/* * Copyright 2021 The WebRTC project authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/loss_based_bwe_v2.h" #include #include #include #include #include #include #include #include #include "absl/algorithm/container.h" #include "absl/types/optional.h" #include "api/array_view.h" #include "api/field_trials_view.h" #include "api/network_state_predictor.h" #include "api/transport/network_types.h" #include "api/units/data_rate.h" #include "api/units/data_size.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/remote_bitrate_estimator/include/bwe_defines.h" #include "rtc_base/experiments/field_trial_list.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/logging.h" namespace webrtc { namespace { bool IsValid(DataRate datarate) { return datarate.IsFinite(); } bool IsValid(absl::optional datarate) { return datarate.has_value() && IsValid(datarate.value()); } bool IsValid(Timestamp timestamp) { return timestamp.IsFinite(); } struct PacketResultsSummary { int num_packets = 0; int num_lost_packets = 0; DataSize total_size = DataSize::Zero(); Timestamp first_send_time = Timestamp::PlusInfinity(); Timestamp last_send_time = Timestamp::MinusInfinity(); }; // Returns a `PacketResultsSummary` where `first_send_time` is `PlusInfinity, // and `last_send_time` is `MinusInfinity`, if `packet_results` is empty. PacketResultsSummary GetPacketResultsSummary( rtc::ArrayView packet_results) { PacketResultsSummary packet_results_summary; packet_results_summary.num_packets = packet_results.size(); for (const PacketResult& packet : packet_results) { if (!packet.IsReceived()) { packet_results_summary.num_lost_packets++; } packet_results_summary.total_size += packet.sent_packet.size; packet_results_summary.first_send_time = std::min( packet_results_summary.first_send_time, packet.sent_packet.send_time); packet_results_summary.last_send_time = std::max( packet_results_summary.last_send_time, packet.sent_packet.send_time); } return packet_results_summary; } double GetLossProbability(double inherent_loss, DataRate loss_limited_bandwidth, DataRate sending_rate) { if (inherent_loss < 0.0 || inherent_loss > 1.0) { RTC_LOG(LS_WARNING) << "The inherent loss must be in [0,1]: " << inherent_loss; inherent_loss = std::min(std::max(inherent_loss, 0.0), 1.0); } if (!sending_rate.IsFinite()) { RTC_LOG(LS_WARNING) << "The sending rate must be finite: " << ToString(sending_rate); } if (!loss_limited_bandwidth.IsFinite()) { RTC_LOG(LS_WARNING) << "The loss limited bandwidth must be finite: " << ToString(loss_limited_bandwidth); } double loss_probability = inherent_loss; if (IsValid(sending_rate) && IsValid(loss_limited_bandwidth) && (sending_rate > loss_limited_bandwidth)) { loss_probability += (1 - inherent_loss) * (sending_rate - loss_limited_bandwidth) / sending_rate; } return std::min(std::max(loss_probability, 1.0e-6), 1.0 - 1.0e-6); } } // namespace LossBasedBweV2::LossBasedBweV2(const FieldTrialsView* key_value_config) : config_(CreateConfig(key_value_config)) { if (!config_.has_value()) { RTC_LOG(LS_VERBOSE) << "The configuration does not specify that the " "estimator should be enabled, disabling it."; return; } if (!IsConfigValid()) { RTC_LOG(LS_WARNING) << "The configuration is not valid, disabling the estimator."; config_.reset(); return; } current_estimate_.inherent_loss = config_->initial_inherent_loss_estimate; observations_.resize(config_->observation_window_size); temporal_weights_.resize(config_->observation_window_size); instant_upper_bound_temporal_weights_.resize( config_->observation_window_size); CalculateTemporalWeights(); } bool LossBasedBweV2::IsEnabled() const { return config_.has_value(); } bool LossBasedBweV2::IsReady() const { return IsEnabled() && IsValid(current_estimate_.loss_limited_bandwidth) && num_observations_ > 0; } LossBasedBweV2::Result LossBasedBweV2::GetLossBasedResult() const { Result result; result.state = current_state_; if (!IsReady()) { if (!IsEnabled()) { RTC_LOG(LS_WARNING) << "The estimator must be enabled before it can be used."; } else { if (!IsValid(current_estimate_.loss_limited_bandwidth)) { RTC_LOG(LS_WARNING) << "The estimator must be initialized before it can be used."; } if (num_observations_ <= 0) { RTC_LOG(LS_WARNING) << "The estimator must receive enough loss " "statistics before it can be used."; } } result.bandwidth_estimate = IsValid(delay_based_estimate_) ? delay_based_estimate_ : DataRate::PlusInfinity(); return result; } if (IsValid(delay_based_estimate_)) { result.bandwidth_estimate = std::min({current_estimate_.loss_limited_bandwidth, GetInstantUpperBound(), delay_based_estimate_}); } else { result.bandwidth_estimate = std::min( current_estimate_.loss_limited_bandwidth, GetInstantUpperBound()); } return result; } void LossBasedBweV2::SetAcknowledgedBitrate(DataRate acknowledged_bitrate) { if (IsValid(acknowledged_bitrate)) { acknowledged_bitrate_ = acknowledged_bitrate; } else { RTC_LOG(LS_WARNING) << "The acknowledged bitrate must be finite: " << ToString(acknowledged_bitrate); } } void LossBasedBweV2::SetBandwidthEstimate(DataRate bandwidth_estimate) { if (IsValid(bandwidth_estimate)) { current_estimate_.loss_limited_bandwidth = bandwidth_estimate; } else { RTC_LOG(LS_WARNING) << "The bandwidth estimate must be finite: " << ToString(bandwidth_estimate); } } void LossBasedBweV2::SetMinMaxBitrate(DataRate min_bitrate, DataRate max_bitrate) { if (IsValid(min_bitrate)) { min_bitrate_ = min_bitrate; } else { RTC_LOG(LS_WARNING) << "The min bitrate must be finite: " << ToString(min_bitrate); } if (IsValid(max_bitrate)) { max_bitrate_ = max_bitrate; } else { RTC_LOG(LS_WARNING) << "The max bitrate must be finite: " << ToString(max_bitrate); } } void LossBasedBweV2::SetProbeBitrate(absl::optional probe_bitrate) { if (probe_bitrate.has_value() && IsValid(probe_bitrate.value())) { if (!IsValid(probe_bitrate_) || probe_bitrate_ > probe_bitrate.value()) { probe_bitrate_ = probe_bitrate.value(); } } } void LossBasedBweV2::UpdateBandwidthEstimate( rtc::ArrayView packet_results, DataRate delay_based_estimate, BandwidthUsage delay_detector_state, absl::optional probe_bitrate, DataRate upper_link_capacity) { delay_based_estimate_ = delay_based_estimate; upper_link_capacity_ = upper_link_capacity; if (!IsEnabled()) { RTC_LOG(LS_WARNING) << "The estimator must be enabled before it can be used."; return; } SetProbeBitrate(probe_bitrate); if (packet_results.empty()) { RTC_LOG(LS_VERBOSE) << "The estimate cannot be updated without any loss statistics."; return; } if (!PushBackObservation(packet_results, delay_detector_state)) { return; } if (!IsValid(current_estimate_.loss_limited_bandwidth)) { RTC_LOG(LS_VERBOSE) << "The estimator must be initialized before it can be used."; return; } ChannelParameters best_candidate = current_estimate_; double objective_max = std::numeric_limits::lowest(); for (ChannelParameters candidate : GetCandidates()) { NewtonsMethodUpdate(candidate); const double candidate_objective = GetObjective(candidate); if (candidate_objective > objective_max) { objective_max = candidate_objective; best_candidate = candidate; } } if (best_candidate.loss_limited_bandwidth < current_estimate_.loss_limited_bandwidth) { last_time_estimate_reduced_ = last_send_time_most_recent_observation_; } // Do not increase the estimate if the average loss is greater than current // inherent loss. if (GetAverageReportedLossRatio() > best_candidate.inherent_loss && config_->not_increase_if_inherent_loss_less_than_average_loss && current_estimate_.loss_limited_bandwidth < best_candidate.loss_limited_bandwidth) { best_candidate.loss_limited_bandwidth = current_estimate_.loss_limited_bandwidth; } if (IsBandwidthLimitedDueToLoss()) { // Bound the estimate increase if: // 1. The estimate has been increased for less than // `delayed_increase_window` ago, and // 2. The best candidate is greater than bandwidth_limit_in_current_window. if (recovering_after_loss_timestamp_.IsFinite() && recovering_after_loss_timestamp_ + config_->delayed_increase_window > last_send_time_most_recent_observation_ && best_candidate.loss_limited_bandwidth > bandwidth_limit_in_current_window_) { best_candidate.loss_limited_bandwidth = bandwidth_limit_in_current_window_; } bool increasing_when_loss_limited = IsEstimateIncreasingWhenLossLimited(best_candidate); // Bound the best candidate by the acked bitrate unless there is a recent // probe result. if (increasing_when_loss_limited && !IsValid(probe_bitrate_) && IsValid(acknowledged_bitrate_)) { best_candidate.loss_limited_bandwidth = IsValid(best_candidate.loss_limited_bandwidth) ? std::min(best_candidate.loss_limited_bandwidth, config_->bandwidth_rampup_upper_bound_factor * (*acknowledged_bitrate_)) : config_->bandwidth_rampup_upper_bound_factor * (*acknowledged_bitrate_); } // Use probe bitrate as the estimate as probe bitrate is trusted to be // correct. After being used, the probe bitrate is reset. if (config_->probe_integration_enabled && IsValid(probe_bitrate_)) { best_candidate.loss_limited_bandwidth = std::min(probe_bitrate_, best_candidate.loss_limited_bandwidth); probe_bitrate_ = DataRate::MinusInfinity(); } } if (IsEstimateIncreasingWhenLossLimited(best_candidate) && best_candidate.loss_limited_bandwidth < delay_based_estimate) { current_state_ = LossBasedState::kIncreasing; } else if (best_candidate.loss_limited_bandwidth < delay_based_estimate_) { current_state_ = LossBasedState::kDecreasing; } else if (best_candidate.loss_limited_bandwidth >= delay_based_estimate_) { current_state_ = LossBasedState::kDelayBasedEstimate; } current_estimate_ = best_candidate; if (IsBandwidthLimitedDueToLoss() && (recovering_after_loss_timestamp_.IsInfinite() || recovering_after_loss_timestamp_ + config_->delayed_increase_window < last_send_time_most_recent_observation_)) { bandwidth_limit_in_current_window_ = std::max(kCongestionControllerMinBitrate, current_estimate_.loss_limited_bandwidth * config_->max_increase_factor); recovering_after_loss_timestamp_ = last_send_time_most_recent_observation_; } } bool LossBasedBweV2::IsEstimateIncreasingWhenLossLimited( const ChannelParameters& best_candidate) { return (current_estimate_.loss_limited_bandwidth < best_candidate.loss_limited_bandwidth || (current_estimate_.loss_limited_bandwidth == best_candidate.loss_limited_bandwidth && current_state_ == LossBasedState::kIncreasing)) && IsBandwidthLimitedDueToLoss(); } // Returns a `LossBasedBweV2::Config` iff the `key_value_config` specifies a // configuration for the `LossBasedBweV2` which is explicitly enabled. absl::optional LossBasedBweV2::CreateConfig( const FieldTrialsView* key_value_config) { FieldTrialParameter enabled("Enabled", false); FieldTrialParameter bandwidth_rampup_upper_bound_factor( "BwRampupUpperBoundFactor", 1.1); FieldTrialParameter rampup_acceleration_max_factor( "BwRampupAccelMaxFactor", 0.0); FieldTrialParameter rampup_acceleration_maxout_time( "BwRampupAccelMaxoutTime", TimeDelta::Seconds(60)); FieldTrialList candidate_factors("CandidateFactors", {1.05, 1.0, 0.95}); FieldTrialParameter higher_bandwidth_bias_factor("HigherBwBiasFactor", 0.00001); FieldTrialParameter higher_log_bandwidth_bias_factor( "HigherLogBwBiasFactor", 0.001); FieldTrialParameter inherent_loss_lower_bound( "InherentLossLowerBound", 1.0e-3); FieldTrialParameter loss_threshold_of_high_bandwidth_preference( "LossThresholdOfHighBandwidthPreference", 0.99); FieldTrialParameter bandwidth_preference_smoothing_factor( "BandwidthPreferenceSmoothingFactor", 0.002); FieldTrialParameter inherent_loss_upper_bound_bandwidth_balance( "InherentLossUpperBoundBwBalance", DataRate::KilobitsPerSec(15.0)); FieldTrialParameter inherent_loss_upper_bound_offset( "InherentLossUpperBoundOffset", 0.05); FieldTrialParameter initial_inherent_loss_estimate( "InitialInherentLossEstimate", 0.01); FieldTrialParameter newton_iterations("NewtonIterations", 1); FieldTrialParameter newton_step_size("NewtonStepSize", 0.5); FieldTrialParameter append_acknowledged_rate_candidate( "AckedRateCandidate", true); FieldTrialParameter append_delay_based_estimate_candidate( "DelayBasedCandidate", false); FieldTrialParameter observation_duration_lower_bound( "ObservationDurationLowerBound", TimeDelta::Seconds(1)); FieldTrialParameter observation_window_size("ObservationWindowSize", 20); FieldTrialParameter sending_rate_smoothing_factor( "SendingRateSmoothingFactor", 0.0); FieldTrialParameter instant_upper_bound_temporal_weight_factor( "InstantUpperBoundTemporalWeightFactor", 0.99); FieldTrialParameter instant_upper_bound_bandwidth_balance( "InstantUpperBoundBwBalance", DataRate::KilobitsPerSec(15.0)); FieldTrialParameter instant_upper_bound_loss_offset( "InstantUpperBoundLossOffset", 0.05); FieldTrialParameter temporal_weight_factor("TemporalWeightFactor", 0.99); FieldTrialParameter bandwidth_backoff_lower_bound_factor( "BwBackoffLowerBoundFactor", 1.0); FieldTrialParameter trendline_integration_enabled( "TrendlineIntegrationEnabled", false); FieldTrialParameter trendline_observations_window_size( "TrendlineObservationsWindowSize", 20); FieldTrialParameter max_increase_factor("MaxIncreaseFactor", 1000.0); FieldTrialParameter delayed_increase_window( "DelayedIncreaseWindow", TimeDelta::Millis(300)); FieldTrialParameter use_acked_bitrate_only_when_overusing( "UseAckedBitrateOnlyWhenOverusing", false); FieldTrialParameter not_increase_if_inherent_loss_less_than_average_loss( "NotIncreaseIfInherentLossLessThanAverageLoss", false); FieldTrialParameter high_loss_rate_threshold("HighLossRateThreshold", 1.0); FieldTrialParameter bandwidth_cap_at_high_loss_rate( "BandwidthCapAtHighLossRate", DataRate::KilobitsPerSec(500.0)); FieldTrialParameter slope_of_bwe_high_loss_func( "SlopeOfBweHighLossFunc", 1000); FieldTrialParameter probe_integration_enabled("ProbeIntegrationEnabled", false); FieldTrialParameter bound_by_upper_link_capacity_when_loss_limited( "BoundByUpperLinkCapacityWhenLossLimited", true); if (key_value_config) { ParseFieldTrial({&enabled, &bandwidth_rampup_upper_bound_factor, &rampup_acceleration_max_factor, &rampup_acceleration_maxout_time, &candidate_factors, &higher_bandwidth_bias_factor, &higher_log_bandwidth_bias_factor, &inherent_loss_lower_bound, &loss_threshold_of_high_bandwidth_preference, &bandwidth_preference_smoothing_factor, &inherent_loss_upper_bound_bandwidth_balance, &inherent_loss_upper_bound_offset, &initial_inherent_loss_estimate, &newton_iterations, &newton_step_size, &append_acknowledged_rate_candidate, &append_delay_based_estimate_candidate, &observation_duration_lower_bound, &observation_window_size, &sending_rate_smoothing_factor, &instant_upper_bound_temporal_weight_factor, &instant_upper_bound_bandwidth_balance, &instant_upper_bound_loss_offset, &temporal_weight_factor, &bandwidth_backoff_lower_bound_factor, &trendline_integration_enabled, &trendline_observations_window_size, &max_increase_factor, &delayed_increase_window, &use_acked_bitrate_only_when_overusing, ¬_increase_if_inherent_loss_less_than_average_loss, &probe_integration_enabled, &high_loss_rate_threshold, &bandwidth_cap_at_high_loss_rate, &slope_of_bwe_high_loss_func, &bound_by_upper_link_capacity_when_loss_limited}, key_value_config->Lookup("WebRTC-Bwe-LossBasedBweV2")); } absl::optional config; if (!enabled.Get()) { return config; } config.emplace(); config->bandwidth_rampup_upper_bound_factor = bandwidth_rampup_upper_bound_factor.Get(); config->rampup_acceleration_max_factor = rampup_acceleration_max_factor.Get(); config->rampup_acceleration_maxout_time = rampup_acceleration_maxout_time.Get(); config->candidate_factors = candidate_factors.Get(); config->higher_bandwidth_bias_factor = higher_bandwidth_bias_factor.Get(); config->higher_log_bandwidth_bias_factor = higher_log_bandwidth_bias_factor.Get(); config->inherent_loss_lower_bound = inherent_loss_lower_bound.Get(); config->loss_threshold_of_high_bandwidth_preference = loss_threshold_of_high_bandwidth_preference.Get(); config->bandwidth_preference_smoothing_factor = bandwidth_preference_smoothing_factor.Get(); config->inherent_loss_upper_bound_bandwidth_balance = inherent_loss_upper_bound_bandwidth_balance.Get(); config->inherent_loss_upper_bound_offset = inherent_loss_upper_bound_offset.Get(); config->initial_inherent_loss_estimate = initial_inherent_loss_estimate.Get(); config->newton_iterations = newton_iterations.Get(); config->newton_step_size = newton_step_size.Get(); config->append_acknowledged_rate_candidate = append_acknowledged_rate_candidate.Get(); config->append_delay_based_estimate_candidate = append_delay_based_estimate_candidate.Get(); config->observation_duration_lower_bound = observation_duration_lower_bound.Get(); config->observation_window_size = observation_window_size.Get(); config->sending_rate_smoothing_factor = sending_rate_smoothing_factor.Get(); config->instant_upper_bound_temporal_weight_factor = instant_upper_bound_temporal_weight_factor.Get(); config->instant_upper_bound_bandwidth_balance = instant_upper_bound_bandwidth_balance.Get(); config->instant_upper_bound_loss_offset = instant_upper_bound_loss_offset.Get(); config->temporal_weight_factor = temporal_weight_factor.Get(); config->bandwidth_backoff_lower_bound_factor = bandwidth_backoff_lower_bound_factor.Get(); config->trendline_integration_enabled = trendline_integration_enabled.Get(); config->trendline_observations_window_size = trendline_observations_window_size.Get(); config->max_increase_factor = max_increase_factor.Get(); config->delayed_increase_window = delayed_increase_window.Get(); config->use_acked_bitrate_only_when_overusing = use_acked_bitrate_only_when_overusing.Get(); config->not_increase_if_inherent_loss_less_than_average_loss = not_increase_if_inherent_loss_less_than_average_loss.Get(); config->high_loss_rate_threshold = high_loss_rate_threshold.Get(); config->bandwidth_cap_at_high_loss_rate = bandwidth_cap_at_high_loss_rate.Get(); config->slope_of_bwe_high_loss_func = slope_of_bwe_high_loss_func.Get(); config->probe_integration_enabled = probe_integration_enabled.Get(); config->bound_by_upper_link_capacity_when_loss_limited = bound_by_upper_link_capacity_when_loss_limited.Get(); return config; } bool LossBasedBweV2::IsConfigValid() const { if (!config_.has_value()) { return false; } bool valid = true; if (config_->bandwidth_rampup_upper_bound_factor <= 1.0) { RTC_LOG(LS_WARNING) << "The bandwidth rampup upper bound factor must be greater than 1: " << config_->bandwidth_rampup_upper_bound_factor; valid = false; } if (config_->rampup_acceleration_max_factor < 0.0) { RTC_LOG(LS_WARNING) << "The rampup acceleration max factor must be non-negative.: " << config_->rampup_acceleration_max_factor; valid = false; } if (config_->rampup_acceleration_maxout_time <= TimeDelta::Zero()) { RTC_LOG(LS_WARNING) << "The rampup acceleration maxout time must be above zero: " << config_->rampup_acceleration_maxout_time.seconds(); valid = false; } for (double candidate_factor : config_->candidate_factors) { if (candidate_factor <= 0.0) { RTC_LOG(LS_WARNING) << "All candidate factors must be greater than zero: " << candidate_factor; valid = false; } } // Ensure that the configuration allows generation of at least one candidate // other than the current estimate. if (!config_->append_acknowledged_rate_candidate && !config_->append_delay_based_estimate_candidate && !absl::c_any_of(config_->candidate_factors, [](double cf) { return cf != 1.0; })) { RTC_LOG(LS_WARNING) << "The configuration does not allow generating candidates. Specify " "a candidate factor other than 1.0, allow the acknowledged rate " "to be a candidate, and/or allow the delay based estimate to be a " "candidate."; valid = false; } if (config_->higher_bandwidth_bias_factor < 0.0) { RTC_LOG(LS_WARNING) << "The higher bandwidth bias factor must be non-negative: " << config_->higher_bandwidth_bias_factor; valid = false; } if (config_->inherent_loss_lower_bound < 0.0 || config_->inherent_loss_lower_bound >= 1.0) { RTC_LOG(LS_WARNING) << "The inherent loss lower bound must be in [0, 1): " << config_->inherent_loss_lower_bound; valid = false; } if (config_->loss_threshold_of_high_bandwidth_preference < 0.0 || config_->loss_threshold_of_high_bandwidth_preference >= 1.0) { RTC_LOG(LS_WARNING) << "The loss threshold of high bandwidth preference must be in [0, 1): " << config_->loss_threshold_of_high_bandwidth_preference; valid = false; } if (config_->bandwidth_preference_smoothing_factor <= 0.0 || config_->bandwidth_preference_smoothing_factor > 1.0) { RTC_LOG(LS_WARNING) << "The bandwidth preference smoothing factor must be in (0, 1]: " << config_->bandwidth_preference_smoothing_factor; valid = false; } if (config_->inherent_loss_upper_bound_bandwidth_balance <= DataRate::Zero()) { RTC_LOG(LS_WARNING) << "The inherent loss upper bound bandwidth balance " "must be positive: " << ToString(config_->inherent_loss_upper_bound_bandwidth_balance); valid = false; } if (config_->inherent_loss_upper_bound_offset < config_->inherent_loss_lower_bound || config_->inherent_loss_upper_bound_offset >= 1.0) { RTC_LOG(LS_WARNING) << "The inherent loss upper bound must be greater " "than or equal to the inherent " "loss lower bound, which is " << config_->inherent_loss_lower_bound << ", and less than 1: " << config_->inherent_loss_upper_bound_offset; valid = false; } if (config_->initial_inherent_loss_estimate < 0.0 || config_->initial_inherent_loss_estimate >= 1.0) { RTC_LOG(LS_WARNING) << "The initial inherent loss estimate must be in [0, 1): " << config_->initial_inherent_loss_estimate; valid = false; } if (config_->newton_iterations <= 0) { RTC_LOG(LS_WARNING) << "The number of Newton iterations must be positive: " << config_->newton_iterations; valid = false; } if (config_->newton_step_size <= 0.0) { RTC_LOG(LS_WARNING) << "The Newton step size must be positive: " << config_->newton_step_size; valid = false; } if (config_->observation_duration_lower_bound <= TimeDelta::Zero()) { RTC_LOG(LS_WARNING) << "The observation duration lower bound must be positive: " << ToString(config_->observation_duration_lower_bound); valid = false; } if (config_->observation_window_size < 2) { RTC_LOG(LS_WARNING) << "The observation window size must be at least 2: " << config_->observation_window_size; valid = false; } if (config_->sending_rate_smoothing_factor < 0.0 || config_->sending_rate_smoothing_factor >= 1.0) { RTC_LOG(LS_WARNING) << "The sending rate smoothing factor must be in [0, 1): " << config_->sending_rate_smoothing_factor; valid = false; } if (config_->instant_upper_bound_temporal_weight_factor <= 0.0 || config_->instant_upper_bound_temporal_weight_factor > 1.0) { RTC_LOG(LS_WARNING) << "The instant upper bound temporal weight factor must be in (0, 1]" << config_->instant_upper_bound_temporal_weight_factor; valid = false; } if (config_->instant_upper_bound_bandwidth_balance <= DataRate::Zero()) { RTC_LOG(LS_WARNING) << "The instant upper bound bandwidth balance must be positive: " << ToString(config_->instant_upper_bound_bandwidth_balance); valid = false; } if (config_->instant_upper_bound_loss_offset < 0.0 || config_->instant_upper_bound_loss_offset >= 1.0) { RTC_LOG(LS_WARNING) << "The instant upper bound loss offset must be in [0, 1): " << config_->instant_upper_bound_loss_offset; valid = false; } if (config_->temporal_weight_factor <= 0.0 || config_->temporal_weight_factor > 1.0) { RTC_LOG(LS_WARNING) << "The temporal weight factor must be in (0, 1]: " << config_->temporal_weight_factor; valid = false; } if (config_->bandwidth_backoff_lower_bound_factor > 1.0) { RTC_LOG(LS_WARNING) << "The bandwidth backoff lower bound factor must not be greater than " "1: " << config_->bandwidth_backoff_lower_bound_factor; valid = false; } if (config_->trendline_observations_window_size < 1) { RTC_LOG(LS_WARNING) << "The trendline window size must be at least 1: " << config_->trendline_observations_window_size; valid = false; } if (config_->max_increase_factor <= 0.0) { RTC_LOG(LS_WARNING) << "The maximum increase factor must be positive: " << config_->max_increase_factor; valid = false; } if (config_->delayed_increase_window <= TimeDelta::Zero()) { RTC_LOG(LS_WARNING) << "The delayed increase window must be positive: " << config_->delayed_increase_window.ms(); valid = false; } if (config_->high_loss_rate_threshold <= 0.0 || config_->high_loss_rate_threshold > 1.0) { RTC_LOG(LS_WARNING) << "The high loss rate threshold must be in (0, 1]: " << config_->high_loss_rate_threshold; valid = false; } return valid; } double LossBasedBweV2::GetAverageReportedLossRatio() const { if (num_observations_ <= 0) { return 0.0; } double num_packets = 0; double num_lost_packets = 0; for (const Observation& observation : observations_) { if (!observation.IsInitialized()) { continue; } double instant_temporal_weight = instant_upper_bound_temporal_weights_[(num_observations_ - 1) - observation.id]; num_packets += instant_temporal_weight * observation.num_packets; num_lost_packets += instant_temporal_weight * observation.num_lost_packets; } return num_lost_packets / num_packets; } DataRate LossBasedBweV2::GetCandidateBandwidthUpperBound() const { DataRate candidate_bandwidth_upper_bound = max_bitrate_; if (IsBandwidthLimitedDueToLoss() && IsValid(bandwidth_limit_in_current_window_)) { candidate_bandwidth_upper_bound = bandwidth_limit_in_current_window_; } if (config_->trendline_integration_enabled) { candidate_bandwidth_upper_bound = std::min(GetInstantUpperBound(), candidate_bandwidth_upper_bound); if (IsValid(delay_based_estimate_)) { candidate_bandwidth_upper_bound = std::min(delay_based_estimate_, candidate_bandwidth_upper_bound); } } if (!acknowledged_bitrate_.has_value()) return candidate_bandwidth_upper_bound; if (config_->rampup_acceleration_max_factor > 0.0) { const TimeDelta time_since_bandwidth_reduced = std::min( config_->rampup_acceleration_maxout_time, std::max(TimeDelta::Zero(), last_send_time_most_recent_observation_ - last_time_estimate_reduced_)); const double rampup_acceleration = config_->rampup_acceleration_max_factor * time_since_bandwidth_reduced / config_->rampup_acceleration_maxout_time; candidate_bandwidth_upper_bound += rampup_acceleration * (*acknowledged_bitrate_); } return candidate_bandwidth_upper_bound; } std::vector LossBasedBweV2::GetCandidates() const { std::vector bandwidths; bool can_increase_bitrate = TrendlineEsimateAllowBitrateIncrease(); for (double candidate_factor : config_->candidate_factors) { if (!can_increase_bitrate && candidate_factor > 1.0) { continue; } bandwidths.push_back(candidate_factor * current_estimate_.loss_limited_bandwidth); } if (acknowledged_bitrate_.has_value() && config_->append_acknowledged_rate_candidate && TrendlineEsimateAllowEmergencyBackoff()) { bandwidths.push_back(*acknowledged_bitrate_ * config_->bandwidth_backoff_lower_bound_factor); } if (IsValid(delay_based_estimate_) && config_->append_delay_based_estimate_candidate) { if (can_increase_bitrate && delay_based_estimate_ > current_estimate_.loss_limited_bandwidth) { bandwidths.push_back(delay_based_estimate_); } } const DataRate candidate_bandwidth_upper_bound = GetCandidateBandwidthUpperBound(); std::vector candidates; candidates.resize(bandwidths.size()); for (size_t i = 0; i < bandwidths.size(); ++i) { ChannelParameters candidate = current_estimate_; if (config_->trendline_integration_enabled) { candidate.loss_limited_bandwidth = std::min(bandwidths[i], candidate_bandwidth_upper_bound); } else { candidate.loss_limited_bandwidth = std::min( bandwidths[i], std::max(current_estimate_.loss_limited_bandwidth, candidate_bandwidth_upper_bound)); } candidate.inherent_loss = GetFeasibleInherentLoss(candidate); candidates[i] = candidate; } return candidates; } LossBasedBweV2::Derivatives LossBasedBweV2::GetDerivatives( const ChannelParameters& channel_parameters) const { Derivatives derivatives; for (const Observation& observation : observations_) { if (!observation.IsInitialized()) { continue; } double loss_probability = GetLossProbability( channel_parameters.inherent_loss, channel_parameters.loss_limited_bandwidth, observation.sending_rate); double temporal_weight = temporal_weights_[(num_observations_ - 1) - observation.id]; derivatives.first += temporal_weight * ((observation.num_lost_packets / loss_probability) - (observation.num_received_packets / (1.0 - loss_probability))); derivatives.second -= temporal_weight * ((observation.num_lost_packets / std::pow(loss_probability, 2)) + (observation.num_received_packets / std::pow(1.0 - loss_probability, 2))); } if (derivatives.second >= 0.0) { RTC_LOG(LS_ERROR) << "The second derivative is mathematically guaranteed " "to be negative but is " << derivatives.second << "."; derivatives.second = -1.0e-6; } return derivatives; } double LossBasedBweV2::GetFeasibleInherentLoss( const ChannelParameters& channel_parameters) const { return std::min( std::max(channel_parameters.inherent_loss, config_->inherent_loss_lower_bound), GetInherentLossUpperBound(channel_parameters.loss_limited_bandwidth)); } double LossBasedBweV2::GetInherentLossUpperBound(DataRate bandwidth) const { if (bandwidth.IsZero()) { return 1.0; } double inherent_loss_upper_bound = config_->inherent_loss_upper_bound_offset + config_->inherent_loss_upper_bound_bandwidth_balance / bandwidth; return std::min(inherent_loss_upper_bound, 1.0); } double LossBasedBweV2::AdjustBiasFactor(double loss_rate, double bias_factor) const { return bias_factor * (config_->loss_threshold_of_high_bandwidth_preference - loss_rate) / (config_->bandwidth_preference_smoothing_factor + std::abs(config_->loss_threshold_of_high_bandwidth_preference - loss_rate)); } double LossBasedBweV2::GetHighBandwidthBias(DataRate bandwidth) const { if (IsValid(bandwidth)) { const double average_reported_loss_ratio = GetAverageReportedLossRatio(); return AdjustBiasFactor(average_reported_loss_ratio, config_->higher_bandwidth_bias_factor) * bandwidth.kbps() + AdjustBiasFactor(average_reported_loss_ratio, config_->higher_log_bandwidth_bias_factor) * std::log(1.0 + bandwidth.kbps()); } return 0.0; } double LossBasedBweV2::GetObjective( const ChannelParameters& channel_parameters) const { double objective = 0.0; const double high_bandwidth_bias = GetHighBandwidthBias(channel_parameters.loss_limited_bandwidth); for (const Observation& observation : observations_) { if (!observation.IsInitialized()) { continue; } double loss_probability = GetLossProbability( channel_parameters.inherent_loss, channel_parameters.loss_limited_bandwidth, observation.sending_rate); double temporal_weight = temporal_weights_[(num_observations_ - 1) - observation.id]; objective += temporal_weight * ((observation.num_lost_packets * std::log(loss_probability)) + (observation.num_received_packets * std::log(1.0 - loss_probability))); objective += temporal_weight * high_bandwidth_bias * observation.num_packets; } return objective; } DataRate LossBasedBweV2::GetSendingRate( DataRate instantaneous_sending_rate) const { if (num_observations_ <= 0) { return instantaneous_sending_rate; } const int most_recent_observation_idx = (num_observations_ - 1) % config_->observation_window_size; const Observation& most_recent_observation = observations_[most_recent_observation_idx]; DataRate sending_rate_previous_observation = most_recent_observation.sending_rate; return config_->sending_rate_smoothing_factor * sending_rate_previous_observation + (1.0 - config_->sending_rate_smoothing_factor) * instantaneous_sending_rate; } DataRate LossBasedBweV2::GetInstantUpperBound() const { return cached_instant_upper_bound_.value_or(max_bitrate_); } void LossBasedBweV2::CalculateInstantUpperBound() { DataRate instant_limit = max_bitrate_; const double average_reported_loss_ratio = GetAverageReportedLossRatio(); if (average_reported_loss_ratio > config_->instant_upper_bound_loss_offset) { instant_limit = config_->instant_upper_bound_bandwidth_balance / (average_reported_loss_ratio - config_->instant_upper_bound_loss_offset); if (average_reported_loss_ratio > config_->high_loss_rate_threshold) { instant_limit = std::min( instant_limit, DataRate::KilobitsPerSec(std::max( static_cast(min_bitrate_.kbps()), config_->bandwidth_cap_at_high_loss_rate.kbps() - config_->slope_of_bwe_high_loss_func * average_reported_loss_ratio))); } } if (IsBandwidthLimitedDueToLoss()) { if (IsValid(upper_link_capacity_) && config_->bound_by_upper_link_capacity_when_loss_limited) { instant_limit = std::min(instant_limit, upper_link_capacity_); } } cached_instant_upper_bound_ = instant_limit; } void LossBasedBweV2::CalculateTemporalWeights() { for (int i = 0; i < config_->observation_window_size; ++i) { temporal_weights_[i] = std::pow(config_->temporal_weight_factor, i); instant_upper_bound_temporal_weights_[i] = std::pow(config_->instant_upper_bound_temporal_weight_factor, i); } } void LossBasedBweV2::NewtonsMethodUpdate( ChannelParameters& channel_parameters) const { if (num_observations_ <= 0) { return; } for (int i = 0; i < config_->newton_iterations; ++i) { const Derivatives derivatives = GetDerivatives(channel_parameters); channel_parameters.inherent_loss -= config_->newton_step_size * derivatives.first / derivatives.second; channel_parameters.inherent_loss = GetFeasibleInherentLoss(channel_parameters); } } bool LossBasedBweV2::TrendlineEsimateAllowBitrateIncrease() const { if (!config_->trendline_integration_enabled) { return true; } for (const auto& detector_state : delay_detector_states_) { if (detector_state == BandwidthUsage::kBwOverusing || detector_state == BandwidthUsage::kBwUnderusing) { return false; } } return true; } bool LossBasedBweV2::TrendlineEsimateAllowEmergencyBackoff() const { if (!config_->trendline_integration_enabled) { return true; } if (!config_->use_acked_bitrate_only_when_overusing) { return true; } for (const auto& detector_state : delay_detector_states_) { if (detector_state == BandwidthUsage::kBwOverusing) { return true; } } return false; } bool LossBasedBweV2::PushBackObservation( rtc::ArrayView packet_results, BandwidthUsage delay_detector_state) { delay_detector_states_.push_front(delay_detector_state); if (static_cast(delay_detector_states_.size()) > config_->trendline_observations_window_size) { delay_detector_states_.pop_back(); } if (packet_results.empty()) { return false; } PacketResultsSummary packet_results_summary = GetPacketResultsSummary(packet_results); partial_observation_.num_packets += packet_results_summary.num_packets; partial_observation_.num_lost_packets += packet_results_summary.num_lost_packets; partial_observation_.size += packet_results_summary.total_size; // This is the first packet report we have received. if (!IsValid(last_send_time_most_recent_observation_)) { last_send_time_most_recent_observation_ = packet_results_summary.first_send_time; } const Timestamp last_send_time = packet_results_summary.last_send_time; const TimeDelta observation_duration = last_send_time - last_send_time_most_recent_observation_; // Too small to be meaningful. if (observation_duration <= TimeDelta::Zero() || (observation_duration < config_->observation_duration_lower_bound && (delay_detector_state != BandwidthUsage::kBwOverusing || !config_->trendline_integration_enabled))) { return false; } last_send_time_most_recent_observation_ = last_send_time; Observation observation; observation.num_packets = partial_observation_.num_packets; observation.num_lost_packets = partial_observation_.num_lost_packets; observation.num_received_packets = observation.num_packets - observation.num_lost_packets; observation.sending_rate = GetSendingRate(partial_observation_.size / observation_duration); observation.id = num_observations_++; observations_[observation.id % config_->observation_window_size] = observation; partial_observation_ = PartialObservation(); CalculateInstantUpperBound(); return true; } bool LossBasedBweV2::IsBandwidthLimitedDueToLoss() const { return current_state_ != LossBasedState::kDelayBasedEstimate; } } // namespace webrtc