1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30 DeclContext *CurContext) {
31 if (T.isNull())
32 return nullptr;
33
34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37 if (!Record->isDependentContext() ||
38 Record->isCurrentInstantiation(CurContext))
39 return Record;
40
41 return nullptr;
42 } else if (isa<InjectedClassNameType>(Ty))
43 return cast<InjectedClassNameType>(Ty)->getDecl();
44 else
45 return nullptr;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56 if (!T->isDependentType())
57 if (const TagType *Tag = T->getAs<TagType>())
58 return Tag->getDecl();
59
60 return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77 bool EnteringContext) {
78 if (!SS.isSet() || SS.isInvalid())
79 return nullptr;
80
81 NestedNameSpecifier *NNS = SS.getScopeRep();
82 if (NNS->isDependent()) {
83 // If this nested-name-specifier refers to the current
84 // instantiation, return its DeclContext.
85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86 return Record;
87
88 if (EnteringContext) {
89 const Type *NNSType = NNS->getAsType();
90 if (!NNSType) {
91 return nullptr;
92 }
93
94 // Look through type alias templates, per C++0x [temp.dep.type]p1.
95 NNSType = Context.getCanonicalType(NNSType);
96 if (const TemplateSpecializationType *SpecType
97 = NNSType->getAs<TemplateSpecializationType>()) {
98 // We are entering the context of the nested name specifier, so try to
99 // match the nested name specifier to either a primary class template
100 // or a class template partial specialization.
101 if (ClassTemplateDecl *ClassTemplate
102 = dyn_cast_or_null<ClassTemplateDecl>(
103 SpecType->getTemplateName().getAsTemplateDecl())) {
104 QualType ContextType
105 = Context.getCanonicalType(QualType(SpecType, 0));
106
107 // If the type of the nested name specifier is the same as the
108 // injected class name of the named class template, we're entering
109 // into that class template definition.
110 QualType Injected
111 = ClassTemplate->getInjectedClassNameSpecialization();
112 if (Context.hasSameType(Injected, ContextType))
113 return ClassTemplate->getTemplatedDecl();
114
115 // If the type of the nested name specifier is the same as the
116 // type of one of the class template's class template partial
117 // specializations, we're entering into the definition of that
118 // class template partial specialization.
119 if (ClassTemplatePartialSpecializationDecl *PartialSpec
120 = ClassTemplate->findPartialSpecialization(ContextType)) {
121 // A declaration of the partial specialization must be visible.
122 // We can always recover here, because this only happens when we're
123 // entering the context, and that can't happen in a SFINAE context.
124 assert(!isSFINAEContext() &&
125 "partial specialization scope specifier in SFINAE context?");
126 if (!hasVisibleDeclaration(PartialSpec))
127 diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
128 MissingImportKind::PartialSpecialization,
129 /*Recover*/true);
130 return PartialSpec;
131 }
132 }
133 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
134 // The nested name specifier refers to a member of a class template.
135 return RecordT->getDecl();
136 }
137 }
138
139 return nullptr;
140 }
141
142 switch (NNS->getKind()) {
143 case NestedNameSpecifier::Identifier:
144 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
145
146 case NestedNameSpecifier::Namespace:
147 return NNS->getAsNamespace();
148
149 case NestedNameSpecifier::NamespaceAlias:
150 return NNS->getAsNamespaceAlias()->getNamespace();
151
152 case NestedNameSpecifier::TypeSpec:
153 case NestedNameSpecifier::TypeSpecWithTemplate: {
154 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
155 assert(Tag && "Non-tag type in nested-name-specifier");
156 return Tag->getDecl();
157 }
158
159 case NestedNameSpecifier::Global:
160 return Context.getTranslationUnitDecl();
161
162 case NestedNameSpecifier::Super:
163 return NNS->getAsRecordDecl();
164 }
165
166 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
167 }
168
isDependentScopeSpecifier(const CXXScopeSpec & SS)169 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
170 if (!SS.isSet() || SS.isInvalid())
171 return false;
172
173 return SS.getScopeRep()->isDependent();
174 }
175
176 /// \brief If the given nested name specifier refers to the current
177 /// instantiation, return the declaration that corresponds to that
178 /// current instantiation (C++0x [temp.dep.type]p1).
179 ///
180 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)181 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
182 assert(getLangOpts().CPlusPlus && "Only callable in C++");
183 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
184
185 if (!NNS->getAsType())
186 return nullptr;
187
188 QualType T = QualType(NNS->getAsType(), 0);
189 return ::getCurrentInstantiationOf(T, CurContext);
190 }
191
192 /// \brief Require that the context specified by SS be complete.
193 ///
194 /// If SS refers to a type, this routine checks whether the type is
195 /// complete enough (or can be made complete enough) for name lookup
196 /// into the DeclContext. A type that is not yet completed can be
197 /// considered "complete enough" if it is a class/struct/union/enum
198 /// that is currently being defined. Or, if we have a type that names
199 /// a class template specialization that is not a complete type, we
200 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)201 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
202 DeclContext *DC) {
203 assert(DC && "given null context");
204
205 TagDecl *tag = dyn_cast<TagDecl>(DC);
206
207 // If this is a dependent type, then we consider it complete.
208 // FIXME: This is wrong; we should require a (visible) definition to
209 // exist in this case too.
210 if (!tag || tag->isDependentContext())
211 return false;
212
213 // If we're currently defining this type, then lookup into the
214 // type is okay: don't complain that it isn't complete yet.
215 QualType type = Context.getTypeDeclType(tag);
216 const TagType *tagType = type->getAs<TagType>();
217 if (tagType && tagType->isBeingDefined())
218 return false;
219
220 SourceLocation loc = SS.getLastQualifierNameLoc();
221 if (loc.isInvalid()) loc = SS.getRange().getBegin();
222
223 // The type must be complete.
224 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225 SS.getRange())) {
226 SS.SetInvalid(SS.getRange());
227 return true;
228 }
229
230 // Fixed enum types are complete, but they aren't valid as scopes
231 // until we see a definition, so awkwardly pull out this special
232 // case.
233 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
234 if (!enumType)
235 return false;
236 if (enumType->getDecl()->isCompleteDefinition()) {
237 // If we know about the definition but it is not visible, complain.
238 NamedDecl *SuggestedDef = nullptr;
239 if (!hasVisibleDefinition(enumType->getDecl(), &SuggestedDef,
240 /*OnlyNeedComplete*/false)) {
241 // If the user is going to see an error here, recover by making the
242 // definition visible.
243 bool TreatAsComplete = !isSFINAEContext();
244 diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
245 /*Recover*/TreatAsComplete);
246 return !TreatAsComplete;
247 }
248 return false;
249 }
250
251 // Try to instantiate the definition, if this is a specialization of an
252 // enumeration temploid.
253 EnumDecl *ED = enumType->getDecl();
254 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
255 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
256 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
257 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
258 TSK_ImplicitInstantiation)) {
259 SS.SetInvalid(SS.getRange());
260 return true;
261 }
262 return false;
263 }
264 }
265
266 Diag(loc, diag::err_incomplete_nested_name_spec)
267 << type << SS.getRange();
268 SS.SetInvalid(SS.getRange());
269 return true;
270 }
271
ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,CXXScopeSpec & SS)272 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
273 CXXScopeSpec &SS) {
274 SS.MakeGlobal(Context, CCLoc);
275 return false;
276 }
277
ActOnSuperScopeSpecifier(SourceLocation SuperLoc,SourceLocation ColonColonLoc,CXXScopeSpec & SS)278 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
279 SourceLocation ColonColonLoc,
280 CXXScopeSpec &SS) {
281 CXXRecordDecl *RD = nullptr;
282 for (Scope *S = getCurScope(); S; S = S->getParent()) {
283 if (S->isFunctionScope()) {
284 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
285 RD = MD->getParent();
286 break;
287 }
288 if (S->isClassScope()) {
289 RD = cast<CXXRecordDecl>(S->getEntity());
290 break;
291 }
292 }
293
294 if (!RD) {
295 Diag(SuperLoc, diag::err_invalid_super_scope);
296 return true;
297 } else if (RD->isLambda()) {
298 Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
299 return true;
300 } else if (RD->getNumBases() == 0) {
301 Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
302 return true;
303 }
304
305 SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
306 return false;
307 }
308
309 /// \brief Determines whether the given declaration is an valid acceptable
310 /// result for name lookup of a nested-name-specifier.
311 /// \param SD Declaration checked for nested-name-specifier.
312 /// \param IsExtension If not null and the declaration is accepted as an
313 /// extension, the pointed variable is assigned true.
isAcceptableNestedNameSpecifier(const NamedDecl * SD,bool * IsExtension)314 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
315 bool *IsExtension) {
316 if (!SD)
317 return false;
318
319 SD = SD->getUnderlyingDecl();
320
321 // Namespace and namespace aliases are fine.
322 if (isa<NamespaceDecl>(SD))
323 return true;
324
325 if (!isa<TypeDecl>(SD))
326 return false;
327
328 // Determine whether we have a class (or, in C++11, an enum) or
329 // a typedef thereof. If so, build the nested-name-specifier.
330 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
331 if (T->isDependentType())
332 return true;
333 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
334 if (TD->getUnderlyingType()->isRecordType())
335 return true;
336 if (TD->getUnderlyingType()->isEnumeralType()) {
337 if (Context.getLangOpts().CPlusPlus11)
338 return true;
339 if (IsExtension)
340 *IsExtension = true;
341 }
342 } else if (isa<RecordDecl>(SD)) {
343 return true;
344 } else if (isa<EnumDecl>(SD)) {
345 if (Context.getLangOpts().CPlusPlus11)
346 return true;
347 if (IsExtension)
348 *IsExtension = true;
349 }
350
351 return false;
352 }
353
354 /// \brief If the given nested-name-specifier begins with a bare identifier
355 /// (e.g., Base::), perform name lookup for that identifier as a
356 /// nested-name-specifier within the given scope, and return the result of that
357 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)358 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
359 if (!S || !NNS)
360 return nullptr;
361
362 while (NNS->getPrefix())
363 NNS = NNS->getPrefix();
364
365 if (NNS->getKind() != NestedNameSpecifier::Identifier)
366 return nullptr;
367
368 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
369 LookupNestedNameSpecifierName);
370 LookupName(Found, S);
371 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
372
373 if (!Found.isSingleResult())
374 return nullptr;
375
376 NamedDecl *Result = Found.getFoundDecl();
377 if (isAcceptableNestedNameSpecifier(Result))
378 return Result;
379
380 return nullptr;
381 }
382
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)383 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
384 SourceLocation IdLoc,
385 IdentifierInfo &II,
386 ParsedType ObjectTypePtr) {
387 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
388 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
389
390 // Determine where to perform name lookup
391 DeclContext *LookupCtx = nullptr;
392 bool isDependent = false;
393 if (!ObjectType.isNull()) {
394 // This nested-name-specifier occurs in a member access expression, e.g.,
395 // x->B::f, and we are looking into the type of the object.
396 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
397 LookupCtx = computeDeclContext(ObjectType);
398 isDependent = ObjectType->isDependentType();
399 } else if (SS.isSet()) {
400 // This nested-name-specifier occurs after another nested-name-specifier,
401 // so long into the context associated with the prior nested-name-specifier.
402 LookupCtx = computeDeclContext(SS, false);
403 isDependent = isDependentScopeSpecifier(SS);
404 Found.setContextRange(SS.getRange());
405 }
406
407 if (LookupCtx) {
408 // Perform "qualified" name lookup into the declaration context we
409 // computed, which is either the type of the base of a member access
410 // expression or the declaration context associated with a prior
411 // nested-name-specifier.
412
413 // The declaration context must be complete.
414 if (!LookupCtx->isDependentContext() &&
415 RequireCompleteDeclContext(SS, LookupCtx))
416 return false;
417
418 LookupQualifiedName(Found, LookupCtx);
419 } else if (isDependent) {
420 return false;
421 } else {
422 LookupName(Found, S);
423 }
424 Found.suppressDiagnostics();
425
426 return Found.getAsSingle<NamespaceDecl>();
427 }
428
429 namespace {
430
431 // Callback to only accept typo corrections that can be a valid C++ member
432 // intializer: either a non-static field member or a base class.
433 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
434 public:
NestedNameSpecifierValidatorCCC(Sema & SRef)435 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
436 : SRef(SRef) {}
437
ValidateCandidate(const TypoCorrection & candidate)438 bool ValidateCandidate(const TypoCorrection &candidate) override {
439 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
440 }
441
442 private:
443 Sema &SRef;
444 };
445
446 }
447
448 /// \brief Build a new nested-name-specifier for "identifier::", as described
449 /// by ActOnCXXNestedNameSpecifier.
450 ///
451 /// \param S Scope in which the nested-name-specifier occurs.
452 /// \param Identifier Identifier in the sequence "identifier" "::".
453 /// \param IdentifierLoc Location of the \p Identifier.
454 /// \param CCLoc Location of "::" following Identifier.
455 /// \param ObjectType Type of postfix expression if the nested-name-specifier
456 /// occurs in construct like: <tt>ptr->nns::f</tt>.
457 /// \param EnteringContext If true, enter the context specified by the
458 /// nested-name-specifier.
459 /// \param SS Optional nested name specifier preceding the identifier.
460 /// \param ScopeLookupResult Provides the result of name lookup within the
461 /// scope of the nested-name-specifier that was computed at template
462 /// definition time.
463 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
464 /// error recovery and what kind of recovery is performed.
465 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
466 /// are allowed. The bool value pointed by this parameter is set to
467 /// 'true' if the identifier is treated as if it was followed by ':',
468 /// not '::'.
469 ///
470 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
471 /// that it contains an extra parameter \p ScopeLookupResult, which provides
472 /// the result of name lookup within the scope of the nested-name-specifier
473 /// that was computed at template definition time.
474 ///
475 /// If ErrorRecoveryLookup is true, then this call is used to improve error
476 /// recovery. This means that it should not emit diagnostics, it should
477 /// just return true on failure. It also means it should only return a valid
478 /// scope if it *knows* that the result is correct. It should not return in a
479 /// dependent context, for example. Nor will it extend \p SS with the scope
480 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)481 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
482 IdentifierInfo &Identifier,
483 SourceLocation IdentifierLoc,
484 SourceLocation CCLoc,
485 QualType ObjectType,
486 bool EnteringContext,
487 CXXScopeSpec &SS,
488 NamedDecl *ScopeLookupResult,
489 bool ErrorRecoveryLookup,
490 bool *IsCorrectedToColon) {
491 LookupResult Found(*this, &Identifier, IdentifierLoc,
492 LookupNestedNameSpecifierName);
493
494 // Determine where to perform name lookup
495 DeclContext *LookupCtx = nullptr;
496 bool isDependent = false;
497 if (IsCorrectedToColon)
498 *IsCorrectedToColon = false;
499 if (!ObjectType.isNull()) {
500 // This nested-name-specifier occurs in a member access expression, e.g.,
501 // x->B::f, and we are looking into the type of the object.
502 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
503 LookupCtx = computeDeclContext(ObjectType);
504 isDependent = ObjectType->isDependentType();
505 } else if (SS.isSet()) {
506 // This nested-name-specifier occurs after another nested-name-specifier,
507 // so look into the context associated with the prior nested-name-specifier.
508 LookupCtx = computeDeclContext(SS, EnteringContext);
509 isDependent = isDependentScopeSpecifier(SS);
510 Found.setContextRange(SS.getRange());
511 }
512
513 bool ObjectTypeSearchedInScope = false;
514 if (LookupCtx) {
515 // Perform "qualified" name lookup into the declaration context we
516 // computed, which is either the type of the base of a member access
517 // expression or the declaration context associated with a prior
518 // nested-name-specifier.
519
520 // The declaration context must be complete.
521 if (!LookupCtx->isDependentContext() &&
522 RequireCompleteDeclContext(SS, LookupCtx))
523 return true;
524
525 LookupQualifiedName(Found, LookupCtx);
526
527 if (!ObjectType.isNull() && Found.empty()) {
528 // C++ [basic.lookup.classref]p4:
529 // If the id-expression in a class member access is a qualified-id of
530 // the form
531 //
532 // class-name-or-namespace-name::...
533 //
534 // the class-name-or-namespace-name following the . or -> operator is
535 // looked up both in the context of the entire postfix-expression and in
536 // the scope of the class of the object expression. If the name is found
537 // only in the scope of the class of the object expression, the name
538 // shall refer to a class-name. If the name is found only in the
539 // context of the entire postfix-expression, the name shall refer to a
540 // class-name or namespace-name. [...]
541 //
542 // Qualified name lookup into a class will not find a namespace-name,
543 // so we do not need to diagnose that case specifically. However,
544 // this qualified name lookup may find nothing. In that case, perform
545 // unqualified name lookup in the given scope (if available) or
546 // reconstruct the result from when name lookup was performed at template
547 // definition time.
548 if (S)
549 LookupName(Found, S);
550 else if (ScopeLookupResult)
551 Found.addDecl(ScopeLookupResult);
552
553 ObjectTypeSearchedInScope = true;
554 }
555 } else if (!isDependent) {
556 // Perform unqualified name lookup in the current scope.
557 LookupName(Found, S);
558 }
559
560 if (Found.isAmbiguous())
561 return true;
562
563 // If we performed lookup into a dependent context and did not find anything,
564 // that's fine: just build a dependent nested-name-specifier.
565 if (Found.empty() && isDependent &&
566 !(LookupCtx && LookupCtx->isRecord() &&
567 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
568 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
569 // Don't speculate if we're just trying to improve error recovery.
570 if (ErrorRecoveryLookup)
571 return true;
572
573 // We were not able to compute the declaration context for a dependent
574 // base object type or prior nested-name-specifier, so this
575 // nested-name-specifier refers to an unknown specialization. Just build
576 // a dependent nested-name-specifier.
577 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
578 return false;
579 }
580
581 if (Found.empty() && !ErrorRecoveryLookup) {
582 // If identifier is not found as class-name-or-namespace-name, but is found
583 // as other entity, don't look for typos.
584 LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
585 if (LookupCtx)
586 LookupQualifiedName(R, LookupCtx);
587 else if (S && !isDependent)
588 LookupName(R, S);
589 if (!R.empty()) {
590 // Don't diagnose problems with this speculative lookup.
591 R.suppressDiagnostics();
592 // The identifier is found in ordinary lookup. If correction to colon is
593 // allowed, suggest replacement to ':'.
594 if (IsCorrectedToColon) {
595 *IsCorrectedToColon = true;
596 Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
597 << &Identifier << getLangOpts().CPlusPlus
598 << FixItHint::CreateReplacement(CCLoc, ":");
599 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
600 Diag(ND->getLocation(), diag::note_declared_at);
601 return true;
602 }
603 // Replacement '::' -> ':' is not allowed, just issue respective error.
604 Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
605 << &Identifier << getLangOpts().CPlusPlus;
606 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
607 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
608 return true;
609 }
610 }
611
612 if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
613 // We haven't found anything, and we're not recovering from a
614 // different kind of error, so look for typos.
615 DeclarationName Name = Found.getLookupName();
616 Found.clear();
617 if (TypoCorrection Corrected = CorrectTypo(
618 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
619 llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
620 CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
621 if (LookupCtx) {
622 bool DroppedSpecifier =
623 Corrected.WillReplaceSpecifier() &&
624 Name.getAsString() == Corrected.getAsString(getLangOpts());
625 if (DroppedSpecifier)
626 SS.clear();
627 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
628 << Name << LookupCtx << DroppedSpecifier
629 << SS.getRange());
630 } else
631 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
632 << Name);
633
634 if (Corrected.getCorrectionSpecifier())
635 SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
636 SourceRange(Found.getNameLoc()));
637
638 if (NamedDecl *ND = Corrected.getFoundDecl())
639 Found.addDecl(ND);
640 Found.setLookupName(Corrected.getCorrection());
641 } else {
642 Found.setLookupName(&Identifier);
643 }
644 }
645
646 NamedDecl *SD =
647 Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
648 bool IsExtension = false;
649 bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
650 if (!AcceptSpec && IsExtension) {
651 AcceptSpec = true;
652 Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
653 }
654 if (AcceptSpec) {
655 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
656 !getLangOpts().CPlusPlus11) {
657 // C++03 [basic.lookup.classref]p4:
658 // [...] If the name is found in both contexts, the
659 // class-name-or-namespace-name shall refer to the same entity.
660 //
661 // We already found the name in the scope of the object. Now, look
662 // into the current scope (the scope of the postfix-expression) to
663 // see if we can find the same name there. As above, if there is no
664 // scope, reconstruct the result from the template instantiation itself.
665 //
666 // Note that C++11 does *not* perform this redundant lookup.
667 NamedDecl *OuterDecl;
668 if (S) {
669 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
670 LookupNestedNameSpecifierName);
671 LookupName(FoundOuter, S);
672 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
673 } else
674 OuterDecl = ScopeLookupResult;
675
676 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
677 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
678 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
679 !Context.hasSameType(
680 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
681 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
682 if (ErrorRecoveryLookup)
683 return true;
684
685 Diag(IdentifierLoc,
686 diag::err_nested_name_member_ref_lookup_ambiguous)
687 << &Identifier;
688 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
689 << ObjectType;
690 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
691
692 // Fall through so that we'll pick the name we found in the object
693 // type, since that's probably what the user wanted anyway.
694 }
695 }
696
697 if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
698 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
699
700 // If we're just performing this lookup for error-recovery purposes,
701 // don't extend the nested-name-specifier. Just return now.
702 if (ErrorRecoveryLookup)
703 return false;
704
705 // The use of a nested name specifier may trigger deprecation warnings.
706 DiagnoseUseOfDecl(SD, CCLoc);
707
708
709 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
710 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
711 return false;
712 }
713
714 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
715 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
716 return false;
717 }
718
719 QualType T =
720 Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
721 TypeLocBuilder TLB;
722 if (isa<InjectedClassNameType>(T)) {
723 InjectedClassNameTypeLoc InjectedTL
724 = TLB.push<InjectedClassNameTypeLoc>(T);
725 InjectedTL.setNameLoc(IdentifierLoc);
726 } else if (isa<RecordType>(T)) {
727 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
728 RecordTL.setNameLoc(IdentifierLoc);
729 } else if (isa<TypedefType>(T)) {
730 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
731 TypedefTL.setNameLoc(IdentifierLoc);
732 } else if (isa<EnumType>(T)) {
733 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
734 EnumTL.setNameLoc(IdentifierLoc);
735 } else if (isa<TemplateTypeParmType>(T)) {
736 TemplateTypeParmTypeLoc TemplateTypeTL
737 = TLB.push<TemplateTypeParmTypeLoc>(T);
738 TemplateTypeTL.setNameLoc(IdentifierLoc);
739 } else if (isa<UnresolvedUsingType>(T)) {
740 UnresolvedUsingTypeLoc UnresolvedTL
741 = TLB.push<UnresolvedUsingTypeLoc>(T);
742 UnresolvedTL.setNameLoc(IdentifierLoc);
743 } else if (isa<SubstTemplateTypeParmType>(T)) {
744 SubstTemplateTypeParmTypeLoc TL
745 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
746 TL.setNameLoc(IdentifierLoc);
747 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
748 SubstTemplateTypeParmPackTypeLoc TL
749 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
750 TL.setNameLoc(IdentifierLoc);
751 } else {
752 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
753 }
754
755 if (T->isEnumeralType())
756 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
757
758 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
759 CCLoc);
760 return false;
761 }
762
763 // Otherwise, we have an error case. If we don't want diagnostics, just
764 // return an error now.
765 if (ErrorRecoveryLookup)
766 return true;
767
768 // If we didn't find anything during our lookup, try again with
769 // ordinary name lookup, which can help us produce better error
770 // messages.
771 if (Found.empty()) {
772 Found.clear(LookupOrdinaryName);
773 LookupName(Found, S);
774 }
775
776 // In Microsoft mode, if we are within a templated function and we can't
777 // resolve Identifier, then extend the SS with Identifier. This will have
778 // the effect of resolving Identifier during template instantiation.
779 // The goal is to be able to resolve a function call whose
780 // nested-name-specifier is located inside a dependent base class.
781 // Example:
782 //
783 // class C {
784 // public:
785 // static void foo2() { }
786 // };
787 // template <class T> class A { public: typedef C D; };
788 //
789 // template <class T> class B : public A<T> {
790 // public:
791 // void foo() { D::foo2(); }
792 // };
793 if (getLangOpts().MSVCCompat) {
794 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
795 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
796 CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
797 if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
798 Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
799 << &Identifier << ContainingClass;
800 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
801 return false;
802 }
803 }
804 }
805
806 if (!Found.empty()) {
807 if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
808 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
809 << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
810 else {
811 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
812 << &Identifier << getLangOpts().CPlusPlus;
813 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
814 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
815 }
816 } else if (SS.isSet())
817 Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
818 << SS.getRange();
819 else
820 Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
821
822 return true;
823 }
824
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)825 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
826 IdentifierInfo &Identifier,
827 SourceLocation IdentifierLoc,
828 SourceLocation CCLoc,
829 ParsedType ObjectType,
830 bool EnteringContext,
831 CXXScopeSpec &SS,
832 bool ErrorRecoveryLookup,
833 bool *IsCorrectedToColon) {
834 if (SS.isInvalid())
835 return true;
836
837 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
838 GetTypeFromParser(ObjectType),
839 EnteringContext, SS,
840 /*ScopeLookupResult=*/nullptr, false,
841 IsCorrectedToColon);
842 }
843
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)844 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
845 const DeclSpec &DS,
846 SourceLocation ColonColonLoc) {
847 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
848 return true;
849
850 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
851
852 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
853 if (!T->isDependentType() && !T->getAs<TagType>()) {
854 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
855 << T << getLangOpts().CPlusPlus;
856 return true;
857 }
858
859 TypeLocBuilder TLB;
860 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
861 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
862 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
863 ColonColonLoc);
864 return false;
865 }
866
867 /// IsInvalidUnlessNestedName - This method is used for error recovery
868 /// purposes to determine whether the specified identifier is only valid as
869 /// a nested name specifier, for example a namespace name. It is
870 /// conservatively correct to always return false from this method.
871 ///
872 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)873 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
874 IdentifierInfo &Identifier,
875 SourceLocation IdentifierLoc,
876 SourceLocation ColonLoc,
877 ParsedType ObjectType,
878 bool EnteringContext) {
879 if (SS.isInvalid())
880 return false;
881
882 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
883 GetTypeFromParser(ObjectType),
884 EnteringContext, SS,
885 /*ScopeLookupResult=*/nullptr, true);
886 }
887
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)888 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
889 CXXScopeSpec &SS,
890 SourceLocation TemplateKWLoc,
891 TemplateTy Template,
892 SourceLocation TemplateNameLoc,
893 SourceLocation LAngleLoc,
894 ASTTemplateArgsPtr TemplateArgsIn,
895 SourceLocation RAngleLoc,
896 SourceLocation CCLoc,
897 bool EnteringContext) {
898 if (SS.isInvalid())
899 return true;
900
901 // Translate the parser's template argument list in our AST format.
902 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
903 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
904
905 DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
906 if (DTN && DTN->isIdentifier()) {
907 // Handle a dependent template specialization for which we cannot resolve
908 // the template name.
909 assert(DTN->getQualifier() == SS.getScopeRep());
910 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
911 DTN->getQualifier(),
912 DTN->getIdentifier(),
913 TemplateArgs);
914
915 // Create source-location information for this type.
916 TypeLocBuilder Builder;
917 DependentTemplateSpecializationTypeLoc SpecTL
918 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
919 SpecTL.setElaboratedKeywordLoc(SourceLocation());
920 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
921 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
922 SpecTL.setTemplateNameLoc(TemplateNameLoc);
923 SpecTL.setLAngleLoc(LAngleLoc);
924 SpecTL.setRAngleLoc(RAngleLoc);
925 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
926 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
927
928 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
929 CCLoc);
930 return false;
931 }
932
933 TemplateDecl *TD = Template.get().getAsTemplateDecl();
934 if (Template.get().getAsOverloadedTemplate() || DTN ||
935 isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
936 SourceRange R(TemplateNameLoc, RAngleLoc);
937 if (SS.getRange().isValid())
938 R.setBegin(SS.getRange().getBegin());
939
940 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
941 << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
942 NoteAllFoundTemplates(Template.get());
943 return true;
944 }
945
946 // We were able to resolve the template name to an actual template.
947 // Build an appropriate nested-name-specifier.
948 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
949 TemplateArgs);
950 if (T.isNull())
951 return true;
952
953 // Alias template specializations can produce types which are not valid
954 // nested name specifiers.
955 if (!T->isDependentType() && !T->getAs<TagType>()) {
956 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
957 NoteAllFoundTemplates(Template.get());
958 return true;
959 }
960
961 // Provide source-location information for the template specialization type.
962 TypeLocBuilder Builder;
963 TemplateSpecializationTypeLoc SpecTL
964 = Builder.push<TemplateSpecializationTypeLoc>(T);
965 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
966 SpecTL.setTemplateNameLoc(TemplateNameLoc);
967 SpecTL.setLAngleLoc(LAngleLoc);
968 SpecTL.setRAngleLoc(RAngleLoc);
969 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
970 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
971
972
973 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
974 CCLoc);
975 return false;
976 }
977
978 namespace {
979 /// \brief A structure that stores a nested-name-specifier annotation,
980 /// including both the nested-name-specifier
981 struct NestedNameSpecifierAnnotation {
982 NestedNameSpecifier *NNS;
983 };
984 }
985
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)986 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
987 if (SS.isEmpty() || SS.isInvalid())
988 return nullptr;
989
990 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
991 SS.location_size()),
992 llvm::alignOf<NestedNameSpecifierAnnotation>());
993 NestedNameSpecifierAnnotation *Annotation
994 = new (Mem) NestedNameSpecifierAnnotation;
995 Annotation->NNS = SS.getScopeRep();
996 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
997 return Annotation;
998 }
999
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)1000 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1001 SourceRange AnnotationRange,
1002 CXXScopeSpec &SS) {
1003 if (!AnnotationPtr) {
1004 SS.SetInvalid(AnnotationRange);
1005 return;
1006 }
1007
1008 NestedNameSpecifierAnnotation *Annotation
1009 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1010 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1011 }
1012
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1013 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1014 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1015
1016 NestedNameSpecifier *Qualifier = SS.getScopeRep();
1017
1018 // There are only two places a well-formed program may qualify a
1019 // declarator: first, when defining a namespace or class member
1020 // out-of-line, and second, when naming an explicitly-qualified
1021 // friend function. The latter case is governed by
1022 // C++03 [basic.lookup.unqual]p10:
1023 // In a friend declaration naming a member function, a name used
1024 // in the function declarator and not part of a template-argument
1025 // in a template-id is first looked up in the scope of the member
1026 // function's class. If it is not found, or if the name is part of
1027 // a template-argument in a template-id, the look up is as
1028 // described for unqualified names in the definition of the class
1029 // granting friendship.
1030 // i.e. we don't push a scope unless it's a class member.
1031
1032 switch (Qualifier->getKind()) {
1033 case NestedNameSpecifier::Global:
1034 case NestedNameSpecifier::Namespace:
1035 case NestedNameSpecifier::NamespaceAlias:
1036 // These are always namespace scopes. We never want to enter a
1037 // namespace scope from anything but a file context.
1038 return CurContext->getRedeclContext()->isFileContext();
1039
1040 case NestedNameSpecifier::Identifier:
1041 case NestedNameSpecifier::TypeSpec:
1042 case NestedNameSpecifier::TypeSpecWithTemplate:
1043 case NestedNameSpecifier::Super:
1044 // These are never namespace scopes.
1045 return true;
1046 }
1047
1048 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1049 }
1050
1051 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1052 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1053 /// After this method is called, according to [C++ 3.4.3p3], names should be
1054 /// looked up in the declarator-id's scope, until the declarator is parsed and
1055 /// ActOnCXXExitDeclaratorScope is called.
1056 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)1057 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1058 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1059
1060 if (SS.isInvalid()) return true;
1061
1062 DeclContext *DC = computeDeclContext(SS, true);
1063 if (!DC) return true;
1064
1065 // Before we enter a declarator's context, we need to make sure that
1066 // it is a complete declaration context.
1067 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1068 return true;
1069
1070 EnterDeclaratorContext(S, DC);
1071
1072 // Rebuild the nested name specifier for the new scope.
1073 if (DC->isDependentContext())
1074 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1075
1076 return false;
1077 }
1078
1079 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1080 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1081 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1082 /// Used to indicate that names should revert to being looked up in the
1083 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1084 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1085 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1086 if (SS.isInvalid())
1087 return;
1088 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1089 "exiting declarator scope we never really entered");
1090 ExitDeclaratorContext(S);
1091 }
1092