/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/probe_controller.h" #include #include #include #include #include "absl/strings/match.h" #include "absl/types/optional.h" #include "api/units/data_rate.h" #include "api/units/data_size.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // Maximum waiting time from the time of initiating probing to getting // the measured results back. constexpr TimeDelta kMaxWaitingTimeForProbingResult = TimeDelta::Seconds(1); // Default probing bitrate limit. Applied only when the application didn't // specify max bitrate. constexpr DataRate kDefaultMaxProbingBitrate = DataRate::KilobitsPerSec(5000); // If the bitrate drops to a factor `kBitrateDropThreshold` or lower // and we recover within `kBitrateDropTimeoutMs`, then we'll send // a probe at a fraction `kProbeFractionAfterDrop` of the original bitrate. constexpr double kBitrateDropThreshold = 0.66; constexpr TimeDelta kBitrateDropTimeout = TimeDelta::Seconds(5); constexpr double kProbeFractionAfterDrop = 0.85; // Timeout for probing after leaving ALR. If the bitrate drops significantly, // (as determined by the delay based estimator) and we leave ALR, then we will // send a probe if we recover within `kLeftAlrTimeoutMs` ms. constexpr TimeDelta kAlrEndedTimeout = TimeDelta::Seconds(3); // The expected uncertainty of probe result (as a fraction of the target probe // This is a limit on how often probing can be done when there is a BW // drop detected in ALR. constexpr TimeDelta kMinTimeBetweenAlrProbes = TimeDelta::Seconds(5); // bitrate). Used to avoid probing if the probe bitrate is close to our current // estimate. constexpr double kProbeUncertainty = 0.05; // Use probing to recover faster after large bitrate estimate drops. constexpr char kBweRapidRecoveryExperiment[] = "WebRTC-BweRapidRecoveryExperiment"; void MaybeLogProbeClusterCreated(RtcEventLog* event_log, const ProbeClusterConfig& probe) { RTC_DCHECK(event_log); if (!event_log) { return; } DataSize min_data_size = probe.target_data_rate * probe.target_duration; event_log->Log(std::make_unique( probe.id, probe.target_data_rate.bps(), probe.target_probe_count, min_data_size.bytes())); } } // namespace ProbeControllerConfig::ProbeControllerConfig( const FieldTrialsView* key_value_config) : first_exponential_probe_scale("p1", 3.0), second_exponential_probe_scale("p2", 6.0), further_exponential_probe_scale("step_size", 2), further_probe_threshold("further_probe_threshold", 0.7), alr_probing_interval("alr_interval", TimeDelta::Seconds(5)), alr_probe_scale("alr_scale", 2), network_state_estimate_probing_interval("network_state_interval", TimeDelta::PlusInfinity()), probe_if_estimate_lower_than_network_state_estimate_ratio( "est_lower_than_network_ratio", 0), estimate_lower_than_network_state_estimate_probing_interval( "est_lower_than_network_interval", TimeDelta::Seconds(3)), network_state_probe_scale("network_state_scale", 1.0), network_state_probe_duration("network_state_probe_duration", TimeDelta::Millis(15)), probe_on_max_allocated_bitrate_change("probe_max_allocation", true), first_allocation_probe_scale("alloc_p1", 1), second_allocation_probe_scale("alloc_p2", 2), allocation_allow_further_probing("alloc_probe_further", false), allocation_probe_max("alloc_probe_max", DataRate::PlusInfinity()), min_probe_packets_sent("min_probe_packets_sent", 5), min_probe_duration("min_probe_duration", TimeDelta::Millis(15)), limit_probe_target_rate_to_loss_bwe("limit_probe_target_rate_to_loss_bwe", false), loss_limited_probe_scale("loss_limited_scale", 1.5), skip_if_estimate_larger_than_fraction_of_max( "skip_if_est_larger_than_fraction_of_max", 0.0) { ParseFieldTrial({&first_exponential_probe_scale, &second_exponential_probe_scale, &further_exponential_probe_scale, &further_probe_threshold, &alr_probing_interval, &alr_probe_scale, &probe_on_max_allocated_bitrate_change, &first_allocation_probe_scale, &second_allocation_probe_scale, &allocation_allow_further_probing, &min_probe_duration, &network_state_estimate_probing_interval, &probe_if_estimate_lower_than_network_state_estimate_ratio, &estimate_lower_than_network_state_estimate_probing_interval, &network_state_probe_scale, &network_state_probe_duration, &min_probe_packets_sent, &limit_probe_target_rate_to_loss_bwe, &loss_limited_probe_scale, &skip_if_estimate_larger_than_fraction_of_max}, key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration")); // Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration ParseFieldTrial( {&first_exponential_probe_scale, &second_exponential_probe_scale}, key_value_config->Lookup("WebRTC-Bwe-InitialProbing")); ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold}, key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing")); ParseFieldTrial( {&alr_probing_interval, &alr_probe_scale, &loss_limited_probe_scale}, key_value_config->Lookup("WebRTC-Bwe-AlrProbing")); ParseFieldTrial( {&first_allocation_probe_scale, &second_allocation_probe_scale, &allocation_allow_further_probing, &allocation_probe_max}, key_value_config->Lookup("WebRTC-Bwe-AllocationProbing")); ParseFieldTrial({&min_probe_packets_sent, &min_probe_duration}, key_value_config->Lookup("WebRTC-Bwe-ProbingBehavior")); } ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) = default; ProbeControllerConfig::~ProbeControllerConfig() = default; ProbeController::ProbeController(const FieldTrialsView* key_value_config, RtcEventLog* event_log) : enable_periodic_alr_probing_(false), in_rapid_recovery_experiment_(absl::StartsWith( key_value_config->Lookup(kBweRapidRecoveryExperiment), "Enabled")), event_log_(event_log), config_(ProbeControllerConfig(key_value_config)) { Reset(Timestamp::Zero()); } ProbeController::~ProbeController() {} std::vector ProbeController::SetBitrates( DataRate min_bitrate, DataRate start_bitrate, DataRate max_bitrate, Timestamp at_time) { if (start_bitrate > DataRate::Zero()) { start_bitrate_ = start_bitrate; estimated_bitrate_ = start_bitrate; } else if (start_bitrate_.IsZero()) { start_bitrate_ = min_bitrate; } // The reason we use the variable `old_max_bitrate_pbs` is because we // need to set `max_bitrate_` before we call InitiateProbing. DataRate old_max_bitrate = max_bitrate_; max_bitrate_ = max_bitrate.IsFinite() ? max_bitrate : kDefaultMaxProbingBitrate; switch (state_) { case State::kInit: if (network_available_) return InitiateExponentialProbing(at_time); break; case State::kWaitingForProbingResult: break; case State::kProbingComplete: // If the new max bitrate is higher than both the old max bitrate and the // estimate then initiate probing. if (!estimated_bitrate_.IsZero() && old_max_bitrate < max_bitrate_ && estimated_bitrate_ < max_bitrate_) { // The assumption is that if we jump more than 20% in the bandwidth // estimate or if the bandwidth estimate is within 90% of the new // max bitrate then the probing attempt was successful. mid_call_probing_succcess_threshold_ = std::min(estimated_bitrate_ * 1.2, max_bitrate_ * 0.9); mid_call_probing_waiting_for_result_ = true; mid_call_probing_bitrate_ = max_bitrate_; RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated", max_bitrate_.kbps()); return InitiateProbing(at_time, {max_bitrate_}, false); } break; } return std::vector(); } std::vector ProbeController::OnMaxTotalAllocatedBitrate( DataRate max_total_allocated_bitrate, Timestamp at_time) { const bool in_alr = alr_start_time_.has_value(); const bool allow_allocation_probe = in_alr; if (config_.probe_on_max_allocated_bitrate_change && state_ == State::kProbingComplete && max_total_allocated_bitrate != max_total_allocated_bitrate_ && estimated_bitrate_ < max_bitrate_ && estimated_bitrate_ < max_total_allocated_bitrate && allow_allocation_probe) { max_total_allocated_bitrate_ = max_total_allocated_bitrate; if (!config_.first_allocation_probe_scale) return std::vector(); DataRate first_probe_rate = max_total_allocated_bitrate * config_.first_allocation_probe_scale.Value(); DataRate probe_cap = config_.allocation_probe_max.Get(); first_probe_rate = std::min(first_probe_rate, probe_cap); std::vector probes = {first_probe_rate}; if (config_.second_allocation_probe_scale) { DataRate second_probe_rate = max_total_allocated_bitrate * config_.second_allocation_probe_scale.Value(); second_probe_rate = std::min(second_probe_rate, probe_cap); if (second_probe_rate > first_probe_rate) probes.push_back(second_probe_rate); } return InitiateProbing(at_time, probes, config_.allocation_allow_further_probing.Get()); } max_total_allocated_bitrate_ = max_total_allocated_bitrate; return std::vector(); } std::vector ProbeController::OnNetworkAvailability( NetworkAvailability msg) { network_available_ = msg.network_available; if (!network_available_ && state_ == State::kWaitingForProbingResult) { state_ = State::kProbingComplete; min_bitrate_to_probe_further_ = DataRate::PlusInfinity(); } if (network_available_ && state_ == State::kInit && !start_bitrate_.IsZero()) return InitiateExponentialProbing(msg.at_time); return std::vector(); } std::vector ProbeController::InitiateExponentialProbing( Timestamp at_time) { RTC_DCHECK(network_available_); RTC_DCHECK(state_ == State::kInit); RTC_DCHECK_GT(start_bitrate_, DataRate::Zero()); // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of // 1.2 Mbps to continue probing. std::vector probes = {config_.first_exponential_probe_scale * start_bitrate_}; if (config_.second_exponential_probe_scale && config_.second_exponential_probe_scale.GetOptional().value() > 0) { probes.push_back(config_.second_exponential_probe_scale.Value() * start_bitrate_); } return InitiateProbing(at_time, probes, true); } std::vector ProbeController::SetEstimatedBitrate( DataRate bitrate, BandwidthLimitedCause bandwidth_limited_cause, Timestamp at_time) { bandwidth_limited_cause_ = bandwidth_limited_cause; if (bitrate < kBitrateDropThreshold * estimated_bitrate_) { time_of_last_large_drop_ = at_time; bitrate_before_last_large_drop_ = estimated_bitrate_; } estimated_bitrate_ = bitrate; if (mid_call_probing_waiting_for_result_ && bitrate >= mid_call_probing_succcess_threshold_) { RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success", mid_call_probing_bitrate_.kbps()); RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps", bitrate.kbps()); mid_call_probing_waiting_for_result_ = false; } if (state_ == State::kWaitingForProbingResult) { // Continue probing if probing results indicate channel has greater // capacity. DataRate network_state_estimate_probe_further_limit = config_.network_state_estimate_probing_interval->IsFinite() && network_estimate_ ? network_estimate_->link_capacity_upper * config_.further_probe_threshold : DataRate::PlusInfinity(); RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate << " Minimum to probe further: " << min_bitrate_to_probe_further_ << " upper limit: " << network_state_estimate_probe_further_limit; if (bitrate > min_bitrate_to_probe_further_ && bitrate <= network_state_estimate_probe_further_limit) { return InitiateProbing( at_time, {config_.further_exponential_probe_scale * bitrate}, true); } } return {}; } void ProbeController::EnablePeriodicAlrProbing(bool enable) { enable_periodic_alr_probing_ = enable; } void ProbeController::SetAlrStartTimeMs( absl::optional alr_start_time_ms) { if (alr_start_time_ms) { alr_start_time_ = Timestamp::Millis(*alr_start_time_ms); } else { alr_start_time_ = absl::nullopt; } } void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) { alr_end_time_.emplace(Timestamp::Millis(alr_end_time_ms)); } std::vector ProbeController::RequestProbe( Timestamp at_time) { // Called once we have returned to normal state after a large drop in // estimated bandwidth. The current response is to initiate a single probe // session (if not already probing) at the previous bitrate. // // If the probe session fails, the assumption is that this drop was a // real one from a competing flow or a network change. bool in_alr = alr_start_time_.has_value(); bool alr_ended_recently = (alr_end_time_.has_value() && at_time - alr_end_time_.value() < kAlrEndedTimeout); if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) { if (state_ == State::kProbingComplete) { DataRate suggested_probe = kProbeFractionAfterDrop * bitrate_before_last_large_drop_; DataRate min_expected_probe_result = (1 - kProbeUncertainty) * suggested_probe; TimeDelta time_since_drop = at_time - time_of_last_large_drop_; TimeDelta time_since_probe = at_time - last_bwe_drop_probing_time_; if (min_expected_probe_result > estimated_bitrate_ && time_since_drop < kBitrateDropTimeout && time_since_probe > kMinTimeBetweenAlrProbes) { RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing."; // Track how often we probe in response to bandwidth drop in ALR. RTC_HISTOGRAM_COUNTS_10000( "WebRTC.BWE.BweDropProbingIntervalInS", (at_time - last_bwe_drop_probing_time_).seconds()); last_bwe_drop_probing_time_ = at_time; return InitiateProbing(at_time, {suggested_probe}, false); } } } return std::vector(); } void ProbeController::SetNetworkStateEstimate( webrtc::NetworkStateEstimate estimate) { network_estimate_ = estimate; } void ProbeController::Reset(Timestamp at_time) { network_available_ = true; bandwidth_limited_cause_ = BandwidthLimitedCause::kDelayBasedLimited; state_ = State::kInit; min_bitrate_to_probe_further_ = DataRate::PlusInfinity(); time_last_probing_initiated_ = Timestamp::Zero(); estimated_bitrate_ = DataRate::Zero(); network_estimate_ = absl::nullopt; start_bitrate_ = DataRate::Zero(); max_bitrate_ = kDefaultMaxProbingBitrate; Timestamp now = at_time; last_bwe_drop_probing_time_ = now; alr_end_time_.reset(); mid_call_probing_waiting_for_result_ = false; time_of_last_large_drop_ = now; bitrate_before_last_large_drop_ = DataRate::Zero(); max_total_allocated_bitrate_ = DataRate::Zero(); } bool ProbeController::TimeForAlrProbe(Timestamp at_time) const { if (enable_periodic_alr_probing_ && alr_start_time_) { Timestamp next_probe_time = std::max(*alr_start_time_, time_last_probing_initiated_) + config_.alr_probing_interval; return at_time >= next_probe_time; } return false; } bool ProbeController::TimeForNetworkStateProbe(Timestamp at_time) const { if (!network_estimate_ || network_estimate_->link_capacity_upper.IsInfinite()) { return false; } bool probe_due_to_low_estimate = bandwidth_limited_cause_ == BandwidthLimitedCause::kDelayBasedLimited && estimated_bitrate_ < config_.probe_if_estimate_lower_than_network_state_estimate_ratio * network_estimate_->link_capacity_upper; if (probe_due_to_low_estimate && config_.estimate_lower_than_network_state_estimate_probing_interval ->IsFinite()) { Timestamp next_probe_time = time_last_probing_initiated_ + config_.estimate_lower_than_network_state_estimate_probing_interval; return at_time >= next_probe_time; } bool periodic_probe = estimated_bitrate_ < network_estimate_->link_capacity_upper; if (periodic_probe && config_.network_state_estimate_probing_interval->IsFinite()) { Timestamp next_probe_time = time_last_probing_initiated_ + config_.network_state_estimate_probing_interval; return at_time >= next_probe_time; } return false; } std::vector ProbeController::Process(Timestamp at_time) { if (at_time - time_last_probing_initiated_ > kMaxWaitingTimeForProbingResult) { mid_call_probing_waiting_for_result_ = false; if (state_ == State::kWaitingForProbingResult) { RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout"; state_ = State::kProbingComplete; min_bitrate_to_probe_further_ = DataRate::PlusInfinity(); } } if (estimated_bitrate_.IsZero() || state_ != State::kProbingComplete) { return {}; } if (TimeForAlrProbe(at_time) || TimeForNetworkStateProbe(at_time)) { return InitiateProbing( at_time, {estimated_bitrate_ * config_.alr_probe_scale}, true); } return std::vector(); } std::vector ProbeController::InitiateProbing( Timestamp now, std::vector bitrates_to_probe, bool probe_further) { if (config_.skip_if_estimate_larger_than_fraction_of_max > 0) { DataRate network_estimate = network_estimate_ ? network_estimate_->link_capacity_upper : DataRate::PlusInfinity(); DataRate max_probe_rate = max_total_allocated_bitrate_.IsZero() ? max_bitrate_ : std::min(max_total_allocated_bitrate_, max_bitrate_); if (std::min(network_estimate, estimated_bitrate_) > config_.skip_if_estimate_larger_than_fraction_of_max * max_probe_rate) { state_ = State::kProbingComplete; min_bitrate_to_probe_further_ = DataRate::PlusInfinity(); return {}; } } DataRate max_probe_bitrate = max_bitrate_; if (max_total_allocated_bitrate_ > DataRate::Zero()) { // If a max allocated bitrate has been configured, allow probing up to 2x // that rate. This allows some overhead to account for bursty streams, // which otherwise would have to ramp up when the overshoot is already in // progress. // It also avoids minor quality reduction caused by probes often being // received at slightly less than the target probe bitrate. max_probe_bitrate = std::min(max_probe_bitrate, max_total_allocated_bitrate_ * 2); } DataRate estimate_capped_bitrate = DataRate::PlusInfinity(); if (config_.limit_probe_target_rate_to_loss_bwe) { switch (bandwidth_limited_cause_) { case BandwidthLimitedCause::kLossLimitedBweDecreasing: // If bandwidth estimate is decreasing because of packet loss, do not // send probes. return {}; case BandwidthLimitedCause::kLossLimitedBweIncreasing: estimate_capped_bitrate = std::min(max_probe_bitrate, estimated_bitrate_ * config_.loss_limited_probe_scale); break; case BandwidthLimitedCause::kDelayBasedLimited: break; } } if (config_.network_state_estimate_probing_interval->IsFinite() && network_estimate_ && network_estimate_->link_capacity_upper.IsFinite()) { if (network_estimate_->link_capacity_upper.IsZero()) { RTC_LOG(LS_INFO) << "Not sending probe, Network state estimate is zero"; return {}; } estimate_capped_bitrate = std::min({estimate_capped_bitrate, max_probe_bitrate, network_estimate_->link_capacity_upper * config_.network_state_probe_scale}); } std::vector pending_probes; for (DataRate bitrate : bitrates_to_probe) { RTC_DCHECK(!bitrate.IsZero()); bitrate = std::min(bitrate, estimate_capped_bitrate); if (bitrate > max_probe_bitrate) { bitrate = max_probe_bitrate; probe_further = false; } ProbeClusterConfig config; config.at_time = now; config.target_data_rate = bitrate; if (network_estimate_ && config_.network_state_estimate_probing_interval->IsFinite()) { config.target_duration = config_.network_state_probe_duration; } else { config.target_duration = config_.min_probe_duration; } config.target_probe_count = config_.min_probe_packets_sent; config.id = next_probe_cluster_id_; next_probe_cluster_id_++; MaybeLogProbeClusterCreated(event_log_, config); pending_probes.push_back(config); } time_last_probing_initiated_ = now; if (probe_further) { state_ = State::kWaitingForProbingResult; // Dont expect probe results to be larger than a fraction of the actual // probe rate. min_bitrate_to_probe_further_ = std::min(estimate_capped_bitrate, (*(bitrates_to_probe.end() - 1))) * config_.further_probe_threshold; } else { state_ = State::kProbingComplete; min_bitrate_to_probe_further_ = DataRate::PlusInfinity(); } return pending_probes; } } // namespace webrtc