/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFloatingPoint.h" #include "src/base/SkQuads.h" #include "src/pathops/SkPathOpsQuad.h" #include "tests/Test.h" #include #include #include #include #include #include static void testQuadRootsReal(skiatest::Reporter* reporter, std::string name, double A, double B, double C, SkSpan expectedRoots) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, expectedRoots.size() <= 2, "Invalid test case, up to 2 roots allowed"); for (size_t i = 0; i < expectedRoots.size(); i++) { double x = expectedRoots[i]; // A*x^2 + B*x + C should equal 0 double y = A * x * x + B * x + C; REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), "Invalid test case root %zu. %.16f != 0", i, y); if (i > 0) { REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], "Invalid test case root %zu. Roots should be sorted in ascending order", i); } } { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); double roots[2] = {0, 0}; int rootCount = SkDQuad::RootsReal(A, B, C, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } { skiatest::ReporterContext subsubtest(reporter, "SkQuads Implementation"); double roots[2] = {0, 0}; int rootCount = SkQuads::RootsReal(A, B, C, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } } DEF_TEST(QuadRootsReal_ActualQuadratics, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. testQuadRootsReal(reporter, "two roots 3x^2 - 20x - 40", 3, -20, -40, {-1.610798991397109, //-1.610798991397108632474265 from Wolfram Alpha 8.277465658063775, // 8.277465658063775299140932 from Wolfram Alpha }); // (2x - 4)(x + 17) testQuadRootsReal(reporter, "two roots 2x^2 + 30x - 68", 2, 30, -68, {-17, 2}); testQuadRootsReal(reporter, "two roots x^2 - 5", 1, 0, -5, {-2.236067977499790, //-2.236067977499789696409174 from Wolfram Alpha 2.236067977499790, // 2.236067977499789696409174 from Wolfram Alpha }); testQuadRootsReal(reporter, "one root x^2 - 2x + 1", 1, -2, 1, {1}); testQuadRootsReal(reporter, "no roots 5x^2 + 6x + 7", 5, 6, 7, {}); testQuadRootsReal(reporter, "no roots 4x^2 + 1", 4, 0, 1, {}); testQuadRootsReal(reporter, "one root is zero, another is big", 14, -13, 0, {0, 0.9285714285714286 //0.9285714285714285714285714 from Wolfram Alpha }); // Values from a failing test case observed during testing. testQuadRootsReal(reporter, "one root is zero, another is small", 0.2929016490705016, 0.0000030451558069, 0, {-0.00001039651301576329, 0}); testQuadRootsReal(reporter, "b and c are zero, a is positive 4x^2", 4, 0, 0, {0}); testQuadRootsReal(reporter, "b and c are zero, a is negative -4x^2", -4, 0, 0, {0}); testQuadRootsReal(reporter, "a and b are huge, c is zero", 4.3719914983870202e+291, 1.0269509510194551e+152, 0, // One solution is 0, the other is so close to zero it returns // true for sk_double_nearly_zero, so it is collapsed into one. {0}); } DEF_TEST(QuadRootsReal_Linear, reporter) { testQuadRootsReal(reporter, "positive slope 5x + 6", 0, 5, 6, {-1.2}); testQuadRootsReal(reporter, "negative slope -3x - 9", 0, -3, -9, {-3.}); } DEF_TEST(QuadRootsReal_Constant, reporter) { testQuadRootsReal(reporter, "No intersections y = -10", 0, 0, -10, {}); testQuadRootsReal(reporter, "Infinite solutions y = 0", 0, 0, 0, {0.}); } DEF_TEST(QuadRootsReal_NonFiniteNumbers, reporter) { // The Pathops implementation does not check for infinities nor nans in all cases. double roots[2]; REPORTER_ASSERT(reporter, SkQuads::RootsReal(DBL_MAX, 0, DBL_MAX, roots) == 0, "Discriminant is negative infinity" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(DBL_MAX, DBL_MAX, DBL_MAX, roots) == 0, "Double Overflow" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(1, NAN, -3, roots) == 0, "Nan quadratic" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(0, NAN, 3, roots) == 0, "Nan linear" ); REPORTER_ASSERT(reporter, SkQuads::RootsReal(0, 0, NAN, roots) == 0, "Nan constant" ); }