• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/c/python_api.h"
17 
18 #include "tensorflow/c/c_api_internal.h"
19 #include "tensorflow/core/framework/full_type.pb.h"
20 #include "tensorflow/python/framework/cpp_shape_inference.pb.h"
21 
22 namespace tensorflow {
23 
AddControlInput(TF_Graph * graph,TF_Operation * op,TF_Operation * input)24 void AddControlInput(TF_Graph* graph, TF_Operation* op, TF_Operation* input) {
25   mutex_lock l(graph->mu);
26   graph->graph.AddControlEdge(&input->node, &op->node);
27   RecordMutation(graph, *op, "adding control input");
28 }
29 
SetAttr(TF_Graph * graph,TF_Operation * op,const char * attr_name,TF_Buffer * attr_value_proto,TF_Status * status)30 void SetAttr(TF_Graph* graph, TF_Operation* op, const char* attr_name,
31              TF_Buffer* attr_value_proto, TF_Status* status) {
32   AttrValue attr_val;
33   if (!attr_val.ParseFromArray(attr_value_proto->data,
34                                attr_value_proto->length)) {
35     status->status =
36         tensorflow::errors::InvalidArgument("Invalid AttrValue proto");
37     return;
38   }
39 
40   mutex_lock l(graph->mu);
41   op->node.AddAttr(attr_name, attr_val);
42   RecordMutation(graph, *op, "setting attribute");
43 }
44 
ClearAttr(TF_Graph * graph,TF_Operation * op,const char * attr_name,TF_Status * status)45 void ClearAttr(TF_Graph* graph, TF_Operation* op, const char* attr_name,
46                TF_Status* status) {
47   mutex_lock l(graph->mu);
48   op->node.ClearAttr(attr_name);
49   RecordMutation(graph, *op, "clearing attribute");
50 }
51 
SetFullType(TF_Graph * graph,TF_Operation * op,const FullTypeDef & full_type)52 void SetFullType(TF_Graph* graph, TF_Operation* op,
53                  const FullTypeDef& full_type) {
54   mutex_lock l(graph->mu);
55   *op->node.mutable_def()->mutable_experimental_type() = full_type;
56   RecordMutation(graph, *op, "setting fulltype");
57 }
58 
SetRequestedDevice(TF_Graph * graph,TF_Operation * op,const char * device)59 void SetRequestedDevice(TF_Graph* graph, TF_Operation* op, const char* device) {
60   mutex_lock l(graph->mu);
61   op->node.set_requested_device(device);
62   RecordMutation(graph, *op, "setting device");
63 }
64 
UpdateEdge(TF_Graph * graph,TF_Output new_src,TF_Input dst,TF_Status * status)65 void UpdateEdge(TF_Graph* graph, TF_Output new_src, TF_Input dst,
66                 TF_Status* status) {
67   TF_UpdateEdge(graph, new_src, dst, status);
68 }
69 
RemoveAllControlInputs(TF_Graph * graph,TF_Operation * op)70 void RemoveAllControlInputs(TF_Graph* graph, TF_Operation* op) {
71   mutex_lock l(graph->mu);
72   std::vector<const Edge*> control_edges;
73   for (const Edge* edge : op->node.in_edges()) {
74     if (!edge->IsControlEdge()) continue;
75     control_edges.push_back(edge);
76   }
77   for (const Edge* edge : control_edges) {
78     graph->graph.RemoveControlEdge(edge);
79   }
80 }
81 
SetRequireShapeInferenceFns(TF_Graph * graph,bool require)82 void SetRequireShapeInferenceFns(TF_Graph* graph, bool require) {
83   mutex_lock l(graph->mu);
84   graph->refiner.set_require_shape_inference_fns(require);
85 }
86 
ExtendSession(TF_Session * session,TF_Status * status)87 void ExtendSession(TF_Session* session, TF_Status* status) {
88   ExtendSessionGraphHelper(session, status);
89   session->extend_before_run = false;
90 }
91 
GetHandleShapeAndType(TF_Graph * graph,TF_Output output)92 std::string GetHandleShapeAndType(TF_Graph* graph, TF_Output output) {
93   Node* node = &output.oper->node;
94   CppShapeInferenceResult::HandleData handle_data;
95   handle_data.set_is_set(true);
96   {
97     mutex_lock l(graph->mu);
98     tensorflow::shape_inference::InferenceContext* ic =
99         graph->refiner.GetContext(node);
100     CHECK(ic != nullptr);
101     CHECK_LT(output.index, ic->num_outputs());
102     const auto* shapes_and_types =
103         ic->output_handle_shapes_and_types(output.index);
104     if (shapes_and_types == nullptr) return "";
105 
106     for (const auto& p : *shapes_and_types) {
107       auto* out_shape_and_type = handle_data.add_shape_and_type();
108       ic->ShapeHandleToProto(p.shape, out_shape_and_type->mutable_shape());
109       out_shape_and_type->set_dtype(p.dtype);
110       *out_shape_and_type->mutable_type() = p.type;
111     }
112   }
113   string result;
114   handle_data.SerializeToString(&result);
115   return result;
116 }
117 
SetHandleShapeAndType(TF_Graph * graph,TF_Output output,const void * proto,size_t proto_len,TF_Status * status)118 void SetHandleShapeAndType(TF_Graph* graph, TF_Output output, const void* proto,
119                            size_t proto_len, TF_Status* status) {
120   tensorflow::CppShapeInferenceResult::HandleData handle_data;
121   if (!handle_data.ParseFromArray(proto, proto_len)) {
122     status->status = tensorflow::errors::InvalidArgument(
123         "Couldn't deserialize HandleData proto");
124     return;
125   }
126   DCHECK(handle_data.is_set());
127 
128   tensorflow::mutex_lock l(graph->mu);
129   tensorflow::shape_inference::InferenceContext* ic =
130       graph->refiner.GetContext(&output.oper->node);
131 
132   std::vector<tensorflow::shape_inference::ShapeAndType> shapes_and_types;
133   for (const auto& shape_and_type_proto : handle_data.shape_and_type()) {
134     tensorflow::shape_inference::ShapeHandle shape;
135     status->status =
136         ic->MakeShapeFromShapeProto(shape_and_type_proto.shape(), &shape);
137     if (TF_GetCode(status) != TF_OK) return;
138     shapes_and_types.emplace_back(shape, shape_and_type_proto.dtype(),
139                                   shape_and_type_proto.type());
140   }
141   ic->set_output_handle_shapes_and_types(output.index, shapes_and_types);
142 }
143 
AddWhileInputHack(TF_Graph * graph,TF_Output new_src,TF_Operation * dst,TF_Status * status)144 void AddWhileInputHack(TF_Graph* graph, TF_Output new_src, TF_Operation* dst,
145                        TF_Status* status) {
146   mutex_lock l(graph->mu);
147   status->status = graph->graph.AddWhileInputHack(&new_src.oper->node,
148                                                   new_src.index, &dst->node);
149   if (TF_GetCode(status) == TF_OK) {
150     // This modification only updates the destination node for
151     // the purposes of running this graph in a session. Thus, we don't
152     // record the source node as being modified.
153     RecordMutation(graph, *dst, "adding input tensor");
154   }
155 }
156 
157 }  // namespace tensorflow
158