// sigslot.h: Signal/Slot classes // // Written by Sarah Thompson (sarah@telergy.com) 2002. // // License: Public domain. You are free to use this code however you like, with // the proviso that the author takes on no responsibility or liability for any // use. // // QUICK DOCUMENTATION // // (see also the full documentation at http://sigslot.sourceforge.net/) // // #define switches // SIGSLOT_PURE_ISO: // Define this to force ISO C++ compliance. This also disables all of // the thread safety support on platforms where it is available. // // SIGSLOT_USE_POSIX_THREADS: // Force use of Posix threads when using a C++ compiler other than gcc // on a platform that supports Posix threads. (When using gcc, this is // the default - use SIGSLOT_PURE_ISO to disable this if necessary) // // SIGSLOT_DEFAULT_MT_POLICY: // Where thread support is enabled, this defaults to // multi_threaded_global. Otherwise, the default is single_threaded. // #define this yourself to override the default. In pure ISO mode, // anything other than single_threaded will cause a compiler error. // // PLATFORM NOTES // // Win32: // On Win32, the WEBRTC_WIN symbol must be #defined. Most mainstream // compilers do this by default, but you may need to define it yourself // if your build environment is less standard. This causes the Win32 // thread support to be compiled in and used automatically. // // Unix/Linux/BSD, etc.: // If you're using gcc, it is assumed that you have Posix threads // available, so they are used automatically. You can override this (as // under Windows) with the SIGSLOT_PURE_ISO switch. If you're using // something other than gcc but still want to use Posix threads, you // need to #define SIGSLOT_USE_POSIX_THREADS. // // ISO C++: // If none of the supported platforms are detected, or if // SIGSLOT_PURE_ISO is defined, all multithreading support is turned // off, along with any code that might cause a pure ISO C++ environment // to complain. Before you ask, gcc -ansi -pedantic won't compile this // library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of // errors that aren't really there. If you feel like investigating this, // please contact the author. // // // THREADING MODES // // single_threaded: // Your program is assumed to be single threaded from the point of view // of signal/slot usage (i.e. all objects using signals and slots are // created and destroyed from a single thread). Behaviour if objects are // destroyed concurrently is undefined (i.e. you'll get the occasional // segmentation fault/memory exception). // // multi_threaded_global: // Your program is assumed to be multi threaded. Objects using signals // and slots can be safely created and destroyed from any thread, even // when connections exist. In multi_threaded_global mode, this is // achieved by a single global mutex (actually a critical section on // Windows because they are faster). This option uses less OS resources, // but results in more opportunities for contention, possibly resulting // in more context switches than are strictly necessary. // // multi_threaded_local: // Behaviour in this mode is essentially the same as // multi_threaded_global, except that each signal, and each object that // inherits has_slots, all have their own mutex/critical section. In // practice, this means that mutex collisions (and hence context // switches) only happen if they are absolutely essential. However, on // some platforms, creating a lot of mutexes can slow down the whole OS, // so use this option with care. // // USING THE LIBRARY // // See the full documentation at http://sigslot.sourceforge.net/ // // Libjingle specific: // // This file has been modified such that has_slots and signalx do not have to be // using the same threading requirements. E.g. it is possible to connect a // has_slots and signal0 or // has_slots and signal0. // If has_slots is single threaded the user must ensure that it is not trying // to connect or disconnect to signalx concurrently or data race may occur. // If signalx is single threaded the user must ensure that disconnect, connect // or signal is not happening concurrently or data race may occur. #ifndef RTC_BASE_THIRD_PARTY_SIGSLOT_SIGSLOT_H_ #define RTC_BASE_THIRD_PARTY_SIGSLOT_SIGSLOT_H_ #include #include #include // On our copy of sigslot.h, we set single threading as default. #define SIGSLOT_DEFAULT_MT_POLICY single_threaded #if defined(SIGSLOT_PURE_ISO) || \ (!defined(WEBRTC_WIN) && !defined(__GNUG__) && \ !defined(SIGSLOT_USE_POSIX_THREADS)) #define _SIGSLOT_SINGLE_THREADED #elif defined(WEBRTC_WIN) #define _SIGSLOT_HAS_WIN32_THREADS #include "windows.h" #elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS) #define _SIGSLOT_HAS_POSIX_THREADS #include #else #define _SIGSLOT_SINGLE_THREADED #endif #ifndef SIGSLOT_DEFAULT_MT_POLICY #ifdef _SIGSLOT_SINGLE_THREADED #define SIGSLOT_DEFAULT_MT_POLICY single_threaded #else #define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local #endif #endif // TODO: change this namespace to rtc? namespace sigslot { class single_threaded { public: void lock() {} void unlock() {} }; #ifdef _SIGSLOT_HAS_WIN32_THREADS // The multi threading policies only get compiled in if they are enabled. class multi_threaded_global { public: multi_threaded_global() { static bool isinitialised = false; if (!isinitialised) { InitializeCriticalSection(get_critsec()); isinitialised = true; } } void lock() { EnterCriticalSection(get_critsec()); } void unlock() { LeaveCriticalSection(get_critsec()); } private: CRITICAL_SECTION* get_critsec() { static CRITICAL_SECTION g_critsec; return &g_critsec; } }; class multi_threaded_local { public: multi_threaded_local() { InitializeCriticalSection(&m_critsec); } multi_threaded_local(const multi_threaded_local&) { InitializeCriticalSection(&m_critsec); } ~multi_threaded_local() { DeleteCriticalSection(&m_critsec); } void lock() { EnterCriticalSection(&m_critsec); } void unlock() { LeaveCriticalSection(&m_critsec); } private: CRITICAL_SECTION m_critsec; }; #endif // _SIGSLOT_HAS_WIN32_THREADS #ifdef _SIGSLOT_HAS_POSIX_THREADS // The multi threading policies only get compiled in if they are enabled. class multi_threaded_global { public: void lock() { pthread_mutex_lock(get_mutex()); } void unlock() { pthread_mutex_unlock(get_mutex()); } private: static pthread_mutex_t* get_mutex(); }; class multi_threaded_local { public: multi_threaded_local() { pthread_mutex_init(&m_mutex, nullptr); } multi_threaded_local(const multi_threaded_local&) { pthread_mutex_init(&m_mutex, nullptr); } ~multi_threaded_local() { pthread_mutex_destroy(&m_mutex); } void lock() { pthread_mutex_lock(&m_mutex); } void unlock() { pthread_mutex_unlock(&m_mutex); } private: pthread_mutex_t m_mutex; }; #endif // _SIGSLOT_HAS_POSIX_THREADS template class lock_block { public: mt_policy* m_mutex; lock_block(mt_policy* mtx) : m_mutex(mtx) { m_mutex->lock(); } ~lock_block() { m_mutex->unlock(); } }; class _signal_base_interface; class has_slots_interface { private: typedef void (*signal_connect_t)(has_slots_interface* self, _signal_base_interface* sender); typedef void (*signal_disconnect_t)(has_slots_interface* self, _signal_base_interface* sender); typedef void (*disconnect_all_t)(has_slots_interface* self); const signal_connect_t m_signal_connect; const signal_disconnect_t m_signal_disconnect; const disconnect_all_t m_disconnect_all; protected: has_slots_interface(signal_connect_t conn, signal_disconnect_t disc, disconnect_all_t disc_all) : m_signal_connect(conn), m_signal_disconnect(disc), m_disconnect_all(disc_all) {} // Doesn't really need to be virtual, but is for backwards compatibility // (it was virtual in a previous version of sigslot). virtual ~has_slots_interface() {} public: void signal_connect(_signal_base_interface* sender) { m_signal_connect(this, sender); } void signal_disconnect(_signal_base_interface* sender) { m_signal_disconnect(this, sender); } void disconnect_all() { m_disconnect_all(this); } }; class _signal_base_interface { private: typedef void (*slot_disconnect_t)(_signal_base_interface* self, has_slots_interface* pslot); typedef void (*slot_duplicate_t)(_signal_base_interface* self, const has_slots_interface* poldslot, has_slots_interface* pnewslot); const slot_disconnect_t m_slot_disconnect; const slot_duplicate_t m_slot_duplicate; protected: _signal_base_interface(slot_disconnect_t disc, slot_duplicate_t dupl) : m_slot_disconnect(disc), m_slot_duplicate(dupl) {} ~_signal_base_interface() {} public: void slot_disconnect(has_slots_interface* pslot) { m_slot_disconnect(this, pslot); } void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) { m_slot_duplicate(this, poldslot, pnewslot); } }; class _opaque_connection { private: typedef void (*emit_t)(const _opaque_connection*); template union union_caster { FromT from; ToT to; }; emit_t pemit; has_slots_interface* pdest; // Pointers to member functions may be up to 16 bytes (24 bytes for MSVC) // for virtual classes, so make sure we have enough space to store it. #if defined(_MSC_VER) && !defined(__clang__) unsigned char pmethod[24]; #else unsigned char pmethod[16]; #endif public: template _opaque_connection(DestT* pd, void (DestT::*pm)(Args...)) : pdest(pd) { typedef void (DestT::*pm_t)(Args...); static_assert(sizeof(pm_t) <= sizeof(pmethod), "Size of slot function pointer too large."); std::memcpy(pmethod, &pm, sizeof(pm_t)); typedef void (*em_t)(const _opaque_connection* self, Args...); union_caster caster2; caster2.from = &_opaque_connection::emitter; pemit = caster2.to; } has_slots_interface* getdest() const { return pdest; } _opaque_connection duplicate(has_slots_interface* newtarget) const { _opaque_connection res = *this; res.pdest = newtarget; return res; } // Just calls the stored "emitter" function pointer stored at construction // time. template void emit(Args... args) const { typedef void (*em_t)(const _opaque_connection*, Args...); union_caster caster; caster.from = pemit; (caster.to)(this, args...); } private: template static void emitter(const _opaque_connection* self, Args... args) { typedef void (DestT::*pm_t)(Args...); pm_t pm; static_assert(sizeof(pm_t) <= sizeof(pmethod), "Size of slot function pointer too large."); std::memcpy(&pm, self->pmethod, sizeof(pm_t)); (static_cast(self->pdest)->*(pm))(args...); } }; template class _signal_base : public _signal_base_interface, public mt_policy { protected: typedef std::list<_opaque_connection> connections_list; _signal_base() : _signal_base_interface(&_signal_base::do_slot_disconnect, &_signal_base::do_slot_duplicate), m_current_iterator(m_connected_slots.end()) {} ~_signal_base() { disconnect_all(); } private: _signal_base& operator=(_signal_base const& that); public: _signal_base(const _signal_base& o) : _signal_base_interface(&_signal_base::do_slot_disconnect, &_signal_base::do_slot_duplicate), m_current_iterator(m_connected_slots.end()) { lock_block lock(this); for (const auto& connection : o.m_connected_slots) { connection.getdest()->signal_connect(this); m_connected_slots.push_back(connection); } } bool is_empty() { lock_block lock(this); return m_connected_slots.empty(); } void disconnect_all() { lock_block lock(this); while (!m_connected_slots.empty()) { has_slots_interface* pdest = m_connected_slots.front().getdest(); m_connected_slots.pop_front(); pdest->signal_disconnect(static_cast<_signal_base_interface*>(this)); } // If disconnect_all is called while the signal is firing, advance the // current slot iterator to the end to avoid an invalidated iterator from // being dereferenced. m_current_iterator = m_connected_slots.end(); } #if !defined(NDEBUG) bool connected(has_slots_interface* pclass) { lock_block lock(this); connections_list::const_iterator it = m_connected_slots.begin(); connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd) { if (it->getdest() == pclass) return true; ++it; } return false; } #endif void disconnect(has_slots_interface* pclass) { lock_block lock(this); connections_list::iterator it = m_connected_slots.begin(); connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd) { if (it->getdest() == pclass) { // If we're currently using this iterator because the signal is firing, // advance it to avoid it being invalidated. if (m_current_iterator == it) { m_current_iterator = m_connected_slots.erase(it); } else { m_connected_slots.erase(it); } pclass->signal_disconnect(static_cast<_signal_base_interface*>(this)); return; } ++it; } } private: static void do_slot_disconnect(_signal_base_interface* p, has_slots_interface* pslot) { _signal_base* const self = static_cast<_signal_base*>(p); lock_block lock(self); connections_list::iterator it = self->m_connected_slots.begin(); connections_list::iterator itEnd = self->m_connected_slots.end(); while (it != itEnd) { connections_list::iterator itNext = it; ++itNext; if (it->getdest() == pslot) { // If we're currently using this iterator because the signal is firing, // advance it to avoid it being invalidated. if (self->m_current_iterator == it) { self->m_current_iterator = self->m_connected_slots.erase(it); } else { self->m_connected_slots.erase(it); } } it = itNext; } } static void do_slot_duplicate(_signal_base_interface* p, const has_slots_interface* oldtarget, has_slots_interface* newtarget) { _signal_base* const self = static_cast<_signal_base*>(p); lock_block lock(self); connections_list::iterator it = self->m_connected_slots.begin(); connections_list::iterator itEnd = self->m_connected_slots.end(); while (it != itEnd) { if (it->getdest() == oldtarget) { self->m_connected_slots.push_back(it->duplicate(newtarget)); } ++it; } } protected: connections_list m_connected_slots; // Used to handle a slot being disconnected while a signal is // firing (iterating m_connected_slots). connections_list::iterator m_current_iterator; bool m_erase_current_iterator = false; }; template class has_slots : public has_slots_interface, public mt_policy { private: typedef std::set<_signal_base_interface*> sender_set; typedef sender_set::const_iterator const_iterator; public: has_slots() : has_slots_interface(&has_slots::do_signal_connect, &has_slots::do_signal_disconnect, &has_slots::do_disconnect_all) {} has_slots(has_slots const& o) : has_slots_interface(&has_slots::do_signal_connect, &has_slots::do_signal_disconnect, &has_slots::do_disconnect_all) { lock_block lock(this); for (auto* sender : o.m_senders) { sender->slot_duplicate(&o, this); m_senders.insert(sender); } } ~has_slots() { this->disconnect_all(); } private: has_slots& operator=(has_slots const&); static void do_signal_connect(has_slots_interface* p, _signal_base_interface* sender) { has_slots* const self = static_cast(p); lock_block lock(self); self->m_senders.insert(sender); } static void do_signal_disconnect(has_slots_interface* p, _signal_base_interface* sender) { has_slots* const self = static_cast(p); lock_block lock(self); self->m_senders.erase(sender); } static void do_disconnect_all(has_slots_interface* p) { has_slots* const self = static_cast(p); lock_block lock(self); while (!self->m_senders.empty()) { std::set<_signal_base_interface*> senders; senders.swap(self->m_senders); const_iterator it = senders.begin(); const_iterator itEnd = senders.end(); while (it != itEnd) { _signal_base_interface* s = *it; ++it; s->slot_disconnect(p); } } } private: sender_set m_senders; }; template class signal_with_thread_policy : public _signal_base { private: typedef _signal_base base; protected: typedef typename base::connections_list connections_list; public: signal_with_thread_policy() {} template void connect(desttype* pclass, void (desttype::*pmemfun)(Args...)) { lock_block lock(this); this->m_connected_slots.push_back(_opaque_connection(pclass, pmemfun)); pclass->signal_connect(static_cast<_signal_base_interface*>(this)); } void emit(Args... args) { lock_block lock(this); this->m_current_iterator = this->m_connected_slots.begin(); while (this->m_current_iterator != this->m_connected_slots.end()) { _opaque_connection const& conn = *this->m_current_iterator; ++(this->m_current_iterator); conn.emit(args...); } } void operator()(Args... args) { emit(args...); } }; // Alias with default thread policy. Needed because both default arguments // and variadic template arguments must go at the end of the list, so we // can't have both at once. template using signal = signal_with_thread_policy; // The previous verion of sigslot didn't use variadic templates, so you would // need to write "sigslot::signal2", for example. // Now you can just write "sigslot::signal", but these aliases // exist for backwards compatibility. template using signal0 = signal_with_thread_policy; template using signal1 = signal_with_thread_policy; template using signal2 = signal_with_thread_policy; template using signal3 = signal_with_thread_policy; template using signal4 = signal_with_thread_policy; template using signal5 = signal_with_thread_policy; template using signal6 = signal_with_thread_policy; template using signal7 = signal_with_thread_policy; template using signal8 = signal_with_thread_policy; } // namespace sigslot #endif /* RTC_BASE_THIRD_PARTY_SIGSLOT_SIGSLOT_H_ */