// Copyright 2020, The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use crate::{ boot_level_keys::{get_level_zero_key, BootLevelKeyCache}, database::BlobMetaData, database::BlobMetaEntry, database::EncryptedBy, database::KeyEntry, database::KeyType, database::{KeyEntryLoadBits, KeyIdGuard, KeyMetaData, KeyMetaEntry, KeystoreDB}, ec_crypto::ECDHPrivateKey, enforcements::Enforcements, error::Error, error::ResponseCode, key_parameter::{KeyParameter, KeyParameterValue}, ks_err, legacy_blob::LegacyBlobLoader, legacy_importer::LegacyImporter, raw_device::KeyMintDevice, utils::{watchdog as wd, AesGcm, AID_KEYSTORE}, }; use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{ Algorithm::Algorithm, BlockMode::BlockMode, HardwareAuthToken::HardwareAuthToken, HardwareAuthenticatorType::HardwareAuthenticatorType, KeyFormat::KeyFormat, KeyParameter::KeyParameter as KmKeyParameter, KeyPurpose::KeyPurpose, PaddingMode::PaddingMode, SecurityLevel::SecurityLevel, }; use android_system_keystore2::aidl::android::system::keystore2::{ Domain::Domain, KeyDescriptor::KeyDescriptor, }; use anyhow::{Context, Result}; use keystore2_crypto::{ aes_gcm_decrypt, aes_gcm_encrypt, generate_aes256_key, generate_salt, Password, ZVec, AES_256_KEY_LENGTH, }; use rustutils::system_properties::PropertyWatcher; use std::{ collections::HashMap, sync::Arc, sync::{Mutex, RwLock, Weak}, }; use std::{convert::TryFrom, ops::Deref}; const MAX_MAX_BOOT_LEVEL: usize = 1_000_000_000; /// Allow up to 15 seconds between the user unlocking using a biometric, and the auth /// token being used to unlock in [`SuperKeyManager::try_unlock_user_with_biometric`]. /// This seems short enough for security purposes, while long enough that even the /// very slowest device will present the auth token in time. const BIOMETRIC_AUTH_TIMEOUT_S: i32 = 15; // seconds type UserId = u32; /// Encryption algorithm used by a particular type of superencryption key #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum SuperEncryptionAlgorithm { /// Symmetric encryption with AES-256-GCM Aes256Gcm, /// Public-key encryption with ECDH P-521 EcdhP521, } /// A particular user may have several superencryption keys in the database, each for a /// different purpose, distinguished by alias. Each is associated with a static /// constant of this type. pub struct SuperKeyType<'a> { /// Alias used to look up the key in the `persistent.keyentry` table. pub alias: &'a str, /// Encryption algorithm pub algorithm: SuperEncryptionAlgorithm, } /// Key used for LskfLocked keys; the corresponding superencryption key is loaded in memory /// when the user first unlocks, and remains in memory until the device reboots. pub const USER_SUPER_KEY: SuperKeyType = SuperKeyType { alias: "USER_SUPER_KEY", algorithm: SuperEncryptionAlgorithm::Aes256Gcm }; /// Key used for ScreenLockBound keys; the corresponding superencryption key is loaded in memory /// each time the user enters their LSKF, and cleared from memory each time the device is locked. /// Symmetric. pub const USER_SCREEN_LOCK_BOUND_KEY: SuperKeyType = SuperKeyType { alias: "USER_SCREEN_LOCK_BOUND_KEY", algorithm: SuperEncryptionAlgorithm::Aes256Gcm, }; /// Key used for ScreenLockBound keys; the corresponding superencryption key is loaded in memory /// each time the user enters their LSKF, and cleared from memory each time the device is locked. /// Asymmetric, so keys can be encrypted when the device is locked. pub const USER_SCREEN_LOCK_BOUND_P521_KEY: SuperKeyType = SuperKeyType { alias: "USER_SCREEN_LOCK_BOUND_P521_KEY", algorithm: SuperEncryptionAlgorithm::EcdhP521, }; /// Superencryption to apply to a new key. #[derive(Debug, Clone, Copy)] pub enum SuperEncryptionType { /// Do not superencrypt this key. None, /// Superencrypt with a key that remains in memory from first unlock to reboot. LskfBound, /// Superencrypt with a key cleared from memory when the device is locked. ScreenLockBound, /// Superencrypt with a key based on the desired boot level BootLevel(i32), } #[derive(Debug, Clone, Copy)] pub enum SuperKeyIdentifier { /// id of the super key in the database. DatabaseId(i64), /// Boot level of the encrypting boot level key BootLevel(i32), } impl SuperKeyIdentifier { fn from_metadata(metadata: &BlobMetaData) -> Option { if let Some(EncryptedBy::KeyId(key_id)) = metadata.encrypted_by() { Some(SuperKeyIdentifier::DatabaseId(*key_id)) } else { metadata.max_boot_level().map(|boot_level| SuperKeyIdentifier::BootLevel(*boot_level)) } } fn add_to_metadata(&self, metadata: &mut BlobMetaData) { match self { SuperKeyIdentifier::DatabaseId(id) => { metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::KeyId(*id))); } SuperKeyIdentifier::BootLevel(level) => { metadata.add(BlobMetaEntry::MaxBootLevel(*level)); } } } } pub struct SuperKey { algorithm: SuperEncryptionAlgorithm, key: ZVec, /// Identifier of the encrypting key, used to write an encrypted blob /// back to the database after re-encryption eg on a key update. id: SuperKeyIdentifier, /// ECDH is more expensive than AES. So on ECDH private keys we set the /// reencrypt_with field to point at the corresponding AES key, and the /// keys will be re-encrypted with AES on first use. reencrypt_with: Option>, } impl AesGcm for SuperKey { fn decrypt(&self, data: &[u8], iv: &[u8], tag: &[u8]) -> Result { if self.algorithm == SuperEncryptionAlgorithm::Aes256Gcm { aes_gcm_decrypt(data, iv, tag, &self.key).context(ks_err!("Decryption failed.")) } else { Err(Error::sys()).context(ks_err!("Key is not an AES key.")) } } fn encrypt(&self, plaintext: &[u8]) -> Result<(Vec, Vec, Vec)> { if self.algorithm == SuperEncryptionAlgorithm::Aes256Gcm { aes_gcm_encrypt(plaintext, &self.key).context(ks_err!("Encryption failed.")) } else { Err(Error::sys()).context(ks_err!("Key is not an AES key.")) } } } /// A SuperKey that has been encrypted with an AES-GCM key. For /// encryption the key is in memory, and for decryption it is in KM. struct LockedKey { algorithm: SuperEncryptionAlgorithm, id: SuperKeyIdentifier, nonce: Vec, ciphertext: Vec, // with tag appended } impl LockedKey { fn new(key: &[u8], to_encrypt: &Arc) -> Result { let (mut ciphertext, nonce, mut tag) = aes_gcm_encrypt(&to_encrypt.key, key)?; ciphertext.append(&mut tag); Ok(LockedKey { algorithm: to_encrypt.algorithm, id: to_encrypt.id, nonce, ciphertext }) } fn decrypt( &self, db: &mut KeystoreDB, km_dev: &KeyMintDevice, key_id_guard: &KeyIdGuard, key_entry: &KeyEntry, auth_token: &HardwareAuthToken, reencrypt_with: Option>, ) -> Result> { let key_blob = key_entry .key_blob_info() .as_ref() .map(|(key_blob, _)| KeyBlob::Ref(key_blob)) .ok_or(Error::Rc(ResponseCode::KEY_NOT_FOUND)) .context(ks_err!("Missing key blob info."))?; let key_params = vec![ KeyParameterValue::Algorithm(Algorithm::AES), KeyParameterValue::KeySize(256), KeyParameterValue::BlockMode(BlockMode::GCM), KeyParameterValue::PaddingMode(PaddingMode::NONE), KeyParameterValue::Nonce(self.nonce.clone()), KeyParameterValue::MacLength(128), ]; let key_params: Vec = key_params.into_iter().map(|x| x.into()).collect(); let key = ZVec::try_from(km_dev.use_key_in_one_step( db, key_id_guard, &key_blob, KeyPurpose::DECRYPT, &key_params, Some(auth_token), &self.ciphertext, )?)?; Ok(Arc::new(SuperKey { algorithm: self.algorithm, key, id: self.id, reencrypt_with })) } } /// Keys for unlocking UNLOCKED_DEVICE_REQUIRED keys, as LockedKeys, complete with /// a database descriptor for the encrypting key and the sids for the auth tokens /// that can be used to decrypt it. struct BiometricUnlock { /// List of auth token SIDs that can be used to unlock these keys. sids: Vec, /// Database descriptor of key to use to unlock. key_desc: KeyDescriptor, /// Locked versions of the matching UserSuperKeys fields screen_lock_bound: LockedKey, screen_lock_bound_private: LockedKey, } #[derive(Default)] struct UserSuperKeys { /// The per boot key is used for LSKF binding of authentication bound keys. There is one /// key per android user. The key is stored on flash encrypted with a key derived from a /// secret, that is itself derived from the user's lock screen knowledge factor (LSKF). /// When the user unlocks the device for the first time, this key is unlocked, i.e., decrypted, /// and stays memory resident until the device reboots. per_boot: Option>, /// The screen lock key works like the per boot key with the distinction that it is cleared /// from memory when the screen lock is engaged. screen_lock_bound: Option>, /// When the device is locked, screen-lock-bound keys can still be encrypted, using /// ECDH public-key encryption. This field holds the decryption private key. screen_lock_bound_private: Option>, /// Versions of the above two keys, locked behind a biometric. biometric_unlock: Option, } #[derive(Default)] struct SkmState { user_keys: HashMap, key_index: HashMap>, boot_level_key_cache: Option>, } impl SkmState { fn add_key_to_key_index(&mut self, super_key: &Arc) -> Result<()> { if let SuperKeyIdentifier::DatabaseId(id) = super_key.id { self.key_index.insert(id, Arc::downgrade(super_key)); Ok(()) } else { Err(Error::sys()).context(ks_err!("Cannot add key with ID {:?}", super_key.id)) } } } #[derive(Default)] pub struct SuperKeyManager { data: SkmState, } impl SuperKeyManager { pub fn set_up_boot_level_cache(skm: &Arc>, db: &mut KeystoreDB) -> Result<()> { let mut skm_guard = skm.write().unwrap(); if skm_guard.data.boot_level_key_cache.is_some() { log::info!("In set_up_boot_level_cache: called for a second time"); return Ok(()); } let level_zero_key = get_level_zero_key(db).context(ks_err!("get_level_zero_key failed"))?; skm_guard.data.boot_level_key_cache = Some(Mutex::new(BootLevelKeyCache::new(level_zero_key))); log::info!("Starting boot level watcher."); let clone = skm.clone(); std::thread::spawn(move || { Self::watch_boot_level(clone) .unwrap_or_else(|e| log::error!("watch_boot_level failed:\n{:?}", e)); }); Ok(()) } /// Watch the `keystore.boot_level` system property, and keep boot level up to date. /// Blocks waiting for system property changes, so must be run in its own thread. fn watch_boot_level(skm: Arc>) -> Result<()> { let mut w = PropertyWatcher::new("keystore.boot_level") .context(ks_err!("PropertyWatcher::new failed"))?; loop { let level = w .read(|_n, v| v.parse::().map_err(std::convert::Into::into)) .context(ks_err!("read of property failed"))?; // This scope limits the skm_guard life, so we don't hold the skm_guard while // waiting. { let mut skm_guard = skm.write().unwrap(); let boot_level_key_cache = skm_guard .data .boot_level_key_cache .as_mut() .ok_or_else(Error::sys) .context(ks_err!("Boot level cache not initialized"))? .get_mut() .unwrap(); if level < MAX_MAX_BOOT_LEVEL { log::info!("Read keystore.boot_level value {}", level); boot_level_key_cache .advance_boot_level(level) .context(ks_err!("advance_boot_level failed"))?; } else { log::info!( "keystore.boot_level {} hits maximum {}, finishing.", level, MAX_MAX_BOOT_LEVEL ); boot_level_key_cache.finish(); break; } } w.wait().context(ks_err!("property wait failed"))?; } Ok(()) } pub fn level_accessible(&self, boot_level: i32) -> bool { self.data .boot_level_key_cache .as_ref() .map_or(false, |c| c.lock().unwrap().level_accessible(boot_level as usize)) } pub fn forget_all_keys_for_user(&mut self, user: UserId) { self.data.user_keys.remove(&user); } fn install_per_boot_key_for_user( &mut self, user: UserId, super_key: Arc, ) -> Result<()> { self.data .add_key_to_key_index(&super_key) .context(ks_err!("add_key_to_key_index failed"))?; self.data.user_keys.entry(user).or_default().per_boot = Some(super_key); Ok(()) } fn lookup_key(&self, key_id: &SuperKeyIdentifier) -> Result>> { Ok(match key_id { SuperKeyIdentifier::DatabaseId(id) => { self.data.key_index.get(id).and_then(|k| k.upgrade()) } SuperKeyIdentifier::BootLevel(level) => self .data .boot_level_key_cache .as_ref() .map(|b| b.lock().unwrap().aes_key(*level as usize)) .transpose() .context(ks_err!("aes_key failed"))? .flatten() .map(|key| { Arc::new(SuperKey { algorithm: SuperEncryptionAlgorithm::Aes256Gcm, key, id: *key_id, reencrypt_with: None, }) }), }) } pub fn get_per_boot_key_by_user_id( &self, user_id: UserId, ) -> Option> { self.get_per_boot_key_by_user_id_internal(user_id) .map(|sk| -> Arc { sk }) } fn get_per_boot_key_by_user_id_internal(&self, user_id: UserId) -> Option> { self.data.user_keys.get(&user_id).and_then(|e| e.per_boot.as_ref().cloned()) } /// This function unlocks the super keys for a given user. /// This means the key is loaded from the database, decrypted and placed in the /// super key cache. If there is no such key a new key is created, encrypted with /// a key derived from the given password and stored in the database. pub fn unlock_user_key( &mut self, db: &mut KeystoreDB, user: UserId, pw: &Password, legacy_blob_loader: &LegacyBlobLoader, ) -> Result<()> { let (_, entry) = db .get_or_create_key_with( Domain::APP, user as u64 as i64, USER_SUPER_KEY.alias, crate::database::KEYSTORE_UUID, || { // For backward compatibility we need to check if there is a super key present. let super_key = legacy_blob_loader .load_super_key(user, pw) .context(ks_err!("Failed to load legacy key blob."))?; let super_key = match super_key { None => { // No legacy file was found. So we generate a new key. generate_aes256_key() .context(ks_err!("Failed to generate AES 256 key."))? } Some(key) => key, }; // Regardless of whether we loaded an old AES128 key or generated a new AES256 // key as the super key, we derive a AES256 key from the password and re-encrypt // the super key before we insert it in the database. The length of the key is // preserved by the encryption so we don't need any extra flags to inform us // which algorithm to use it with. Self::encrypt_with_password(&super_key, pw).context("In create_new_key.") }, ) .context(ks_err!("Failed to get key id."))?; self.populate_cache_from_super_key_blob(user, USER_SUPER_KEY.algorithm, entry, pw) .context(ks_err!())?; Ok(()) } /// Check if a given key is super-encrypted, from its metadata. If so, unwrap the key using /// the relevant super key. pub fn unwrap_key_if_required<'a>( &self, metadata: &BlobMetaData, blob: &'a [u8], ) -> Result> { Ok(if let Some(key_id) = SuperKeyIdentifier::from_metadata(metadata) { let super_key = self .lookup_key(&key_id) .context(ks_err!("lookup_key failed"))? .ok_or(Error::Rc(ResponseCode::LOCKED)) .context(ks_err!("Required super decryption key is not in memory."))?; KeyBlob::Sensitive { key: Self::unwrap_key_with_key(blob, metadata, &super_key) .context(ks_err!("unwrap_key_with_key failed"))?, reencrypt_with: super_key.reencrypt_with.as_ref().unwrap_or(&super_key).clone(), force_reencrypt: super_key.reencrypt_with.is_some(), } } else { KeyBlob::Ref(blob) }) } /// Unwraps an encrypted key blob given an encryption key. fn unwrap_key_with_key(blob: &[u8], metadata: &BlobMetaData, key: &SuperKey) -> Result { match key.algorithm { SuperEncryptionAlgorithm::Aes256Gcm => match (metadata.iv(), metadata.aead_tag()) { (Some(iv), Some(tag)) => { key.decrypt(blob, iv, tag).context(ks_err!("Failed to decrypt the key blob.")) } (iv, tag) => Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(ks_err!( "Key has incomplete metadata. Present: iv: {}, aead_tag: {}.", iv.is_some(), tag.is_some(), )), }, SuperEncryptionAlgorithm::EcdhP521 => { match (metadata.public_key(), metadata.salt(), metadata.iv(), metadata.aead_tag()) { (Some(public_key), Some(salt), Some(iv), Some(aead_tag)) => { ECDHPrivateKey::from_private_key(&key.key) .and_then(|k| k.decrypt_message(public_key, salt, iv, blob, aead_tag)) .context(ks_err!("Failed to decrypt the key blob with ECDH.")) } (public_key, salt, iv, aead_tag) => { Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(ks_err!( concat!( "Key has incomplete metadata. ", "Present: public_key: {}, salt: {}, iv: {}, aead_tag: {}." ), public_key.is_some(), salt.is_some(), iv.is_some(), aead_tag.is_some(), )) } } } } } /// Checks if user has setup LSKF, even when super key cache is empty for the user. /// The reference to self is unused but it is required to prevent calling this function /// concurrently with skm state database changes. fn super_key_exists_in_db_for_user( &self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, ) -> Result { let key_in_db = db .key_exists(Domain::APP, user_id as u64 as i64, USER_SUPER_KEY.alias, KeyType::Super) .context(ks_err!())?; if key_in_db { Ok(key_in_db) } else { legacy_importer.has_super_key(user_id).context(ks_err!("Trying to query legacy db.")) } } /// Checks if user has already setup LSKF (i.e. a super key is persisted in the database or the /// legacy database). If not, return Uninitialized state. /// Otherwise, decrypt the super key from the password and return LskfUnlocked state. pub fn check_and_unlock_super_key( &mut self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, pw: &Password, ) -> Result { let alias = &USER_SUPER_KEY; let result = legacy_importer .with_try_import_super_key(user_id, pw, || db.load_super_key(alias, user_id)) .context(ks_err!("Failed to load super key"))?; match result { Some((_, entry)) => { let super_key = self .populate_cache_from_super_key_blob(user_id, alias.algorithm, entry, pw) .context(ks_err!())?; Ok(UserState::LskfUnlocked(super_key)) } None => Ok(UserState::Uninitialized), } } /// Checks if user has already setup LSKF (i.e. a super key is persisted in the database or the /// legacy database). If so, return LskfLocked state. /// If the password is provided, generate a new super key, encrypt with the password, /// store in the database and populate the super key cache for the new user /// and return LskfUnlocked state. /// If the password is not provided, return Uninitialized state. pub fn check_and_initialize_super_key( &mut self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, pw: Option<&Password>, ) -> Result { let super_key_exists_in_db = self .super_key_exists_in_db_for_user(db, legacy_importer, user_id) .context(ks_err!("Failed to check if super key exists."))?; if super_key_exists_in_db { Ok(UserState::LskfLocked) } else if let Some(pw) = pw { // Generate a new super key. let super_key = generate_aes256_key().context(ks_err!("Failed to generate AES 256 key."))?; // Derive an AES256 key from the password and re-encrypt the super key // before we insert it in the database. let (encrypted_super_key, blob_metadata) = Self::encrypt_with_password(&super_key, pw).context(ks_err!())?; let key_entry = db .store_super_key( user_id, &USER_SUPER_KEY, &encrypted_super_key, &blob_metadata, &KeyMetaData::new(), ) .context(ks_err!("Failed to store super key."))?; let super_key = self .populate_cache_from_super_key_blob( user_id, USER_SUPER_KEY.algorithm, key_entry, pw, ) .context(ks_err!())?; Ok(UserState::LskfUnlocked(super_key)) } else { Ok(UserState::Uninitialized) } } // Helper function to populate super key cache from the super key blob loaded from the database. fn populate_cache_from_super_key_blob( &mut self, user_id: UserId, algorithm: SuperEncryptionAlgorithm, entry: KeyEntry, pw: &Password, ) -> Result> { let super_key = Self::extract_super_key_from_key_entry(algorithm, entry, pw, None) .context(ks_err!("Failed to extract super key from key entry"))?; self.install_per_boot_key_for_user(user_id, super_key.clone())?; Ok(super_key) } /// Extracts super key from the entry loaded from the database. pub fn extract_super_key_from_key_entry( algorithm: SuperEncryptionAlgorithm, entry: KeyEntry, pw: &Password, reencrypt_with: Option>, ) -> Result> { if let Some((blob, metadata)) = entry.key_blob_info() { let key = match ( metadata.encrypted_by(), metadata.salt(), metadata.iv(), metadata.aead_tag(), ) { (Some(&EncryptedBy::Password), Some(salt), Some(iv), Some(tag)) => { // Note that password encryption is AES no matter the value of algorithm. let key = pw .derive_key(salt, AES_256_KEY_LENGTH) .context(ks_err!("Failed to generate key from password."))?; aes_gcm_decrypt(blob, iv, tag, &key) .context(ks_err!("Failed to decrypt key blob."))? } (enc_by, salt, iv, tag) => { return Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(ks_err!( concat!( "Super key has incomplete metadata.", "encrypted_by: {:?}; Present: salt: {}, iv: {}, aead_tag: {}." ), enc_by, salt.is_some(), iv.is_some(), tag.is_some() )); } }; Ok(Arc::new(SuperKey { algorithm, key, id: SuperKeyIdentifier::DatabaseId(entry.id()), reencrypt_with, })) } else { Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(ks_err!("No key blob info.")) } } /// Encrypts the super key from a key derived from the password, before storing in the database. pub fn encrypt_with_password( super_key: &[u8], pw: &Password, ) -> Result<(Vec, BlobMetaData)> { let salt = generate_salt().context("In encrypt_with_password: Failed to generate salt.")?; let derived_key = pw .derive_key(&salt, AES_256_KEY_LENGTH) .context(ks_err!("Failed to derive password."))?; let mut metadata = BlobMetaData::new(); metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password)); metadata.add(BlobMetaEntry::Salt(salt)); let (encrypted_key, iv, tag) = aes_gcm_encrypt(super_key, &derived_key) .context(ks_err!("Failed to encrypt new super key."))?; metadata.add(BlobMetaEntry::Iv(iv)); metadata.add(BlobMetaEntry::AeadTag(tag)); Ok((encrypted_key, metadata)) } // Encrypt the given key blob with the user's super key, if the super key exists and the device // is unlocked. If the super key exists and the device is locked, or LSKF is not setup, // return error. Note that it is out of the scope of this function to check if super encryption // is required. Such check should be performed before calling this function. fn super_encrypt_on_key_init( &self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, key_blob: &[u8], ) -> Result<(Vec, BlobMetaData)> { match self .get_user_state(db, legacy_importer, user_id) .context(ks_err!("Failed to get user state."))? { UserState::LskfUnlocked(super_key) => { Self::encrypt_with_aes_super_key(key_blob, &super_key) .context(ks_err!("Failed to encrypt the key.")) } UserState::LskfLocked => { Err(Error::Rc(ResponseCode::LOCKED)).context(ks_err!("Device is locked.")) } UserState::Uninitialized => Err(Error::Rc(ResponseCode::UNINITIALIZED)) .context(ks_err!("LSKF is not setup for the user.")), } } // Helper function to encrypt a key with the given super key. Callers should select which super // key to be used. This is called when a key is super encrypted at its creation as well as at // its upgrade. fn encrypt_with_aes_super_key( key_blob: &[u8], super_key: &SuperKey, ) -> Result<(Vec, BlobMetaData)> { if super_key.algorithm != SuperEncryptionAlgorithm::Aes256Gcm { return Err(Error::sys()).context(ks_err!("unexpected algorithm")); } let mut metadata = BlobMetaData::new(); let (encrypted_key, iv, tag) = aes_gcm_encrypt(key_blob, &(super_key.key)) .context(ks_err!("Failed to encrypt new super key."))?; metadata.add(BlobMetaEntry::Iv(iv)); metadata.add(BlobMetaEntry::AeadTag(tag)); super_key.id.add_to_metadata(&mut metadata); Ok((encrypted_key, metadata)) } /// Check if super encryption is required and if so, super-encrypt the key to be stored in /// the database. #[allow(clippy::too_many_arguments)] pub fn handle_super_encryption_on_key_init( &self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, domain: &Domain, key_parameters: &[KeyParameter], flags: Option, user_id: UserId, key_blob: &[u8], ) -> Result<(Vec, BlobMetaData)> { match Enforcements::super_encryption_required(domain, key_parameters, flags) { SuperEncryptionType::None => Ok((key_blob.to_vec(), BlobMetaData::new())), SuperEncryptionType::LskfBound => self .super_encrypt_on_key_init(db, legacy_importer, user_id, key_blob) .context(ks_err!("Failed to super encrypt with LskfBound key.")), SuperEncryptionType::ScreenLockBound => { let entry = self.data.user_keys.get(&user_id).and_then(|e| e.screen_lock_bound.as_ref()); if let Some(super_key) = entry { Self::encrypt_with_aes_super_key(key_blob, super_key) .context(ks_err!("Failed to encrypt with ScreenLockBound key.")) } else { // Symmetric key is not available, use public key encryption let loaded = db .load_super_key(&USER_SCREEN_LOCK_BOUND_P521_KEY, user_id) .context(ks_err!("load_super_key failed."))?; let (key_id_guard, key_entry) = loaded.ok_or_else(Error::sys).context(ks_err!("User ECDH key missing."))?; let public_key = key_entry .metadata() .sec1_public_key() .ok_or_else(Error::sys) .context(ks_err!("sec1_public_key missing."))?; let mut metadata = BlobMetaData::new(); let (ephem_key, salt, iv, encrypted_key, aead_tag) = ECDHPrivateKey::encrypt_message(public_key, key_blob) .context(ks_err!("ECDHPrivateKey::encrypt_message failed."))?; metadata.add(BlobMetaEntry::PublicKey(ephem_key)); metadata.add(BlobMetaEntry::Salt(salt)); metadata.add(BlobMetaEntry::Iv(iv)); metadata.add(BlobMetaEntry::AeadTag(aead_tag)); SuperKeyIdentifier::DatabaseId(key_id_guard.id()) .add_to_metadata(&mut metadata); Ok((encrypted_key, metadata)) } } SuperEncryptionType::BootLevel(level) => { let key_id = SuperKeyIdentifier::BootLevel(level); let super_key = self .lookup_key(&key_id) .context(ks_err!("lookup_key failed"))? .ok_or(Error::Rc(ResponseCode::LOCKED)) .context(ks_err!("Boot stage key absent"))?; Self::encrypt_with_aes_super_key(key_blob, &super_key) .context(ks_err!("Failed to encrypt with BootLevel key.")) } } } /// Check if a given key needs re-super-encryption, from its KeyBlob type. /// If so, re-super-encrypt the key and return a new set of metadata, /// containing the new super encryption information. pub fn reencrypt_if_required<'a>( key_blob_before_upgrade: &KeyBlob, key_after_upgrade: &'a [u8], ) -> Result<(KeyBlob<'a>, Option)> { match key_blob_before_upgrade { KeyBlob::Sensitive { reencrypt_with: super_key, .. } => { let (key, metadata) = Self::encrypt_with_aes_super_key(key_after_upgrade, super_key) .context(ks_err!("Failed to re-super-encrypt key."))?; Ok((KeyBlob::NonSensitive(key), Some(metadata))) } _ => Ok((KeyBlob::Ref(key_after_upgrade), None)), } } /// Fetch a superencryption key from the database, or create it if it doesn't already exist. /// When this is called, the caller must hold the lock on the SuperKeyManager. /// So it's OK that the check and creation are different DB transactions. fn get_or_create_super_key( &mut self, db: &mut KeystoreDB, user_id: UserId, key_type: &SuperKeyType, password: &Password, reencrypt_with: Option>, ) -> Result> { let loaded_key = db.load_super_key(key_type, user_id)?; if let Some((_, key_entry)) = loaded_key { Ok(Self::extract_super_key_from_key_entry( key_type.algorithm, key_entry, password, reencrypt_with, )?) } else { let (super_key, public_key) = match key_type.algorithm { SuperEncryptionAlgorithm::Aes256Gcm => ( generate_aes256_key().context(ks_err!("Failed to generate AES 256 key."))?, None, ), SuperEncryptionAlgorithm::EcdhP521 => { let key = ECDHPrivateKey::generate() .context(ks_err!("Failed to generate ECDH key"))?; ( key.private_key().context(ks_err!("private_key failed"))?, Some(key.public_key().context(ks_err!("public_key failed"))?), ) } }; // Derive an AES256 key from the password and re-encrypt the super key // before we insert it in the database. let (encrypted_super_key, blob_metadata) = Self::encrypt_with_password(&super_key, password).context(ks_err!())?; let mut key_metadata = KeyMetaData::new(); if let Some(pk) = public_key { key_metadata.add(KeyMetaEntry::Sec1PublicKey(pk)); } let key_entry = db .store_super_key( user_id, key_type, &encrypted_super_key, &blob_metadata, &key_metadata, ) .context(ks_err!("Failed to store super key."))?; Ok(Arc::new(SuperKey { algorithm: key_type.algorithm, key: super_key, id: SuperKeyIdentifier::DatabaseId(key_entry.id()), reencrypt_with, })) } } /// Decrypt the screen-lock bound keys for this user using the password and store in memory. pub fn unlock_screen_lock_bound_key( &mut self, db: &mut KeystoreDB, user_id: UserId, password: &Password, ) -> Result<()> { let (screen_lock_bound, screen_lock_bound_private) = self .data .user_keys .get(&user_id) .map(|e| (e.screen_lock_bound.clone(), e.screen_lock_bound_private.clone())) .unwrap_or((None, None)); if screen_lock_bound.is_some() && screen_lock_bound_private.is_some() { // Already unlocked. return Ok(()); } let aes = if let Some(screen_lock_bound) = screen_lock_bound { // This is weird. If this point is reached only one of the screen locked keys was // initialized. This should never happen. screen_lock_bound } else { self.get_or_create_super_key(db, user_id, &USER_SCREEN_LOCK_BOUND_KEY, password, None) .context(ks_err!("Trying to get or create symmetric key."))? }; let ecdh = if let Some(screen_lock_bound_private) = screen_lock_bound_private { // This is weird. If this point is reached only one of the screen locked keys was // initialized. This should never happen. screen_lock_bound_private } else { self.get_or_create_super_key( db, user_id, &USER_SCREEN_LOCK_BOUND_P521_KEY, password, Some(aes.clone()), ) .context(ks_err!("Trying to get or create asymmetric key."))? }; self.data.add_key_to_key_index(&aes)?; self.data.add_key_to_key_index(&ecdh)?; let entry = self.data.user_keys.entry(user_id).or_default(); entry.screen_lock_bound = Some(aes); entry.screen_lock_bound_private = Some(ecdh); Ok(()) } /// Wipe the screen-lock bound keys for this user from memory. pub fn lock_screen_lock_bound_key( &mut self, db: &mut KeystoreDB, user_id: UserId, unlocking_sids: &[i64], ) { log::info!("Locking screen bound for user {} sids {:?}", user_id, unlocking_sids); let mut entry = self.data.user_keys.entry(user_id).or_default(); if !unlocking_sids.is_empty() { if let (Some(aes), Some(ecdh)) = ( entry.screen_lock_bound.as_ref().cloned(), entry.screen_lock_bound_private.as_ref().cloned(), ) { let res = (|| -> Result<()> { let key_desc = KeyMintDevice::internal_descriptor(format!( "biometric_unlock_key_{}", user_id )); let encrypting_key = generate_aes256_key()?; let km_dev: KeyMintDevice = KeyMintDevice::get(SecurityLevel::TRUSTED_ENVIRONMENT) .context(ks_err!("KeyMintDevice::get failed"))?; let mut key_params = vec![ KeyParameterValue::Algorithm(Algorithm::AES), KeyParameterValue::KeySize(256), KeyParameterValue::BlockMode(BlockMode::GCM), KeyParameterValue::PaddingMode(PaddingMode::NONE), KeyParameterValue::CallerNonce, KeyParameterValue::KeyPurpose(KeyPurpose::DECRYPT), KeyParameterValue::MinMacLength(128), KeyParameterValue::AuthTimeout(BIOMETRIC_AUTH_TIMEOUT_S), KeyParameterValue::HardwareAuthenticatorType( HardwareAuthenticatorType::FINGERPRINT, ), ]; for sid in unlocking_sids { key_params.push(KeyParameterValue::UserSecureID(*sid)); } let key_params: Vec = key_params.into_iter().map(|x| x.into()).collect(); km_dev.create_and_store_key( db, &key_desc, KeyType::Client, /* TODO Should be Super b/189470584 */ |dev| { let _wp = wd::watch_millis( "In lock_screen_lock_bound_key: calling importKey.", 500, ); dev.importKey( key_params.as_slice(), KeyFormat::RAW, &encrypting_key, None, ) }, )?; entry.biometric_unlock = Some(BiometricUnlock { sids: unlocking_sids.into(), key_desc, screen_lock_bound: LockedKey::new(&encrypting_key, &aes)?, screen_lock_bound_private: LockedKey::new(&encrypting_key, &ecdh)?, }); Ok(()) })(); // There is no reason to propagate an error here upwards. We must discard // entry.screen_lock_bound* in any case. if let Err(e) = res { log::error!("Error setting up biometric unlock: {:#?}", e); } } } entry.screen_lock_bound = None; entry.screen_lock_bound_private = None; } /// User has unlocked, not using a password. See if any of our stored auth tokens can be used /// to unlock the keys protecting UNLOCKED_DEVICE_REQUIRED keys. pub fn try_unlock_user_with_biometric( &mut self, db: &mut KeystoreDB, user_id: UserId, ) -> Result<()> { let mut entry = self.data.user_keys.entry(user_id).or_default(); if let Some(biometric) = entry.biometric_unlock.as_ref() { let (key_id_guard, key_entry) = db .load_key_entry( &biometric.key_desc, KeyType::Client, // This should not be a Client key. KeyEntryLoadBits::KM, AID_KEYSTORE, |_, _| Ok(()), ) .context(ks_err!("load_key_entry failed"))?; let km_dev: KeyMintDevice = KeyMintDevice::get(SecurityLevel::TRUSTED_ENVIRONMENT) .context(ks_err!("KeyMintDevice::get failed"))?; for sid in &biometric.sids { if let Some((auth_token_entry, _)) = db.find_auth_token_entry(|entry| { entry.auth_token().userId == *sid || entry.auth_token().authenticatorId == *sid }) { let res: Result<(Arc, Arc)> = (|| { let slb = biometric.screen_lock_bound.decrypt( db, &km_dev, &key_id_guard, &key_entry, auth_token_entry.auth_token(), None, )?; let slbp = biometric.screen_lock_bound_private.decrypt( db, &km_dev, &key_id_guard, &key_entry, auth_token_entry.auth_token(), Some(slb.clone()), )?; Ok((slb, slbp)) })(); match res { Ok((slb, slbp)) => { entry.screen_lock_bound = Some(slb.clone()); entry.screen_lock_bound_private = Some(slbp.clone()); self.data.add_key_to_key_index(&slb)?; self.data.add_key_to_key_index(&slbp)?; log::info!("Successfully unlocked with biometric"); return Ok(()); } Err(e) => { log::warn!("attempt failed: {:?}", e) } } } } } Ok(()) } /// Returns the keystore locked state of the given user. It requires the thread local /// keystore database and a reference to the legacy migrator because it may need to /// import the super key from the legacy blob database to the keystore database. pub fn get_user_state( &self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, ) -> Result { match self.get_per_boot_key_by_user_id_internal(user_id) { Some(super_key) => Ok(UserState::LskfUnlocked(super_key)), None => { // Check if a super key exists in the database or legacy database. // If so, return locked user state. if self .super_key_exists_in_db_for_user(db, legacy_importer, user_id) .context(ks_err!())? { Ok(UserState::LskfLocked) } else { Ok(UserState::Uninitialized) } } } } /// If the given user is unlocked: /// * and `password` is None, the user is reset, all authentication bound keys are deleted and /// `Ok(UserState::Uninitialized)` is returned. /// * and `password` is Some, `Ok(UserState::LskfUnlocked)` is returned. /// If the given user is locked: /// * and the user was initialized before, `Ok(UserState::Locked)` is returned. /// * and the user was not initialized before: /// * and `password` is None, `Ok(Uninitialized)` is returned. /// * and `password` is Some, super keys are generated and `Ok(UserState::LskfUnlocked)` is /// returned. pub fn reset_or_init_user_and_get_user_state( &mut self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, password: Option<&Password>, ) -> Result { match self.get_per_boot_key_by_user_id_internal(user_id) { Some(_) if password.is_none() => { // Transitioning to swiping, delete only the super key in database and cache, // and super-encrypted keys in database (and in KM). self.reset_user(db, legacy_importer, user_id, true) .context(ks_err!("Trying to delete keys from the db."))?; // Lskf is now removed in Keystore. Ok(UserState::Uninitialized) } Some(super_key) => { // Keystore won't be notified when changing to a new password when LSKF is // already setup. Therefore, ideally this path wouldn't be reached. Ok(UserState::LskfUnlocked(super_key)) } None => { // Check if a super key exists in the database or legacy database. // If so, return LskfLocked state. // Otherwise, i) if the password is provided, initialize the super key and return // LskfUnlocked state ii) if password is not provided, return Uninitialized state. self.check_and_initialize_super_key(db, legacy_importer, user_id, password) } } } /// Unlocks the given user with the given password. If the key was already unlocked or unlocking /// was successful, `Ok(UserState::LskfUnlocked)` is returned. /// If the user was never initialized `Ok(UserState::Uninitialized)` is returned. pub fn unlock_and_get_user_state( &mut self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, password: &Password, ) -> Result { match self.get_per_boot_key_by_user_id_internal(user_id) { Some(super_key) => { log::info!("Trying to unlock when already unlocked."); Ok(UserState::LskfUnlocked(super_key)) } None => { // Check if a super key exists in the database or legacy database. // If not, return Uninitialized state. // Otherwise, try to unlock the super key and if successful, // return LskfUnlocked. self.check_and_unlock_super_key(db, legacy_importer, user_id, password) .context(ks_err!("Failed to unlock super key.")) } } } /// Delete all the keys created on behalf of the user. /// If 'keep_non_super_encrypted_keys' is set to true, delete only the super key and super /// encrypted keys. pub fn reset_user( &mut self, db: &mut KeystoreDB, legacy_importer: &LegacyImporter, user_id: UserId, keep_non_super_encrypted_keys: bool, ) -> Result<()> { // Mark keys created on behalf of the user as unreferenced. legacy_importer .bulk_delete_user(user_id, keep_non_super_encrypted_keys) .context(ks_err!("Trying to delete legacy keys."))?; db.unbind_keys_for_user(user_id, keep_non_super_encrypted_keys) .context(ks_err!("Error in unbinding keys."))?; // Delete super key in cache, if exists. self.forget_all_keys_for_user(user_id); Ok(()) } } /// This enum represents different states of the user's life cycle in the device. /// For now, only three states are defined. More states may be added later. pub enum UserState { // The user has registered LSKF and has unlocked the device by entering PIN/Password, // and hence the per-boot super key is available in the cache. LskfUnlocked(Arc), // The user has registered LSKF, but has not unlocked the device using password, after reboot. // Hence the per-boot super-key(s) is not available in the cache. // However, the encrypted super key is available in the database. LskfLocked, // There's no user in the device for the given user id, or the user with the user id has not // setup LSKF. Uninitialized, } /// This enum represents three states a KeyMint Blob can be in, w.r.t super encryption. /// `Sensitive` holds the non encrypted key and a reference to its super key. /// `NonSensitive` holds a non encrypted key that is never supposed to be encrypted. /// `Ref` holds a reference to a key blob when it does not need to be modified if its /// life time allows it. pub enum KeyBlob<'a> { Sensitive { key: ZVec, /// If KeyMint reports that the key must be upgraded, we must /// re-encrypt the key before writing to the database; we use /// this key. reencrypt_with: Arc, /// If this key was decrypted with an ECDH key, we want to /// re-encrypt it on first use whether it was upgraded or not; /// this field indicates that that's necessary. force_reencrypt: bool, }, NonSensitive(Vec), Ref(&'a [u8]), } impl<'a> KeyBlob<'a> { pub fn force_reencrypt(&self) -> bool { if let KeyBlob::Sensitive { force_reencrypt, .. } = self { *force_reencrypt } else { false } } } /// Deref returns a reference to the key material in any variant. impl<'a> Deref for KeyBlob<'a> { type Target = [u8]; fn deref(&self) -> &Self::Target { match self { Self::Sensitive { key, .. } => key, Self::NonSensitive(key) => key, Self::Ref(key) => key, } } }