/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/base/SkFloatingPoint.h" #include "include/private/base/SkSpan_impl.h" #include "src/base/SkBezierCurves.h" #include "tests/Test.h" #include // Grouping the test inputs into DoublePoints makes the test cases easier to read. struct DoublePoint { double x; double y; }; static bool nearly_equal(double expected, double actual) { if (sk_double_nearly_zero(expected)) { return sk_double_nearly_zero(actual); } return sk_doubles_nearly_equal_ulps(expected, actual, 64); } static void testCubicEvalAtT(skiatest::Reporter* reporter, std::string name, SkSpan curveInputs, double t, const DoublePoint& expectedXY) { skiatest::ReporterContext subtest(reporter, name); REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Should have 4 input points."); REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, "Invalid test case. t %f should be in [0, 1]", t); auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast(curveInputs.data()), t); REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x), "X wrong %1.16f != %1.16f", expectedXY.x, x); REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y), "Y wrong %1.16f != %1.16f", expectedXY.y, y); } DEF_TEST(BezierCubicEvalAt, reporter) { testCubicEvalAtT(reporter, "linear curve @0.1234", {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, 0.1234, { 0.4192451819200000, 0.4192451819200000 }); testCubicEvalAtT(reporter, "linear curve @0.2345", {{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }}, 0.2345, { 2.8215983862500000, 2.8215983862500000 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.0, { -10, -20 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.3456, { -2.503786700800000, -3.31715344793600 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.5, { 1.75, 0.25 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 0.7891, { 6.158763291450000, 5.938550084434000 }); testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0", {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, 1.0, { 3, 13 }); } static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, std::string name, SkSpan curveInputs, bool yValues, double expectedA, double expectedB, double expectedC, double expectedD) { skiatest::ReporterContext subtest(reporter, name); REPORTER_ASSERT(reporter, curveInputs.size() == 4, "Invalid test case. Need 4 points (start, control, control, end)"); skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation"); const double* input = &curveInputs[0].x; auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues); REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A); REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B); REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C); REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D); } DEF_TEST(BezierCubicToPolynomials, reporter) { // See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction", {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/ -18, 36, -12, 1 ); testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction", {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/ 36, -36, 6, 2 ); }