/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" #undef LOG_TAG #define LOG_TAG "VSyncPredictor" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include "RefreshRateSelector.h" #include "VSyncPredictor.h" namespace android::scheduler { using base::StringAppendF; static auto constexpr kMaxPercent = 100u; VSyncPredictor::~VSyncPredictor() = default; VSyncPredictor::VSyncPredictor(PhysicalDisplayId id, nsecs_t idealPeriod, size_t historySize, size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) : mId(id), mTraceOn(property_get_bool("debug.sf.vsp_trace", false)), kHistorySize(historySize), kMinimumSamplesForPrediction(minimumSamplesForPrediction), kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), mIdealPeriod(idealPeriod) { resetModel(); } inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { if (CC_UNLIKELY(mTraceOn)) { traceInt64(name, value); } } inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const { ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value); } inline size_t VSyncPredictor::next(size_t i) const { return (i + 1) % mTimestamps.size(); } bool VSyncPredictor::validate(nsecs_t timestamp) const { if (mLastTimestampIndex < 0 || mTimestamps.empty()) { return true; } auto const aValidTimestamp = mTimestamps[mLastTimestampIndex]; auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod; if (percent >= kOutlierTolerancePercent && percent <= (kMaxPercent - kOutlierTolerancePercent)) { return false; } const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), [timestamp](nsecs_t a, nsecs_t b) { return std::abs(timestamp - a) < std::abs(timestamp - b); }); const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod; if (distancePercent < kOutlierTolerancePercent) { // duplicate timestamp return false; } return true; } nsecs_t VSyncPredictor::currentPeriod() const { std::lock_guard lock(mMutex); return mRateMap.find(mIdealPeriod)->second.slope; } bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { std::lock_guard lock(mMutex); if (!validate(timestamp)) { // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, // don't insert this ts into mTimestamps ringbuffer. If we are still // in the learning phase we should just clear all timestamps and start // over. if (mTimestamps.size() < kMinimumSamplesForPrediction) { // Add the timestamp to mTimestamps before clearing it so we could // update mKnownTimestamp based on the new timestamp. mTimestamps.push_back(timestamp); clearTimestamps(); } else if (!mTimestamps.empty()) { mKnownTimestamp = std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); } else { mKnownTimestamp = timestamp; } return false; } if (mTimestamps.size() != kHistorySize) { mTimestamps.push_back(timestamp); mLastTimestampIndex = next(mLastTimestampIndex); } else { mLastTimestampIndex = next(mLastTimestampIndex); mTimestamps[mLastTimestampIndex] = timestamp; } traceInt64If("VSP-ts", timestamp); const size_t numSamples = mTimestamps.size(); if (numSamples < kMinimumSamplesForPrediction) { mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; return true; } // This is a 'simple linear regression' calculation of Y over X, with Y being the // vsync timestamps, and X being the ordinal of vsync count. // The calculated slope is the vsync period. // Formula for reference: // Sigma_i: means sum over all timestamps. // mean(variable): statistical mean of variable. // X: snapped ordinal of the timestamp // Y: vsync timestamp // // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) // slope = ------------------------------------------- // Sigma_i ( X_i - mean(X) ) ^ 2 // // intercept = mean(Y) - slope * mean(X) // std::vector vsyncTS(numSamples); std::vector ordinals(numSamples); // Normalizing to the oldest timestamp cuts down on error in calculating the intercept. const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end()); auto it = mRateMap.find(mIdealPeriod); auto const currentPeriod = it->second.slope; // The mean of the ordinals must be precise for the intercept calculation, so scale them up for // fixed-point arithmetic. constexpr int64_t kScalingFactor = 1000; nsecs_t meanTS = 0; nsecs_t meanOrdinal = 0; for (size_t i = 0; i < numSamples; i++) { const auto timestamp = mTimestamps[i] - oldestTS; vsyncTS[i] = timestamp; meanTS += timestamp; const auto ordinal = currentPeriod == 0 ? 0 : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor; ordinals[i] = ordinal; meanOrdinal += ordinal; } meanTS /= numSamples; meanOrdinal /= numSamples; for (size_t i = 0; i < numSamples; i++) { vsyncTS[i] -= meanTS; ordinals[i] -= meanOrdinal; } nsecs_t top = 0; nsecs_t bottom = 0; for (size_t i = 0; i < numSamples; i++) { top += vsyncTS[i] * ordinals[i]; bottom += ordinals[i] * ordinals[i]; } if (CC_UNLIKELY(bottom == 0)) { it->second = {mIdealPeriod, 0}; clearTimestamps(); return false; } nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod; if (percent >= kOutlierTolerancePercent) { it->second = {mIdealPeriod, 0}; clearTimestamps(); return false; } traceInt64If("VSP-period", anticipatedPeriod); traceInt64If("VSP-intercept", intercept); it->second = {anticipatedPeriod, intercept}; ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, mId.value, timestamp, anticipatedPeriod, intercept); return true; } auto VSyncPredictor::getVsyncSequenceLocked(nsecs_t timestamp) const -> VsyncSequence { const auto vsync = nextAnticipatedVSyncTimeFromLocked(timestamp); if (!mLastVsyncSequence) return {vsync, 0}; const auto [slope, _] = getVSyncPredictionModelLocked(); const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence; const auto vsyncSequence = lastVsyncSequence + static_cast(std::round((vsync - lastVsyncTime) / static_cast(slope))); return {vsync, vsyncSequence}; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const { auto const [slope, intercept] = getVSyncPredictionModelLocked(); if (mTimestamps.empty()) { traceInt64("VSP-mode", 1); auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1; return knownTimestamp + numPeriodsOut * mIdealPeriod; } auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); // See b/145667109, the ordinal calculation must take into account the intercept. auto const zeroPoint = oldest + intercept; auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; auto const prediction = (ordinalRequest * slope) + intercept + oldest; traceInt64("VSP-mode", 0); traceInt64If("VSP-timePoint", timePoint); traceInt64If("VSP-prediction", prediction); auto const printer = [&, slope = slope, intercept = intercept] { std::stringstream str; str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; return str.str(); }; ALOGV("%s", printer().c_str()); LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", printer().c_str()); return prediction; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { std::lock_guard lock(mMutex); // update the mLastVsyncSequence for reference point mLastVsyncSequence = getVsyncSequenceLocked(timePoint); const auto renderRatePhase = [&]() REQUIRES(mMutex) -> int { if (!mRenderRate) return 0; const auto divisor = RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), *mRenderRate); if (divisor <= 1) return 0; const int mod = mLastVsyncSequence->seq % divisor; if (mod == 0) return 0; return divisor - mod; }(); if (renderRatePhase == 0) { return mLastVsyncSequence->vsyncTime; } auto const [slope, intercept] = getVSyncPredictionModelLocked(); const auto approximateNextVsync = mLastVsyncSequence->vsyncTime + slope * renderRatePhase; return nextAnticipatedVSyncTimeFromLocked(approximateNextVsync - slope / 2); } /* * Returns whether a given vsync timestamp is in phase with a frame rate. * If the frame rate is not a divisor of the refresh rate, it is always considered in phase. * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): * isVSyncInPhase(16.6, 30) = true * isVSyncInPhase(33.3, 30) = false * isVSyncInPhase(50.0, 30) = true */ bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const { std::lock_guard lock(mMutex); const auto divisor = RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), frameRate); return isVSyncInPhaseLocked(timePoint, static_cast(divisor)); } bool VSyncPredictor::isVSyncInPhaseLocked(nsecs_t timePoint, unsigned divisor) const { const TimePoint now = TimePoint::now(); const auto getTimePointIn = [](TimePoint now, nsecs_t timePoint) -> float { return ticks(TimePoint::fromNs(timePoint) - now); }; ATRACE_FORMAT("%s timePoint in: %.2f divisor: %zu", __func__, getTimePointIn(now, timePoint), divisor); if (divisor <= 1 || timePoint == 0) { return true; } const nsecs_t period = mRateMap[mIdealPeriod].slope; const nsecs_t justBeforeTimePoint = timePoint - period / 2; const auto vsyncSequence = getVsyncSequenceLocked(justBeforeTimePoint); ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64, getTimePointIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq); return vsyncSequence.seq % divisor == 0; } void VSyncPredictor::setRenderRate(Fps fps) { ALOGV("%s %s: %s", __func__, to_string(mId).c_str(), to_string(fps).c_str()); std::lock_guard lock(mMutex); mRenderRate = fps; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { std::lock_guard lock(mMutex); const auto model = VSyncPredictor::getVSyncPredictionModelLocked(); return {model.slope, model.intercept}; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { return mRateMap.find(mIdealPeriod)->second; } void VSyncPredictor::setPeriod(nsecs_t period) { ATRACE_FORMAT("%s %s", __func__, to_string(mId).c_str()); traceInt64("VSP-setPeriod", period); std::lock_guard lock(mMutex); static constexpr size_t kSizeLimit = 30; if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { mRateMap.erase(mRateMap.begin()); } mIdealPeriod = period; if (mRateMap.find(period) == mRateMap.end()) { mRateMap[mIdealPeriod] = {period, 0}; } clearTimestamps(); } void VSyncPredictor::clearTimestamps() { if (!mTimestamps.empty()) { auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); if (mKnownTimestamp) { mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); } else { mKnownTimestamp = maxRb; } mTimestamps.clear(); mLastTimestampIndex = 0; } } bool VSyncPredictor::needsMoreSamples() const { std::lock_guard lock(mMutex); return mTimestamps.size() < kMinimumSamplesForPrediction; } void VSyncPredictor::resetModel() { std::lock_guard lock(mMutex); mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; clearTimestamps(); } void VSyncPredictor::dump(std::string& result) const { std::lock_guard lock(mMutex); StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f); StringAppendF(&result, "\tRefresh Rate Map:\n"); for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) { StringAppendF(&result, "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f, periodInterceptTuple.intercept); } } } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"