/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkAlphaType.h" #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceProps.h" #include "include/core/SkTileMode.h" #include "include/core/SkTypes.h" #include "include/effects/SkGradientShader.h" #include "include/gpu/GrDirectContext.h" #include "include/gpu/mock/GrMockTypes.h" #include "include/private/base/SkTemplates.h" #include "include/private/base/SkTo.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/base/SkTLazy.h" #include "src/gpu/ganesh/GrColorInfo.h" #include "src/gpu/ganesh/GrFPArgs.h" #include "src/shaders/SkShaderBase.h" #include "tests/Test.h" #include #include #include using namespace skia_private; // https://code.google.com/p/chromium/issues/detail?id=448299 // Giant (inverse) matrix causes overflow when converting/computing using 32.32 // Before the fix, we would assert (and then crash). static void test_big_grad(skiatest::Reporter* reporter) { const SkColor colors[] = { SK_ColorRED, SK_ColorBLUE }; const SkPoint pts[] = {{ 15, 14.7112684f }, { 0.709064007f, 12.6108112f }}; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkTileMode::kClamp)); SkBitmap bm; bm.allocN32Pixels(2000, 1); SkCanvas c(bm); const SkScalar affine[] = { 1.06608627e-06f, 4.26434525e-07f, 6.2855f, 2.6611f, 273.4393f, 244.0046f }; SkMatrix matrix; matrix.setAffine(affine); c.concat(matrix); c.drawPaint(paint); } struct GradRec { int fColorCount; const SkColor* fColors; const SkScalar* fPos; const SkPoint* fPoint; // 2 const SkScalar* fRadius; // 2 SkTileMode fTileMode; void gradCheck(skiatest::Reporter* reporter, const sk_sp& shader, SkShaderBase::GradientInfo* info, SkShaderBase::GradientType gt, const SkMatrix& localMatrix = SkMatrix::I()) const { AutoTMalloc colorStorage(fColorCount); AutoTMalloc posStorage(fColorCount); info->fColorCount = fColorCount; info->fColors = colorStorage; info->fColorOffsets = posStorage.get(); SkMatrix shaderLocalMatrix; REPORTER_ASSERT(reporter, as_SB(shader)->asGradient(info, &shaderLocalMatrix) == gt); REPORTER_ASSERT(reporter, shaderLocalMatrix == localMatrix); REPORTER_ASSERT(reporter, info->fColorCount == fColorCount); REPORTER_ASSERT(reporter, !memcmp(info->fColors, fColors, fColorCount * sizeof(SkColor))); REPORTER_ASSERT(reporter, !memcmp(info->fColorOffsets, fPos, fColorCount * sizeof(SkScalar))); REPORTER_ASSERT(reporter, fTileMode == (SkTileMode)info->fTileMode); } }; static void none_gradproc(skiatest::Reporter* reporter, const GradRec&, const GradRec&) { sk_sp s(SkShaders::Empty()); REPORTER_ASSERT(reporter, SkShaderBase::GradientType::kNone == as_SB(s)->asGradient()); } static void color_gradproc(skiatest::Reporter* reporter, const GradRec& rec, const GradRec&) { sk_sp s(SkShaders::Color(rec.fColors[0])); REPORTER_ASSERT(reporter, SkShaderBase::GradientType::kColor == as_SB(s)->asGradient()); SkShaderBase::GradientInfo info; as_SB(s)->asGradient(&info); REPORTER_ASSERT(reporter, 1 == info.fColorCount); } static void linear_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec, const GradRec& checkRec) { sk_sp s(SkGradientShader::MakeLinear(buildRec.fPoint, buildRec.fColors, buildRec.fPos, buildRec.fColorCount, buildRec.fTileMode)); SkShaderBase::GradientInfo info; checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kLinear); REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint))); } static void radial_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec, const GradRec& checkRec) { sk_sp s(SkGradientShader::MakeRadial(buildRec.fPoint[0], buildRec.fRadius[0], buildRec.fColors, buildRec.fPos, buildRec.fColorCount, buildRec.fTileMode)); SkShaderBase::GradientInfo info; checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kRadial); REPORTER_ASSERT(reporter, info.fPoint[0] == checkRec.fPoint[0]); REPORTER_ASSERT(reporter, info.fRadius[0] == checkRec.fRadius[0]); } static void sweep_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec, const GradRec& checkRec) { sk_sp s(SkGradientShader::MakeSweep(buildRec.fPoint[0].fX, buildRec.fPoint[0].fY, buildRec.fColors, buildRec.fPos, buildRec.fColorCount)); SkShaderBase::GradientInfo info; checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kSweep); REPORTER_ASSERT(reporter, info.fPoint[0] == checkRec.fPoint[0]); } static void conical_gradproc(skiatest::Reporter* reporter, const GradRec& buildRec, const GradRec& checkRec) { sk_sp s(SkGradientShader::MakeTwoPointConical(buildRec.fPoint[0], buildRec.fRadius[0], buildRec.fPoint[1], buildRec.fRadius[1], buildRec.fColors, buildRec.fPos, buildRec.fColorCount, buildRec.fTileMode)); SkShaderBase::GradientInfo info; checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kConical); REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint))); REPORTER_ASSERT(reporter, !memcmp(info.fRadius, checkRec.fRadius, 2 * sizeof(SkScalar))); } static void linear_gradproc_matrix(skiatest::Reporter* reporter, const GradRec& buildRec, const GradRec& checkRec) { SkMatrix localMatrix = SkMatrix::RotateDeg(45, {100, 100}); sk_sp s(SkGradientShader::MakeLinear(buildRec.fPoint, buildRec.fColors, buildRec.fPos, buildRec.fColorCount, buildRec.fTileMode, /*flags=*/0, &localMatrix)); SkShaderBase::GradientInfo info; checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kLinear, localMatrix); REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint))); // Same but using a local matrix wrapper. s = SkGradientShader::MakeLinear(buildRec.fPoint, buildRec.fColors, buildRec.fPos, buildRec.fColorCount, buildRec.fTileMode); s = s->makeWithLocalMatrix(localMatrix); checkRec.gradCheck(reporter, s, &info, SkShaderBase::GradientType::kLinear, localMatrix); REPORTER_ASSERT(reporter, !memcmp(info.fPoint, checkRec.fPoint, 2 * sizeof(SkPoint))); } // Ensure that repeated color gradients behave like drawing a single color static void TestConstantGradient(skiatest::Reporter*) { const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), 0 } }; SkColor colors[] = { SK_ColorBLUE, SK_ColorBLUE }; const SkScalar pos[] = { 0, SK_Scalar1 }; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp)); SkBitmap outBitmap; outBitmap.allocN32Pixels(10, 1); SkCanvas canvas(outBitmap); canvas.drawPaint(paint); for (int i = 0; i < 10; i++) { // The following is commented out because it currently fails // Related bug: https://code.google.com/p/skia/issues/detail?id=1098 // REPORTER_ASSERT(reporter, SK_ColorBLUE == outBitmap.getColor(i, 0)); } } typedef void (*GradProc)(skiatest::Reporter* reporter, const GradRec&, const GradRec&); static void TestGradientShaders(skiatest::Reporter* reporter) { static const SkColor gColors[] = { SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE }; static const SkScalar gPos[] = { 0, SK_ScalarHalf, SK_Scalar1 }; static const SkPoint gPts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(20) } }; static const SkScalar gRad[] = { SkIntToScalar(1), SkIntToScalar(2) }; GradRec rec; rec.fColorCount = std::size(gColors); rec.fColors = gColors; rec.fPos = gPos; rec.fPoint = gPts; rec.fRadius = gRad; rec.fTileMode = SkTileMode::kClamp; static const GradProc gProcs[] = { none_gradproc, color_gradproc, linear_gradproc, linear_gradproc_matrix, radial_gradproc, sweep_gradproc, conical_gradproc, }; for (size_t i = 0; i < std::size(gProcs); ++i) { gProcs[i](reporter, rec, rec); } } static void TestGradientOptimization(skiatest::Reporter* reporter) { static const struct { GradProc fProc; bool fIsClampRestricted; } gProcInfo[] = { { linear_gradproc , false }, { linear_gradproc_matrix, false }, { radial_gradproc , false }, { sweep_gradproc , true }, // sweep is funky in that it always pretends to be kClamp. { conical_gradproc , false }, }; static const SkColor gC_00[] = { 0xff000000, 0xff000000 }; static const SkColor gC_01[] = { 0xff000000, 0xffffffff }; static const SkColor gC_11[] = { 0xffffffff, 0xffffffff }; static const SkColor gC_001[] = { 0xff000000, 0xff000000, 0xffffffff }; static const SkColor gC_011[] = { 0xff000000, 0xffffffff, 0xffffffff }; static const SkColor gC_0011[] = { 0xff000000, 0xff000000, 0xffffffff, 0xffffffff }; static const SkScalar gP_01[] = { 0, 1 }; static const SkScalar gP_001[] = { 0, 0, 1 }; static const SkScalar gP_011[] = { 0, 1, 1 }; static const SkScalar gP_0x1[] = { 0, .5f, 1 }; static const SkScalar gP_0011[] = { 0, 0, 1, 1 }; static const SkPoint gPts[] = { {0, 0}, {1, 1} }; static const SkScalar gRadii[] = { 1, 2 }; static const struct { const SkColor* fCol; const SkScalar* fPos; int fCount; const SkColor* fExpectedCol; const SkScalar* fExpectedPos; int fExpectedCount; bool fRequiresNonClamp; } gTests[] = { { gC_001, gP_001, 3, gC_01, gP_01, 2, false }, { gC_001, gP_011, 3, gC_00, gP_01, 2, true }, { gC_001, gP_0x1, 3, gC_001, gP_0x1, 3, false }, { gC_001, nullptr, 3, gC_001, gP_0x1, 3, false }, { gC_011, gP_001, 3, gC_11, gP_01, 2, true }, { gC_011, gP_011, 3, gC_01, gP_01, 2, false }, { gC_011, gP_0x1, 3, gC_011, gP_0x1, 3, false }, { gC_011, nullptr, 3, gC_011, gP_0x1, 3, false }, { gC_0011, gP_0011, 4, gC_0011, gP_0011, 4, false }, }; const SkTileMode modes[] = { SkTileMode::kClamp, SkTileMode::kRepeat, SkTileMode::kMirror, // TODO: add kDecal_TileMode when it is implemented }; for (size_t i = 0; i < std::size(gProcInfo); ++i) { for (auto mode : modes) { if (gProcInfo[i].fIsClampRestricted && mode != SkTileMode::kClamp) { continue; } for (size_t t = 0; t < std::size(gTests); ++t) { GradRec rec; rec.fColorCount = gTests[t].fCount; rec.fColors = gTests[t].fCol; rec.fPos = gTests[t].fPos; rec.fTileMode = mode; rec.fPoint = gPts; rec.fRadius = gRadii; GradRec expected = rec; if (!gTests[t].fRequiresNonClamp || mode != SkTileMode::kClamp) { expected.fColorCount = gTests[t].fExpectedCount; expected.fColors = gTests[t].fExpectedCol; expected.fPos = gTests[t].fExpectedPos; } gProcInfo[i].fProc(reporter, rec, expected); } } } } static void test_nearly_vertical(skiatest::Reporter* reporter) { auto surface(SkSurface::MakeRasterN32Premul(200, 200)); const SkPoint pts[] = {{ 100, 50 }, { 100.0001f, 50000 }}; const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE }; const SkScalar pos[] = { 0, 1 }; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp)); surface->getCanvas()->drawPaint(paint); } static void test_vertical(skiatest::Reporter* reporter) { auto surface(SkSurface::MakeRasterN32Premul(200, 200)); const SkPoint pts[] = {{ 100, 50 }, { 100, 50 }}; const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE }; const SkScalar pos[] = { 0, 1 }; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 2, SkTileMode::kClamp)); surface->getCanvas()->drawPaint(paint); } // A linear gradient interval can, due to numerical imprecision (likely in the divide) // finish an interval with the final fx not landing outside of [p0...p1]. // The old code had an assert which this test triggered. // We now explicitly clamp the resulting fx value. static void test_linear_fuzz(skiatest::Reporter* reporter) { auto surface(SkSurface::MakeRasterN32Premul(1300, 630)); const SkPoint pts[] = {{ 179.5f, -179.5f }, { 1074.5f, 715.5f }}; const SkColor colors[] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorBLACK, SK_ColorWHITE }; const SkScalar pos[] = {0, 0.200000003f, 0.800000012f, 1 }; SkPaint paint; paint.setShader(SkGradientShader::MakeLinear(pts, colors, pos, 4, SkTileMode::kClamp)); SkRect r = {0, 83, 1254, 620}; surface->getCanvas()->drawRect(r, paint); } // https://bugs.chromium.org/p/skia/issues/detail?id=5023 // We should still shade pixels for which the radius is exactly 0. static void test_two_point_conical_zero_radius(skiatest::Reporter* reporter) { auto surface(SkSurface::MakeRasterN32Premul(5, 5)); surface->getCanvas()->clear(SK_ColorRED); const SkColor colors[] = { SK_ColorGREEN, SK_ColorBLUE }; SkPaint p; p.setShader(SkGradientShader::MakeTwoPointConical( SkPoint::Make(2.5f, 2.5f), 0, SkPoint::Make(3.0f, 3.0f), 10, colors, nullptr, std::size(colors), SkTileMode::kClamp)); surface->getCanvas()->drawPaint(p); // r == 0 for the center pixel. // verify that we draw it (no red bleed) SkPMColor centerPMColor; surface->readPixels(SkImageInfo::MakeN32Premul(1, 1), ¢erPMColor, sizeof(SkPMColor), 2, 2); REPORTER_ASSERT(reporter, SkGetPackedR32(centerPMColor) == 0); } // http://crbug.com/599458 static void test_clamping_overflow(skiatest::Reporter*) { SkPaint p; const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN }; const SkPoint pts1[] = { SkPoint::Make(1001, 1000001), SkPoint::Make(1000.99f, 1000000) }; p.setShader(SkGradientShader::MakeLinear(pts1, colors, nullptr, 2, SkTileMode::kClamp)); sk_sp surface(SkSurface::MakeRasterN32Premul(50, 50)); surface->getCanvas()->scale(100, 100); surface->getCanvas()->drawPaint(p); const SkPoint pts2[] = { SkPoint::Make(10000.99f, 1000000), SkPoint::Make(10001, 1000001) }; p.setShader(SkGradientShader::MakeLinear(pts2, colors, nullptr, 2, SkTileMode::kClamp)); surface->getCanvas()->drawPaint(p); // Passes if we don't trigger asserts. } // http://crbug.com/636194 static void test_degenerate_linear(skiatest::Reporter*) { SkPaint p; const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN }; const SkPoint pts[] = { SkPoint::Make(-46058024627067344430605278824628224.0f, 0), SkPoint::Make(SK_ScalarMax, 0) }; p.setShader(SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkTileMode::kClamp)); sk_sp surface(SkSurface::MakeRasterN32Premul(50, 50)); surface->getCanvas()->drawPaint(p); // Passes if we don't trigger asserts. } // http://crbug.com/1149216 static void test_unsorted_degenerate(skiatest::Reporter* r) { // Passes if a valid solid color is computed for the degenerate gradient // (unsorted positions are fixed during regular gradient construction, so this ensures the // same fixing happens for degenerate gradients as well). If they aren't fixed, this test // case produces a negative alpha, which asserts during SkPMColor4f::isOpaque(). const SkColor4f colors[] = { {0.f, 0.f, 0.f, 0.f}, {0.00784314f, 0.f, 0.f, 0.0627451f}, {0.f, 0.00392157f, 0.f, 0.f} }; const SkScalar positions[] = {0.00753367f, 8.54792e-44f, 1.46955e-39f}; const SkPoint points[] { { 0.f, 0.f }, { 1e-20f, -1e-8f }}; // must be degenerate // Use kMirror to go through average color stop calculation, vs. kClamp which would pick a color sk_sp gradient = SkGradientShader::MakeLinear(points, colors, nullptr, positions, 3, SkTileMode::kMirror); // The degenerate gradient shouldn't be null REPORTER_ASSERT(r, SkToBool(gradient)); // And it shouldn't crash when creating a fragment processor GrColorInfo dstColorInfo(GrColorType::kRGBA_8888, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); SkSurfaceProps props; GrMockOptions options; auto context = GrDirectContext::MakeMock(&options); GrFPArgs args(context.get(), &dstColorInfo, props); as_SB(gradient)->asRootFragmentProcessor(args, SkMatrix::I()); } // "Interesting" fuzzer values. static void test_linear_fuzzer(skiatest::Reporter*) { static const SkColor gColors0[] = { 0x30303030, 0x30303030 }; static const SkColor gColors1[] = { 0x30303030, 0x30303030, 0x30303030 }; static const SkScalar gPos1[] = { 0, 0, 1 }; static const SkScalar gMatrix0[9] = { 6.40969056e-10f, 0 , 6.40969056e-10f, 0 , 4.42539023e-39f, 6.40969056e-10f, 0 , 0 , 1 }; static const SkScalar gMatrix1[9] = { -2.75294113f , 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, -3.32810161e+24f, 6.40969056e-10f, 6.40969056e-10f, 0 }; static const SkScalar gMatrix2[9] = { 7.93481258e+17f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 0.688235283f }; static const SkScalar gMatrix3[9] = { 1.89180674e+11f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 6.40969056e-10f, 11276.0469f , 8.12524808e+20f }; static const struct { SkPoint fPts[2]; const SkColor* fColors; const SkScalar* fPos; int fCount; SkTileMode fTileMode; uint32_t fFlags; const SkScalar* fLocalMatrix; const SkScalar* fGlobalMatrix; } gConfigs[] = { { {{0, -2.752941f}, {0, 0}}, gColors0, nullptr, std::size(gColors0), SkTileMode::kClamp, 0, gMatrix0, nullptr }, { {{4.42539023e-39f, -4.42539023e-39f}, {9.78041162e-15f, 4.42539023e-39f}}, gColors1, gPos1, std::size(gColors1), SkTileMode::kClamp, 0, nullptr, gMatrix1 }, { {{4.42539023e-39f, 6.40969056e-10f}, {6.40969056e-10f, 1.49237238e-19f}}, gColors1, gPos1, std::size(gColors1), SkTileMode::kClamp, 0, nullptr, gMatrix2 }, { {{6.40969056e-10f, 6.40969056e-10f}, {6.40969056e-10f, -0.688235283f}}, gColors0, nullptr, std::size(gColors0), SkTileMode::kClamp, 0, gMatrix3, nullptr }, }; sk_sp srgb = SkColorSpace::MakeSRGB(); SkColorSpace* colorSpaces[] = { nullptr, // hits the legacy gradient impl srgb.get(), // triggers 4f/raster-pipeline }; SkPaint paint; for (const SkColorSpace* colorSpace : colorSpaces) { sk_sp surface = SkSurface::MakeRaster(SkImageInfo::Make(100, 100, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(colorSpace))); SkCanvas* canvas = surface->getCanvas(); for (const auto& config : gConfigs) { SkAutoCanvasRestore acr(canvas, false); SkTLazy localMatrix; if (config.fLocalMatrix) { localMatrix.init(); localMatrix->set9(config.fLocalMatrix); } paint.setShader(SkGradientShader::MakeLinear(config.fPts, config.fColors, config.fPos, config.fCount, config.fTileMode, config.fFlags, localMatrix.getMaybeNull())); if (config.fGlobalMatrix) { SkMatrix m; m.set9(config.fGlobalMatrix); canvas->save(); canvas->concat(m); } canvas->drawPaint(paint); } } } static void test_sweep_fuzzer(skiatest::Reporter*) { static const SkColor gColors0[] = { 0x30303030, 0x30303030, 0x30303030 }; static const SkScalar gPos0[] = { -47919293023455565225163489280.0f, 0, 1 }; static const SkScalar gMatrix0[9] = { 1.12116716e-13f, 0 , 8.50489682e+16f, 4.1917041e-41f , 3.51369881e-23f, -2.54344271e-26f, 9.61111907e+17f, -3.35263808e-29f, -1.35659403e+14f }; static const struct { SkPoint fCenter; const SkColor* fColors; const SkScalar* fPos; int fCount; const SkScalar* fGlobalMatrix; } gConfigs[] = { { { 0, 0 }, gColors0, gPos0, std::size(gColors0), gMatrix0 }, }; sk_sp surface = SkSurface::MakeRasterN32Premul(100, 100); SkCanvas* canvas = surface->getCanvas(); SkPaint paint; for (const auto& config : gConfigs) { paint.setShader(SkGradientShader::MakeSweep(config.fCenter.x(), config.fCenter.y(), config.fColors, config.fPos, config.fCount)); SkAutoCanvasRestore acr(canvas, false); if (config.fGlobalMatrix) { SkMatrix m; m.set9(config.fGlobalMatrix); canvas->save(); canvas->concat(m); } canvas->drawPaint(paint); } } DEF_TEST(Gradient, reporter) { TestGradientShaders(reporter); TestGradientOptimization(reporter); TestConstantGradient(reporter); test_big_grad(reporter); test_nearly_vertical(reporter); test_vertical(reporter); test_linear_fuzz(reporter); test_two_point_conical_zero_radius(reporter); test_clamping_overflow(reporter); test_degenerate_linear(reporter); test_linear_fuzzer(reporter); test_sweep_fuzzer(reporter); test_unsorted_degenerate(reporter); }