStream& out) { SpvId test = this->writeExpression(*stmt.test(), out); SpvId ifTrue = this->nextId(nullptr); SpvId ifFalse = this->nextId(nullptr); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); if (stmt.ifFalse()) { SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, kBranchIsOnPreviousLine, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(ifFalse, kBranchIsAbove, conditionalOps, out); this->writeStatement(*stmt.ifFalse(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(end, kBranchIsAbove, conditionalOps, out); } else { this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, kBranchIsOnPreviousLine, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, ifFalse, out); } this->writeLabel(ifFalse, kBranchIsAbove, conditionalOps, out); } } void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, OutputStream& out) { if (f.initializer()) { this->writeStatement(*f.initializer(), out); } ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the loop body, but for now we // simply clear the entire cache whenever branching occurs. SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId body = this->nextId(nullptr); SpvId next = this->nextId(nullptr); fContinueTarget.push_back(next); SpvId end = this->nextId(nullptr); fBreakTarget.push_back(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, kBranchIsBelow, conditionalOps, out); this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, kBranchIsOnPreviousLine, out); if (f.test()) { SpvId test = this->writeExpression(*f.test(), out); this->writeInstruction(SpvOpBranchConditional, test, body, end, out); } else { this->writeInstruction(SpvOpBranch, body, out); } this->writeLabel(body, kBranchIsOnPreviousLine, out); this->writeStatement(*f.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); } this->writeLabel(next, kBranchIsAbove, conditionalOps, out); if (f.next()) { this->writeExpression(*f.next(), out); } this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); fContinueTarget.pop_back(); } void SPIRVCodeGenerator::writeDoStatement(const DoStatement& d, OutputStream& out) { ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the loop body, but for now we // simply clear the entire cache whenever branching occurs. SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId next = this->nextId(nullptr); SpvId continueTarget = this->nextId(nullptr); fContinueTarget.push_back(continueTarget); SpvId end = this->nextId(nullptr); fBreakTarget.push_back(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, kBranchIsBelow, conditionalOps, out); this->writeInstruction(SpvOpLoopMerge, end, continueTarget, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, kBranchIsOnPreviousLine, out); this->writeStatement(*d.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); this->writeLabel(next, kBranchIsOnPreviousLine, out); this->writeInstruction(SpvOpBranch, continueTarget, out); } this->writeLabel(continueTarget, kBranchIsAbove, conditionalOps, out); SpvId test = this->writeExpression(*d.test(), out); this->writeInstruction(SpvOpBranchConditional, test, header, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); fContinueTarget.pop_back(); } void SPIRVCodeGenerator::writeSwitchStatement(const SwitchStatement& s, OutputStream& out) { SpvId value = this->writeExpression(*s.value(), out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the switch body, but for now we // simply clear the entire cache whenever branching occurs. SkTArray labels; SpvId end = this->nextId(nullptr); SpvId defaultLabel = end; fBreakTarget.push_back(end); int size = 3; const StatementArray& cases = s.cases(); for (const std::unique_ptr& stmt : cases) { const SwitchCase& c = stmt->as(); SpvId label = this->nextId(nullptr); labels.push_back(label); if (!c.isDefault()) { size += 2; } else { defaultLabel = label; } } // We should have exactly one label for each case. SkASSERT(labels.size() == cases.size()); // Collapse adjacent switch-cases into one; that is, reduce `case 1: case 2: case 3:` into a // single OpLabel. The Tint SPIR-V reader does not support switch-case fallthrough, but it // does support multiple switch-cases branching to the same label. SkBitSet caseIsCollapsed(cases.size()); for (int index = cases.size() - 2; index >= 0; index--) { if (cases[index]->as().statement()->isEmpty()) { caseIsCollapsed.set(index); labels[index] = labels[index + 1]; } } labels.push_back(end); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeOpCode(SpvOpSwitch, size, out); this->writeWord(value, out); this->writeWord(defaultLabel, out); for (int i = 0; i < cases.size(); ++i) { const SwitchCase& c = cases[i]->as(); if (c.isDefault()) { continue; } this->writeWord(c.value(), out); this->writeWord(labels[i], out); } for (int i = 0; i < cases.size(); ++i) { if (caseIsCollapsed.test(i)) { continue; } const SwitchCase& c = cases[i]->as(); if (i == 0) { this->writeLabel(labels[i], kBranchIsOnPreviousLine, out); } else { this->writeLabel(labels[i], kBranchIsAbove, conditionalOps, out); } this->writeStatement(*c.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, labels[i + 1], out); } } this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); } void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, OutputStream& out) { if (r.expression()) { this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.expression(), out), out); } else { this->writeInstruction(SpvOpReturn, out); } } // Given any function, returns the top-level symbol table (OUTSIDE of the function's scope). static std::shared_ptr get_top_level_symbol_table(const FunctionDeclaration& anyFunc) { return anyFunc.definition()->body()->as().symbolTable()->fParent; } SPIRVCodeGenerator::EntrypointAdapter SPIRVCodeGenerator::writeEntrypointAdapter( const FunctionDeclaration& main) { // Our goal is to synthesize a tiny helper function which looks like this: // void _entrypoint() { sk_FragColor = main(); } // Fish a symbol table out of main(). std::shared_ptr symbolTable = get_top_level_symbol_table(main); // Get `sk_FragColor` as a writable reference. const Symbol* skFragColorSymbol = symbolTable->find("sk_FragColor"); SkASSERT(skFragColorSymbol); const Variable& skFragColorVar = skFragColorSymbol->as(); auto skFragColorRef = std::make_unique(Position(), &skFragColorVar, VariableReference::RefKind::kWrite); // Synthesize a call to the `main()` function. if (!main.returnType().matches(skFragColorRef->type())) { fContext.fErrors->error(main.fPosition, "SPIR-V does not support returning '" + main.returnType().description() + "' from main()"); return {}; } ExpressionArray args; if (main.parameters().size() == 1) { if (!main.parameters()[0]->type().matches(*fContext.fTypes.fFloat2)) { fContext.fErrors->error(main.fPosition, "SPIR-V does not support parameter of type '" + main.parameters()[0]->type().description() + "' to main()"); return {}; } args.push_back(dsl::Float2(0).release()); } auto callMainFn = std::make_unique(Position(), &main.returnType(), &main, std::move(args)); // Synthesize `skFragColor = main()` as a BinaryExpression. auto assignmentStmt = std::make_unique(std::make_unique( Position(), std::move(skFragColorRef), Operator::Kind::EQ, std::move(callMainFn), &main.returnType())); // Function bodies are always wrapped in a Block. StatementArray entrypointStmts; entrypointStmts.push_back(std::move(assignmentStmt)); auto entrypointBlock = Block::Make(Position(), std::move(entrypointStmts), Block::Kind::kBracedScope, symbolTable); // Declare an entrypoint function. EntrypointAdapter adapter; adapter.fLayout = {}; adapter.fModifiers = Modifiers{adapter.fLayout, Modifiers::kNo_Flag}; adapter.entrypointDecl = std::make_unique(Position(), &adapter.fModifiers, "_entrypoint", /*parameters=*/std::vector{}, /*returnType=*/fContext.fTypes.fVoid.get(), /*builtin=*/false); // Define it. adapter.entrypointDef = FunctionDefinition::Convert(fContext, Position(), *adapter.entrypointDecl, std::move(entrypointBlock), /*builtin=*/false); adapter.entrypointDecl->setDefinition(adapter.entrypointDef.get()); return adapter; } void SPIRVCodeGenerator::writeUniformBuffer(std::shared_ptr topLevelSymbolTable) { SkASSERT(!fTopLevelUniforms.empty()); static constexpr char kUniformBufferName[] = "_UniformBuffer"; // Convert the list of top-level uniforms into a matching struct named _UniformBuffer, and build // a lookup table of variables to UniformBuffer field indices. std::vector fields; fields.reserve(fTopLevelUniforms.size()); for (const VarDeclaration* topLevelUniform : fTopLevelUniforms) { const Variable* var = topLevelUniform->var(); fTopLevelUniformMap.set(var, (int)fields.size()); Modifiers modifiers = var->modifiers(); modifiers.fFlags &= ~Modifiers::kUniform_Flag; fields.emplace_back(var->fPosition, modifiers, var->name(), &var->type()); } fUniformBuffer.fStruct = Type::MakeStructType(fContext, Position(), kUniformBufferName, std::move(fields), /*interfaceBlock=*/true); // Create a global variable to contain this struct. Layout layout; layout.fBinding = fProgram.fConfig->fSettings.fDefaultUniformBinding; layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; Modifiers modifiers{layout, Modifiers::kUniform_Flag}; fUniformBuffer.fInnerVariable = std::make_unique( /*pos=*/Position(), /*modifiersPosition=*/Position(), fContext.fModifiersPool->add(modifiers), kUniformBufferName, fUniformBuffer.fStruct.get(), /*builtin=*/false, Variable::Storage::kGlobal); // Create an interface block object for this global variable. fUniformBuffer.fInterfaceBlock = std::make_unique(Position(), fUniformBuffer.fInnerVariable.get(), topLevelSymbolTable); // Generate an interface block and hold onto its ID. fUniformBufferId = this->writeInterfaceBlock(*fUniformBuffer.fInterfaceBlock); } void SPIRVCodeGenerator::addRTFlipUniform(Position pos) { SkASSERT(!fProgram.fConfig->fSettings.fForceNoRTFlip); if (fWroteRTFlip) { return; } // Flip variable hasn't been written yet. This means we don't have an existing // interface block, so we're free to just synthesize one. fWroteRTFlip = true; std::vector fields; if (fProgram.fConfig->fSettings.fRTFlipOffset < 0) { fContext.fErrors->error(pos, "RTFlipOffset is negative"); } fields.emplace_back(pos, Modifiers(Layout(/*flags=*/0, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), /*flags=*/0), SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); std::string_view name = "sksl_synthetic_uniforms"; const Type* intfStruct = fSynthetics.takeOwnershipOfSymbol( Type::MakeStructType(fContext, Position(), name, fields, /*interfaceBlock=*/true)); bool usePushConstants = fProgram.fConfig->fSettings.fUsePushConstants; int binding = -1, set = -1; if (!usePushConstants) { binding = fProgram.fConfig->fSettings.fRTFlipBinding; if (binding == -1) { fContext.fErrors->error(pos, "layout(binding=...) is required in SPIR-V"); } set = fProgram.fConfig->fSettings.fRTFlipSet; if (set == -1) { fContext.fErrors->error(pos, "layout(set=...) is required in SPIR-V"); } } int flags = usePushConstants ? Layout::Flag::kPushConstant_Flag : 0; const Modifiers* modsPtr; { AutoAttachPoolToThread attach(fProgram.fPool.get()); Modifiers modifiers(Layout(flags, /*location=*/-1, /*offset=*/-1, binding, /*index=*/-1, set, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), Modifiers::kUniform_Flag); modsPtr = fContext.fModifiersPool->add(modifiers); } InterfaceBlockVariable* intfVar = fSynthetics.takeOwnershipOfSymbol( std::make_unique(/*pos=*/Position(), /*modifiersPosition=*/Position(), modsPtr, name, intfStruct, /*builtin=*/false, Variable::Storage::kGlobal)); fSPIRVBonusVariables.add(intfVar); { AutoAttachPoolToThread attach(fProgram.fPool.get()); fProgram.fSymbols->add(std::make_unique(Position(), intfVar, /*field=*/0)); } InterfaceBlock intf(Position(), intfVar, std::make_shared(/*builtin=*/false)); this->writeInterfaceBlock(intf, false); } std::tuple SPIRVCodeGenerator::synthesizeTextureAndSampler( const Variable& combinedSampler) { SkASSERT(fProgram.fConfig->fSettings.fSPIRVDawnCompatMode); SkASSERT(combinedSampler.type().typeKind() == Type::TypeKind::kSampler); const Modifiers& modifiers = combinedSampler.modifiers(); auto data = std::make_unique(); Modifiers texModifiers = modifiers; texModifiers.fLayout.fBinding = modifiers.fLayout.fTexture; data->fTextureName = std::string(combinedSampler.name()) + "_texture"; auto texture = std::make_unique(/*pos=*/Position(), /*modifierPosition=*/Position(), fContext.fModifiersPool->add(texModifiers), data->fTextureName, &combinedSampler.type().textureType(), /*builtin=*/false, Variable::Storage::kGlobal); Modifiers samplerModifiers = modifiers; samplerModifiers.fLayout.fBinding = modifiers.fLayout.fSampler; data->fSamplerName = std::string(combinedSampler.name()) + "_sampler"; auto sampler = std::make_unique(/*pos=*/Position(), /*modifierPosition=*/Position(), fContext.fModifiersPool->add(samplerModifiers), data->fSamplerName, fContext.fTypes.fSampler.get(), /*builtin=*/false, Variable::Storage::kGlobal); const Variable* t = texture.get(); const Variable* s = sampler.get(); data->fTexture = std::move(texture); data->fSampler = std::move(sampler); fSynthesizedSamplerMap.set(&combinedSampler, std::move(data)); return {t, s}; } void SPIRVCodeGenerator::writeInstructions(const Program& program, OutputStream& out) { fGLSLExtendedInstructions = this->nextId(nullptr); StringStream body; // Assign SpvIds to functions. const FunctionDeclaration* main = nullptr; for (const ProgramElement* e : program.elements()) { if (e->is()) { const FunctionDefinition& funcDef = e->as(); const FunctionDeclaration& funcDecl = funcDef.declaration(); fFunctionMap.set(&funcDecl, this->nextId(nullptr)); if (funcDecl.isMain()) { main = &funcDecl; } } } // Make sure we have a main() function. if (!main) { fContext.fErrors->error(Position(), "program does not contain a main() function"); return; } // Emit interface blocks. std::set interfaceVars; for (const ProgramElement* e : program.elements()) { if (e->is()) { const InterfaceBlock& intf = e->as(); SpvId id = this->writeInterfaceBlock(intf); const Modifiers& modifiers = intf.var()->modifiers(); if ((modifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag)) && modifiers.fLayout.fBuiltin == -1 && !this->isDead(*intf.var())) { interfaceVars.insert(id); } } } // Emit global variable declarations. for (const ProgramElement* e : program.elements()) { if (e->is()) { if (!this->writeGlobalVarDeclaration(program.fConfig->fKind, e->as().varDeclaration())) { return; } } } // Emit top-level uniforms into a dedicated uniform buffer. if (!fTopLevelUniforms.empty()) { this->writeUniformBuffer(get_top_level_symbol_table(*main)); } // If main() returns a half4, synthesize a tiny entrypoint function which invokes the real // main() and stores the result into sk_FragColor. EntrypointAdapter adapter; if (main->returnType().matches(*fContext.fTypes.fHalf4)) { adapter = this->writeEntrypointAdapter(*main); if (adapter.entrypointDecl) { fFunctionMap.set(adapter.entrypointDecl.get(), this->nextId(nullptr)); this->writeFunction(*adapter.entrypointDef, body); main = adapter.entrypointDecl.get(); } } // Emit all the functions. for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeFunction(e->as(), body); } } // Add global in/out variables to the list of interface variables. for (const auto& [var, spvId] : fVariableMap) { if (var->storage() == Variable::Storage::kGlobal && (var->modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag)) && !this->isDead(*var)) { interfaceVars.insert(spvId); } } this->writeCapabilities(out); this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out); this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out); this->writeOpCode(SpvOpEntryPoint, (SpvId) (3 + (main->name().length() + 4) / 4) + (int32_t) interfaceVars.size(), out); if (ProgramConfig::IsVertex(program.fConfig->fKind)) { this->writeWord(SpvExecutionModelVertex, out); } else if (ProgramConfig::IsFragment(program.fConfig->fKind)) { this->writeWord(SpvExecutionModelFragment, out); } else { SK_ABORT("cannot write this kind of program to SPIR-V\n"); } SpvId entryPoint = fFunctionMap[main]; this->writeWord(entryPoint, out); this->writeString(main->name(), out); for (int var : interfaceVars) { this->writeWord(var, out); } if (ProgramConfig::IsFragment(program.fConfig->fKind)) { this->writeInstruction(SpvOpExecutionMode, fFunctionMap[main], SpvExecutionModeOriginUpperLeft, out); } for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeInstruction(SpvOpSourceExtension, e->as().name(), out); } } write_stringstream(fNameBuffer, out); write_stringstream(fDecorationBuffer, out); write_stringstream(fConstantBuffer, out); write_stringstream(body, out); } bool SPIRVCodeGenerator::generateCode() { SkASSERT(!fContext.fErrors->errorCount()); this->writeWord(SpvMagicNumber, *fOut); this->writeWord(SpvVersion, *fOut); this->writeWord(SKSL_MAGIC, *fOut); StringStream buffer; this->writeInstructions(fProgram, buffer); this->writeWord(fIdCount, *fOut); this->writeWord(0, *fOut); // reserved, always zero write_stringstream(buffer, *fOut); return fContext.fErrors->errorCount() == 0; } } // namespace SkSL