/* * aidl interface for wpa_hostapd daemon * Copyright (c) 2004-2018, Jouni Malinen * Copyright (c) 2004-2018, Roshan Pius * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include #include #include #include #include #include #include #include #include #include #include "hostapd.h" #include #include #include #include #include #include #include #include #include extern "C" { #include "common/wpa_ctrl.h" #include "drivers/linux_ioctl.h" } // The AIDL implementation for hostapd creates a hostapd.conf dynamically for // each interface. This file can then be used to hook onto the normal config // file parsing logic in hostapd code. Helps us to avoid duplication of code // in the AIDL interface. // TOOD(b/71872409): Add unit tests for this. namespace { constexpr char kConfFileNameFmt[] = "/data/vendor/wifi/hostapd/hostapd_%s.conf"; using android::base::RemoveFileIfExists; using android::base::StringPrintf; using android::base::WriteStringToFile; using aidl::android::hardware::wifi::hostapd::BandMask; using aidl::android::hardware::wifi::hostapd::ChannelBandwidth; using aidl::android::hardware::wifi::hostapd::ChannelParams; using aidl::android::hardware::wifi::hostapd::EncryptionType; using aidl::android::hardware::wifi::hostapd::Generation; using aidl::android::hardware::wifi::hostapd::HostapdStatusCode; using aidl::android::hardware::wifi::hostapd::IfaceParams; using aidl::android::hardware::wifi::hostapd::NetworkParams; using aidl::android::hardware::wifi::hostapd::ParamSizeLimits; int band2Ghz = (int)BandMask::BAND_2_GHZ; int band5Ghz = (int)BandMask::BAND_5_GHZ; int band6Ghz = (int)BandMask::BAND_6_GHZ; int band60Ghz = (int)BandMask::BAND_60_GHZ; #define MAX_PORTS 1024 bool GetInterfacesInBridge(std::string br_name, std::vector* interfaces) { android::base::unique_fd sock(socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0)); if (sock.get() < 0) { wpa_printf(MSG_ERROR, "Failed to create sock (%s) in %s", strerror(errno), __FUNCTION__); return false; } struct ifreq request; int i, ifindices[MAX_PORTS]; char if_name[IFNAMSIZ]; unsigned long args[3]; memset(ifindices, 0, MAX_PORTS * sizeof(int)); args[0] = BRCTL_GET_PORT_LIST; args[1] = (unsigned long) ifindices; args[2] = MAX_PORTS; strlcpy(request.ifr_name, br_name.c_str(), IFNAMSIZ); request.ifr_data = (char *)args; if (ioctl(sock.get(), SIOCDEVPRIVATE, &request) < 0) { wpa_printf(MSG_ERROR, "Failed to ioctl SIOCDEVPRIVATE in %s", __FUNCTION__); return false; } for (i = 0; i < MAX_PORTS; i ++) { memset(if_name, 0, IFNAMSIZ); if (ifindices[i] == 0 || !if_indextoname(ifindices[i], if_name)) { continue; } interfaces->push_back(if_name); } return true; } std::string WriteHostapdConfig( const std::string& interface_name, const std::string& config) { const std::string file_path = StringPrintf(kConfFileNameFmt, interface_name.c_str()); if (WriteStringToFile( config, file_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP, getuid(), getgid())) { return file_path; } // Diagnose failure int error = errno; wpa_printf( MSG_ERROR, "Cannot write hostapd config to %s, error: %s", file_path.c_str(), strerror(error)); struct stat st; int result = stat(file_path.c_str(), &st); if (result == 0) { wpa_printf( MSG_ERROR, "hostapd config file uid: %d, gid: %d, mode: %d", st.st_uid, st.st_gid, st.st_mode); } else { wpa_printf( MSG_ERROR, "Error calling stat() on hostapd config file: %s", strerror(errno)); } return ""; } /* * Get the op_class for a channel/band * The logic here is based on Table E-4 in the 802.11 Specification */ int getOpClassForChannel(int channel, int band, bool support11n, bool support11ac) { // 2GHz Band if ((band & band2Ghz) != 0) { if (channel == 14) { return 82; } if (channel >= 1 && channel <= 13) { if (!support11n) { //20MHz channel return 81; } if (channel <= 9) { // HT40 with secondary channel above primary return 83; } // HT40 with secondary channel below primary return 84; } // Error return 0; } // 5GHz Band if ((band & band5Ghz) != 0) { if (support11ac) { switch (channel) { case 42: case 58: case 106: case 122: case 138: case 155: // 80MHz channel return 128; case 50: case 114: // 160MHz channel return 129; } } if (!support11n) { if (channel >= 36 && channel <= 48) { return 115; } if (channel >= 52 && channel <= 64) { return 118; } if (channel >= 100 && channel <= 144) { return 121; } if (channel >= 149 && channel <= 161) { return 124; } if (channel >= 165 && channel <= 169) { return 125; } } else { switch (channel) { case 36: case 44: // HT40 with secondary channel above primary return 116; case 40: case 48: // HT40 with secondary channel below primary return 117; case 52: case 60: // HT40 with secondary channel above primary return 119; case 56: case 64: // HT40 with secondary channel below primary return 120; case 100: case 108: case 116: case 124: case 132: case 140: // HT40 with secondary channel above primary return 122; case 104: case 112: case 120: case 128: case 136: case 144: // HT40 with secondary channel below primary return 123; case 149: case 157: // HT40 with secondary channel above primary return 126; case 153: case 161: // HT40 with secondary channel below primary return 127; } } // Error return 0; } // 6GHz Band if ((band & band6Ghz) != 0) { // Channels 1, 5. 9, 13, ... if ((channel & 0x03) == 0x01) { // 20MHz channel return 131; } // Channels 3, 11, 19, 27, ... if ((channel & 0x07) == 0x03) { // 40MHz channel return 132; } // Channels 7, 23, 39, 55, ... if ((channel & 0x0F) == 0x07) { // 80MHz channel return 133; } // Channels 15, 47, 69, ... if ((channel & 0x1F) == 0x0F) { // 160MHz channel return 134; } if (channel == 2) { // 20MHz channel return 136; } // Error return 0; } if ((band & band60Ghz) != 0) { if (1 <= channel && channel <= 8) { return 180; } else if (9 <= channel && channel <= 15) { return 181; } else if (17 <= channel && channel <= 22) { return 182; } else if (25 <= channel && channel <= 29) { return 183; } // Error return 0; } return 0; } bool validatePassphrase(int passphrase_len, int min_len, int max_len) { if (min_len != -1 && passphrase_len < min_len) return false; if (max_len != -1 && passphrase_len > max_len) return false; return true; } std::string CreateHostapdConfig( const IfaceParams& iface_params, const ChannelParams& channelParams, const NetworkParams& nw_params, const std::string br_name, const std::string owe_transition_ifname) { if (nw_params.ssid.size() > static_cast( ParamSizeLimits::SSID_MAX_LEN_IN_BYTES)) { wpa_printf( MSG_ERROR, "Invalid SSID size: %zu", nw_params.ssid.size()); return ""; } // SSID string std::stringstream ss; ss << std::hex; ss << std::setfill('0'); for (uint8_t b : nw_params.ssid) { ss << std::setw(2) << static_cast(b); } const std::string ssid_as_string = ss.str(); // Encryption config string uint32_t band = 0; band |= static_cast(channelParams.bandMask); bool is_2Ghz_band_only = band == static_cast(band2Ghz); bool is_6Ghz_band_only = band == static_cast(band6Ghz); bool is_60Ghz_band_only = band == static_cast(band60Ghz); std::string encryption_config_as_string; switch (nw_params.encryptionType) { case EncryptionType::NONE: // no security params break; case EncryptionType::WPA: if (!validatePassphrase( nw_params.passphrase.size(), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) { return ""; } encryption_config_as_string = StringPrintf( "wpa=3\n" "wpa_pairwise=%s\n" "wpa_passphrase=%s", is_60Ghz_band_only ? "GCMP" : "TKIP CCMP", nw_params.passphrase.c_str()); break; case EncryptionType::WPA2: if (!validatePassphrase( nw_params.passphrase.size(), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) { return ""; } encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=%s\n" #ifdef ENABLE_HOSTAPD_CONFIG_80211W_MFP_OPTIONAL "ieee80211w=1\n" #endif "wpa_passphrase=%s", is_60Ghz_band_only ? "GCMP" : "CCMP", nw_params.passphrase.c_str()); break; case EncryptionType::WPA3_SAE_TRANSITION: if (!validatePassphrase( nw_params.passphrase.size(), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES), static_cast(ParamSizeLimits:: WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) { return ""; } // WPA3 transition mode or SAE+WPA_PSK key management(AKM) is not allowed in 6GHz. // Auto-convert any such configurations to SAE. if ((band & band6Ghz) != 0) { wpa_printf(MSG_INFO, "WPA3_SAE_TRANSITION configured in 6GHz band." "Enable only SAE in key_mgmt"); encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=CCMP\n" "wpa_key_mgmt=%s\n" "ieee80211w=2\n" "sae_require_mfp=2\n" "sae_pwe=%d\n" "sae_password=%s", #ifdef CONFIG_IEEE80211BE iface_params.hwModeParams.enable80211BE ? "SAE SAE-EXT-KEY" : "SAE", #else "SAE", #endif is_6Ghz_band_only ? 1 : 2, nw_params.passphrase.c_str()); } else { encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=%s\n" "wpa_key_mgmt=%s\n" "ieee80211w=1\n" "sae_require_mfp=1\n" "wpa_passphrase=%s\n" "sae_password=%s", is_60Ghz_band_only ? "GCMP" : "CCMP", #ifdef CONFIG_IEEE80211BE iface_params.hwModeParams.enable80211BE ? "WPA-PSK SAE SAE-EXT-KEY" : "WPA-PSK SAE", #else "WPA-PSK SAE", #endif nw_params.passphrase.c_str(), nw_params.passphrase.c_str()); } break; case EncryptionType::WPA3_SAE: if (!validatePassphrase(nw_params.passphrase.size(), 1, -1)) { return ""; } encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=%s\n" "wpa_key_mgmt=%s\n" "ieee80211w=2\n" "sae_require_mfp=2\n" "sae_pwe=%d\n" "sae_password=%s", is_60Ghz_band_only ? "GCMP" : "CCMP", #ifdef CONFIG_IEEE80211BE iface_params.hwModeParams.enable80211BE ? "SAE SAE-EXT-KEY" : "SAE", #else "SAE", #endif is_6Ghz_band_only ? 1 : 2, nw_params.passphrase.c_str()); break; case EncryptionType::WPA3_OWE_TRANSITION: encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=%s\n" "wpa_key_mgmt=OWE\n" "ieee80211w=2", is_60Ghz_band_only ? "GCMP" : "CCMP"); break; case EncryptionType::WPA3_OWE: encryption_config_as_string = StringPrintf( "wpa=2\n" "rsn_pairwise=%s\n" "wpa_key_mgmt=OWE\n" "ieee80211w=2", is_60Ghz_band_only ? "GCMP" : "CCMP"); break; default: wpa_printf(MSG_ERROR, "Unknown encryption type"); return ""; } std::string channel_config_as_string; bool isFirst = true; if (channelParams.enableAcs) { std::string freqList_as_string; for (const auto &range : channelParams.acsChannelFreqRangesMhz) { if (!isFirst) { freqList_as_string += ","; } isFirst = false; if (range.startMhz != range.endMhz) { freqList_as_string += StringPrintf("%d-%d", range.startMhz, range.endMhz); } else { freqList_as_string += StringPrintf("%d", range.startMhz); } } channel_config_as_string = StringPrintf( "channel=0\n" "acs_exclude_dfs=%d\n" "freqlist=%s", channelParams.acsShouldExcludeDfs, freqList_as_string.c_str()); } else { int op_class = getOpClassForChannel( channelParams.channel, band, iface_params.hwModeParams.enable80211N, iface_params.hwModeParams.enable80211AC); channel_config_as_string = StringPrintf( "channel=%d\n" "op_class=%d", channelParams.channel, op_class); } std::string hw_mode_as_string; std::string enable_edmg_as_string; std::string edmg_channel_as_string; bool is_60Ghz_used = false; if (((band & band60Ghz) != 0)) { hw_mode_as_string = "hw_mode=ad"; if (iface_params.hwModeParams.enableEdmg) { enable_edmg_as_string = "enable_edmg=1"; edmg_channel_as_string = StringPrintf( "edmg_channel=%d", channelParams.channel); } is_60Ghz_used = true; } else if ((band & band2Ghz) != 0) { if (((band & band5Ghz) != 0) || ((band & band6Ghz) != 0)) { hw_mode_as_string = "hw_mode=any"; } else { hw_mode_as_string = "hw_mode=g"; } } else if (((band & band5Ghz) != 0) || ((band & band6Ghz) != 0)) { hw_mode_as_string = "hw_mode=a"; } else { wpa_printf(MSG_ERROR, "Invalid band"); return ""; } std::string he_params_as_string; #ifdef CONFIG_IEEE80211AX if (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) { he_params_as_string = StringPrintf( "ieee80211ax=1\n" "he_su_beamformer=%d\n" "he_su_beamformee=%d\n" "he_mu_beamformer=%d\n" "he_twt_required=%d\n", iface_params.hwModeParams.enableHeSingleUserBeamformer ? 1 : 0, iface_params.hwModeParams.enableHeSingleUserBeamformee ? 1 : 0, iface_params.hwModeParams.enableHeMultiUserBeamformer ? 1 : 0, iface_params.hwModeParams.enableHeTargetWakeTime ? 1 : 0); } else { he_params_as_string = "ieee80211ax=0"; } #endif /* CONFIG_IEEE80211AX */ std::string eht_params_as_string; #ifdef CONFIG_IEEE80211BE if (iface_params.hwModeParams.enable80211BE && !is_60Ghz_used) { eht_params_as_string = "ieee80211be=1"; /* TODO set eht_su_beamformer, eht_su_beamformee, eht_mu_beamformer */ } else { eht_params_as_string = "ieee80211be=0"; } #endif /* CONFIG_IEEE80211BE */ std::string ht_cap_vht_oper_he_oper_chwidth_as_string; switch (iface_params.hwModeParams.maximumChannelBandwidth) { case ChannelBandwidth::BANDWIDTH_20: ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf( #ifdef CONFIG_IEEE80211AX "he_oper_chwidth=0\n" #endif "vht_oper_chwidth=0"); break; case ChannelBandwidth::BANDWIDTH_40: ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf( "ht_capab=[HT40+]\n" #ifdef CONFIG_IEEE80211AX "he_oper_chwidth=0\n" #endif "vht_oper_chwidth=0"); break; case ChannelBandwidth::BANDWIDTH_80: ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf( "ht_capab=[HT40+]\n" #ifdef CONFIG_IEEE80211AX "he_oper_chwidth=%d\n" #endif "vht_oper_chwidth=%d", #ifdef CONFIG_IEEE80211AX (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 1 : 0, #endif iface_params.hwModeParams.enable80211AC ? 1 : 0); break; case ChannelBandwidth::BANDWIDTH_160: ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf( "ht_capab=[HT40+]\n" #ifdef CONFIG_IEEE80211AX "he_oper_chwidth=%d\n" #endif "vht_oper_chwidth=%d", #ifdef CONFIG_IEEE80211AX (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 2 : 0, #endif iface_params.hwModeParams.enable80211AC ? 2 : 0); break; default: if (!is_2Ghz_band_only && !is_60Ghz_used) { if (iface_params.hwModeParams.enable80211AC) { ht_cap_vht_oper_he_oper_chwidth_as_string = "ht_capab=[HT40+]\n" "vht_oper_chwidth=1\n"; } #ifdef CONFIG_IEEE80211AX if (iface_params.hwModeParams.enable80211AX) { ht_cap_vht_oper_he_oper_chwidth_as_string += "he_oper_chwidth=1"; } #endif } break; } #ifdef CONFIG_INTERWORKING std::string access_network_params_as_string; if (nw_params.isMetered) { access_network_params_as_string = StringPrintf( "interworking=1\n" "access_network_type=2\n"); // CHARGEABLE_PUBLIC_NETWORK } else { access_network_params_as_string = StringPrintf( "interworking=0\n"); } #endif /* CONFIG_INTERWORKING */ std::string bridge_as_string; if (!br_name.empty()) { bridge_as_string = StringPrintf("bridge=%s", br_name.c_str()); } // vendor_elements string std::string vendor_elements_as_string; if (nw_params.vendorElements.size() > 0) { std::stringstream ss; ss << std::hex; ss << std::setfill('0'); for (uint8_t b : nw_params.vendorElements) { ss << std::setw(2) << static_cast(b); } vendor_elements_as_string = StringPrintf("vendor_elements=%s", ss.str().c_str()); } std::string owe_transition_ifname_as_string; if (!owe_transition_ifname.empty()) { owe_transition_ifname_as_string = StringPrintf( "owe_transition_ifname=%s", owe_transition_ifname.c_str()); } return StringPrintf( "interface=%s\n" "driver=nl80211\n" "ctrl_interface=/data/vendor/wifi/hostapd/ctrl\n" // ssid2 signals to hostapd that the value is not a literal value // for use as a SSID. In this case, we're giving it a hex // std::string and hostapd needs to expect that. "ssid2=%s\n" "%s\n" "ieee80211n=%d\n" "ieee80211ac=%d\n" "%s\n" "%s\n" "%s\n" "%s\n" "ignore_broadcast_ssid=%d\n" "wowlan_triggers=any\n" #ifdef CONFIG_INTERWORKING "%s\n" #endif /* CONFIG_INTERWORKING */ "%s\n" "%s\n" "%s\n" "%s\n" "%s\n" "%s\n", iface_params.name.c_str(), ssid_as_string.c_str(), channel_config_as_string.c_str(), iface_params.hwModeParams.enable80211N ? 1 : 0, iface_params.hwModeParams.enable80211AC ? 1 : 0, he_params_as_string.c_str(), eht_params_as_string.c_str(), hw_mode_as_string.c_str(), ht_cap_vht_oper_he_oper_chwidth_as_string.c_str(), nw_params.isHidden ? 1 : 0, #ifdef CONFIG_INTERWORKING access_network_params_as_string.c_str(), #endif /* CONFIG_INTERWORKING */ encryption_config_as_string.c_str(), bridge_as_string.c_str(), owe_transition_ifname_as_string.c_str(), enable_edmg_as_string.c_str(), edmg_channel_as_string.c_str(), vendor_elements_as_string.c_str()); } Generation getGeneration(hostapd_hw_modes *current_mode) { wpa_printf(MSG_DEBUG, "getGeneration hwmode=%d, ht_enabled=%d," " vht_enabled=%d, he_supported=%d", current_mode->mode, current_mode->ht_capab != 0, current_mode->vht_capab != 0, current_mode->he_capab->he_supported); switch (current_mode->mode) { case HOSTAPD_MODE_IEEE80211B: return Generation::WIFI_STANDARD_LEGACY; case HOSTAPD_MODE_IEEE80211G: return current_mode->ht_capab == 0 ? Generation::WIFI_STANDARD_LEGACY : Generation::WIFI_STANDARD_11N; case HOSTAPD_MODE_IEEE80211A: if (current_mode->he_capab->he_supported) { return Generation::WIFI_STANDARD_11AX; } return current_mode->vht_capab == 0 ? Generation::WIFI_STANDARD_11N : Generation::WIFI_STANDARD_11AC; case HOSTAPD_MODE_IEEE80211AD: return Generation::WIFI_STANDARD_11AD; default: return Generation::WIFI_STANDARD_UNKNOWN; } } ChannelBandwidth getChannelBandwidth(struct hostapd_config *iconf) { wpa_printf(MSG_DEBUG, "getChannelBandwidth %d, isHT=%d, isHT40=%d", iconf->vht_oper_chwidth, iconf->ieee80211n, iconf->secondary_channel); switch (iconf->vht_oper_chwidth) { case CONF_OPER_CHWIDTH_80MHZ: return ChannelBandwidth::BANDWIDTH_80; case CONF_OPER_CHWIDTH_80P80MHZ: return ChannelBandwidth::BANDWIDTH_80P80; break; case CONF_OPER_CHWIDTH_160MHZ: return ChannelBandwidth::BANDWIDTH_160; break; case CONF_OPER_CHWIDTH_USE_HT: if (iconf->ieee80211n) { return iconf->secondary_channel != 0 ? ChannelBandwidth::BANDWIDTH_40 : ChannelBandwidth::BANDWIDTH_20; } return ChannelBandwidth::BANDWIDTH_20_NOHT; case CONF_OPER_CHWIDTH_2160MHZ: return ChannelBandwidth::BANDWIDTH_2160; case CONF_OPER_CHWIDTH_4320MHZ: return ChannelBandwidth::BANDWIDTH_4320; case CONF_OPER_CHWIDTH_6480MHZ: return ChannelBandwidth::BANDWIDTH_6480; case CONF_OPER_CHWIDTH_8640MHZ: return ChannelBandwidth::BANDWIDTH_8640; default: return ChannelBandwidth::BANDWIDTH_INVALID; } } bool forceStaDisconnection(struct hostapd_data* hapd, const std::vector& client_address, const uint16_t reason_code) { struct sta_info *sta; if (client_address.size() != ETH_ALEN) { return false; } for (sta = hapd->sta_list; sta; sta = sta->next) { int res; res = memcmp(sta->addr, client_address.data(), ETH_ALEN); if (res == 0) { wpa_printf(MSG_INFO, "Force client:" MACSTR " disconnect with reason: %d", MAC2STR(client_address.data()), reason_code); ap_sta_disconnect(hapd, sta, sta->addr, reason_code); return true; } } return false; } // hostapd core functions accept "C" style function pointers, so use global // functions to pass to the hostapd core function and store the corresponding // std::function methods to be invoked. // // NOTE: Using the pattern from the vendor HAL (wifi_legacy_hal.cpp). // // Callback to be invoked once setup is complete std::function on_setup_complete_internal_callback; void onAsyncSetupCompleteCb(void* ctx) { struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx; if (on_setup_complete_internal_callback) { on_setup_complete_internal_callback(iface_hapd); // Invalidate this callback since we don't want this firing // again in single AP mode. if (strlen(iface_hapd->conf->bridge) > 0) { on_setup_complete_internal_callback = nullptr; } } } // Callback to be invoked on hotspot client connection/disconnection std::function on_sta_authorized_internal_callback; void onAsyncStaAuthorizedCb(void* ctx, const u8 *mac_addr, int authorized, const u8 *p2p_dev_addr) { struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx; if (on_sta_authorized_internal_callback) { on_sta_authorized_internal_callback(iface_hapd, mac_addr, authorized, p2p_dev_addr); } } std::function on_wpa_msg_internal_callback; void onAsyncWpaEventCb(void *ctx, int level, enum wpa_msg_type type, const char *txt, size_t len) { struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx; if (on_wpa_msg_internal_callback) { on_wpa_msg_internal_callback(iface_hapd, level, type, txt, len); } } inline ndk::ScopedAStatus createStatus(HostapdStatusCode status_code) { return ndk::ScopedAStatus::fromServiceSpecificError( static_cast(status_code)); } inline ndk::ScopedAStatus createStatusWithMsg( HostapdStatusCode status_code, std::string msg) { return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage( static_cast(status_code), msg.c_str()); } // Method called by death_notifier_ on client death. void onDeath(void* cookie) { wpa_printf(MSG_ERROR, "Client died. Terminating..."); eloop_terminate(); } } // namespace namespace aidl { namespace android { namespace hardware { namespace wifi { namespace hostapd { Hostapd::Hostapd(struct hapd_interfaces* interfaces) : interfaces_(interfaces) { death_notifier_ = AIBinder_DeathRecipient_new(onDeath); } ::ndk::ScopedAStatus Hostapd::addAccessPoint( const IfaceParams& iface_params, const NetworkParams& nw_params) { return addAccessPointInternal(iface_params, nw_params); } ::ndk::ScopedAStatus Hostapd::removeAccessPoint(const std::string& iface_name) { return removeAccessPointInternal(iface_name); } ::ndk::ScopedAStatus Hostapd::terminate() { wpa_printf(MSG_INFO, "Terminating..."); // Clear the callback to avoid IPCThreadState shutdown during the // callback event. callbacks_.clear(); eloop_terminate(); return ndk::ScopedAStatus::ok(); } ::ndk::ScopedAStatus Hostapd::registerCallback( const std::shared_ptr& callback) { return registerCallbackInternal(callback); } ::ndk::ScopedAStatus Hostapd::forceClientDisconnect( const std::string& iface_name, const std::vector& client_address, Ieee80211ReasonCode reason_code) { return forceClientDisconnectInternal(iface_name, client_address, reason_code); } ::ndk::ScopedAStatus Hostapd::setDebugParams(DebugLevel level) { return setDebugParamsInternal(level); } ::ndk::ScopedAStatus Hostapd::addAccessPointInternal( const IfaceParams& iface_params, const NetworkParams& nw_params) { int channelParamsSize = iface_params.channelParams.size(); if (channelParamsSize == 1) { // Single AP wpa_printf(MSG_INFO, "AddSingleAccessPoint, iface=%s", iface_params.name.c_str()); return addSingleAccessPoint(iface_params, iface_params.channelParams[0], nw_params, "", ""); } else if (channelParamsSize == 2) { // Concurrent APs wpa_printf(MSG_INFO, "AddDualAccessPoint, iface=%s", iface_params.name.c_str()); return addConcurrentAccessPoints(iface_params, nw_params); } return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID); } std::vector generateRandomOweSsid() { u8 random[8] = {0}; os_get_random(random, 8); std::string ssid = StringPrintf("Owe-%s", random); wpa_printf(MSG_INFO, "Generated OWE SSID: %s", ssid.c_str()); std::vector vssid(ssid.begin(), ssid.end()); return vssid; } ::ndk::ScopedAStatus Hostapd::addConcurrentAccessPoints( const IfaceParams& iface_params, const NetworkParams& nw_params) { int channelParamsListSize = iface_params.channelParams.size(); // Get available interfaces in bridge std::vector managed_interfaces; std::string br_name = StringPrintf( "%s", iface_params.name.c_str()); if (!GetInterfacesInBridge(br_name, &managed_interfaces)) { return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN, "Get interfaces in bridge failed."); } if (managed_interfaces.size() < channelParamsListSize) { return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN, "Available interfaces less than requested bands"); } // start BSS on specified bands for (std::size_t i = 0; i < channelParamsListSize; i ++) { IfaceParams iface_params_new = iface_params; NetworkParams nw_params_new = nw_params; iface_params_new.name = managed_interfaces[i]; std::string owe_transition_ifname = ""; if (nw_params.encryptionType == EncryptionType::WPA3_OWE_TRANSITION) { if (i == 0 && i+1 < channelParamsListSize) { owe_transition_ifname = managed_interfaces[i+1]; nw_params_new.encryptionType = EncryptionType::NONE; } else { owe_transition_ifname = managed_interfaces[0]; nw_params_new.isHidden = true; nw_params_new.ssid = generateRandomOweSsid(); } } ndk::ScopedAStatus status = addSingleAccessPoint( iface_params_new, iface_params.channelParams[i], nw_params_new, br_name, owe_transition_ifname); if (!status.isOk()) { wpa_printf(MSG_ERROR, "Failed to addAccessPoint %s", managed_interfaces[i].c_str()); return status; } } // Save bridge interface info br_interfaces_[br_name] = managed_interfaces; return ndk::ScopedAStatus::ok(); } ::ndk::ScopedAStatus Hostapd::addSingleAccessPoint( const IfaceParams& iface_params, const ChannelParams& channelParams, const NetworkParams& nw_params, const std::string br_name, const std::string owe_transition_ifname) { if (hostapd_get_iface(interfaces_, iface_params.name.c_str())) { wpa_printf( MSG_ERROR, "Interface %s already present", iface_params.name.c_str()); return createStatus(HostapdStatusCode::FAILURE_IFACE_EXISTS); } const auto conf_params = CreateHostapdConfig(iface_params, channelParams, nw_params, br_name, owe_transition_ifname); if (conf_params.empty()) { wpa_printf(MSG_ERROR, "Failed to create config params"); return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID); } const auto conf_file_path = WriteHostapdConfig(iface_params.name, conf_params); if (conf_file_path.empty()) { wpa_printf(MSG_ERROR, "Failed to write config file"); return createStatus(HostapdStatusCode::FAILURE_UNKNOWN); } std::string add_iface_param_str = StringPrintf( "%s config=%s", iface_params.name.c_str(), conf_file_path.c_str()); std::vector add_iface_param_vec( add_iface_param_str.begin(), add_iface_param_str.end() + 1); if (hostapd_add_iface(interfaces_, add_iface_param_vec.data()) < 0) { wpa_printf( MSG_ERROR, "Adding interface %s failed", add_iface_param_str.c_str()); return createStatus(HostapdStatusCode::FAILURE_UNKNOWN); } struct hostapd_data* iface_hapd = hostapd_get_iface(interfaces_, iface_params.name.c_str()); WPA_ASSERT(iface_hapd != nullptr && iface_hapd->iface != nullptr); // Register the setup complete callbacks on_setup_complete_internal_callback = [this](struct hostapd_data* iface_hapd) { wpa_printf( MSG_INFO, "AP interface setup completed - state %s", hostapd_state_text(iface_hapd->iface->state)); if (iface_hapd->iface->state == HAPD_IFACE_DISABLED) { // Invoke the failure callback on all registered // clients. for (const auto& callback : callbacks_) { callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ? iface_hapd->conf->bridge : iface_hapd->conf->iface, iface_hapd->conf->iface); } } }; // Register for new client connect/disconnect indication. on_sta_authorized_internal_callback = [this](struct hostapd_data* iface_hapd, const u8 *mac_addr, int authorized, const u8 *p2p_dev_addr) { wpa_printf(MSG_DEBUG, "notify client " MACSTR " %s", MAC2STR(mac_addr), (authorized) ? "Connected" : "Disconnected"); ClientInfo info; info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ? iface_hapd->conf->bridge : iface_hapd->conf->iface; info.apIfaceInstance = iface_hapd->conf->iface; info.clientAddress.assign(mac_addr, mac_addr + ETH_ALEN); info.isConnected = authorized; for (const auto &callback : callbacks_) { callback->onConnectedClientsChanged(info); } }; // Register for wpa_event which used to get channel switch event on_wpa_msg_internal_callback = [this](struct hostapd_data* iface_hapd, int level, enum wpa_msg_type type, const char *txt, size_t len) { wpa_printf(MSG_DEBUG, "Receive wpa msg : %s", txt); if (os_strncmp(txt, AP_EVENT_ENABLED, strlen(AP_EVENT_ENABLED)) == 0 || os_strncmp(txt, WPA_EVENT_CHANNEL_SWITCH, strlen(WPA_EVENT_CHANNEL_SWITCH)) == 0) { ApInfo info; info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ? iface_hapd->conf->bridge : iface_hapd->conf->iface, info.apIfaceInstance = iface_hapd->conf->iface; info.freqMhz = iface_hapd->iface->freq; info.channelBandwidth = getChannelBandwidth(iface_hapd->iconf); info.generation = getGeneration(iface_hapd->iface->current_mode); info.apIfaceInstanceMacAddress.assign(iface_hapd->own_addr, iface_hapd->own_addr + ETH_ALEN); for (const auto &callback : callbacks_) { callback->onApInstanceInfoChanged(info); } } else if (os_strncmp(txt, AP_EVENT_DISABLED, strlen(AP_EVENT_DISABLED)) == 0 || os_strncmp(txt, INTERFACE_DISABLED, strlen(INTERFACE_DISABLED)) == 0) { // Invoke the failure callback on all registered clients. for (const auto& callback : callbacks_) { callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ? iface_hapd->conf->bridge : iface_hapd->conf->iface, iface_hapd->conf->iface); } } }; // Setup callback iface_hapd->setup_complete_cb = onAsyncSetupCompleteCb; iface_hapd->setup_complete_cb_ctx = iface_hapd; iface_hapd->sta_authorized_cb = onAsyncStaAuthorizedCb; iface_hapd->sta_authorized_cb_ctx = iface_hapd; wpa_msg_register_aidl_cb(onAsyncWpaEventCb); if (hostapd_enable_iface(iface_hapd->iface) < 0) { wpa_printf( MSG_ERROR, "Enabling interface %s failed", iface_params.name.c_str()); return createStatus(HostapdStatusCode::FAILURE_UNKNOWN); } return ndk::ScopedAStatus::ok(); } ::ndk::ScopedAStatus Hostapd::removeAccessPointInternal(const std::string& iface_name) { // interfaces to be removed std::vector interfaces; bool is_error = false; const auto it = br_interfaces_.find(iface_name); if (it != br_interfaces_.end()) { // In case bridge, remove managed interfaces interfaces = it->second; br_interfaces_.erase(iface_name); } else { // else remove current interface interfaces.push_back(iface_name); } for (auto& iface : interfaces) { std::vector remove_iface_param_vec( iface.begin(), iface.end() + 1); if (hostapd_remove_iface(interfaces_, remove_iface_param_vec.data()) < 0) { wpa_printf(MSG_INFO, "Remove interface %s failed", iface.c_str()); is_error = true; } } if (is_error) { return createStatus(HostapdStatusCode::FAILURE_UNKNOWN); } return ndk::ScopedAStatus::ok(); } ::ndk::ScopedAStatus Hostapd::registerCallbackInternal( const std::shared_ptr& callback) { binder_status_t status = AIBinder_linkToDeath(callback->asBinder().get(), death_notifier_, this /* cookie */); if (status != STATUS_OK) { wpa_printf( MSG_ERROR, "Error registering for death notification for " "hostapd callback object"); return createStatus(HostapdStatusCode::FAILURE_UNKNOWN); } callbacks_.push_back(callback); return ndk::ScopedAStatus::ok(); } ::ndk::ScopedAStatus Hostapd::forceClientDisconnectInternal(const std::string& iface_name, const std::vector& client_address, Ieee80211ReasonCode reason_code) { struct hostapd_data *hapd = hostapd_get_iface(interfaces_, iface_name.c_str()); bool result; if (!hapd) { for (auto const& iface : br_interfaces_) { if (iface.first == iface_name) { for (auto const& instance : iface.second) { hapd = hostapd_get_iface(interfaces_, instance.c_str()); if (hapd) { result = forceStaDisconnection(hapd, client_address, (uint16_t) reason_code); if (result) break; } } } } } else { result = forceStaDisconnection(hapd, client_address, (uint16_t) reason_code); } if (!hapd) { wpa_printf(MSG_ERROR, "Interface %s doesn't exist", iface_name.c_str()); return createStatus(HostapdStatusCode::FAILURE_IFACE_UNKNOWN); } if (result) { return ndk::ScopedAStatus::ok(); } return createStatus(HostapdStatusCode::FAILURE_CLIENT_UNKNOWN); } ::ndk::ScopedAStatus Hostapd::setDebugParamsInternal(DebugLevel level) { wpa_debug_level = static_cast(level); return ndk::ScopedAStatus::ok(); } } // namespace hostapd } // namespace wifi } // namespace hardware } // namespace android } // namespace aidl