1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/core/summary/summary_converter.h"
16
17 #include "tensorflow/core/framework/register_types.h"
18 #include "tensorflow/core/framework/summary.pb.h"
19 #include "tensorflow/core/framework/types.h"
20 #include "tensorflow/core/framework/types.pb.h"
21 #include "tensorflow/core/lib/histogram/histogram.h"
22 #include "tensorflow/core/lib/io/path.h"
23 #include "tensorflow/core/lib/png/png_io.h"
24 #include "tensorflow/core/lib/wav/wav_io.h"
25
26 namespace tensorflow {
27 namespace {
28
29 template <typename T>
TensorValueAt(Tensor t,int64_t i,T * out)30 Status TensorValueAt(Tensor t, int64_t i, T* out) {
31 #define CASE(I) \
32 case DataTypeToEnum<I>::value: \
33 *out = static_cast<T>(t.flat<I>()(i)); \
34 break;
35 #define COMPLEX_CASE(I) \
36 case DataTypeToEnum<I>::value: \
37 *out = static_cast<T>(t.flat<I>()(i).real()); \
38 break;
39 // clang-format off
40 switch (t.dtype()) {
41 TF_CALL_bool(CASE)
42 TF_CALL_half(CASE)
43 TF_CALL_float(CASE)
44 TF_CALL_double(CASE)
45 TF_CALL_int8(CASE)
46 TF_CALL_int16(CASE)
47 TF_CALL_int32(CASE)
48 TF_CALL_int64(CASE)
49 TF_CALL_uint8(CASE)
50 TF_CALL_uint16(CASE)
51 TF_CALL_uint32(CASE)
52 TF_CALL_uint64(CASE)
53 TF_CALL_complex64(COMPLEX_CASE)
54 TF_CALL_complex128(COMPLEX_CASE)
55 default:
56 return errors::Unimplemented("SummaryFileWriter ",
57 DataTypeString(t.dtype()),
58 " not supported.");
59 }
60 // clang-format on
61 return OkStatus();
62 #undef CASE
63 #undef COMPLEX_CASE
64 }
65
66 typedef Eigen::Tensor<uint8, 2, Eigen::RowMajor> Uint8Image;
67
68 // Add the sequence of images specified by ith_image to the summary.
69 //
70 // Factoring this loop out into a helper function lets ith_image behave
71 // differently in the float and uint8 cases: the float case needs a temporary
72 // buffer which can be shared across calls to ith_image, but the uint8 case
73 // does not.
AddImages(const string & tag,int max_images,int batch_size,int w,int h,int depth,const std::function<Uint8Image (int)> & ith_image,Summary * s)74 Status AddImages(const string& tag, int max_images, int batch_size, int w,
75 int h, int depth,
76 const std::function<Uint8Image(int)>& ith_image, Summary* s) {
77 const int N = std::min<int>(max_images, batch_size);
78 for (int i = 0; i < N; ++i) {
79 Summary::Value* v = s->add_value();
80 // The tag depends on the number of requested images (not the number
81 // produced.)
82 //
83 // Note that later on avisu uses "/" to figure out a consistent naming
84 // convention for display, so we append "/image" to guarantee that the
85 // image(s) won't be displayed in the global scope with no name.
86 if (max_images > 1) {
87 v->set_tag(strings::StrCat(tag, "/image/", i));
88 } else {
89 v->set_tag(strings::StrCat(tag, "/image"));
90 }
91
92 const auto image = ith_image(i);
93 Summary::Image* si = v->mutable_image();
94 si->set_height(h);
95 si->set_width(w);
96 si->set_colorspace(depth);
97 const int channel_bits = 8;
98 const int compression = -1; // Use zlib default
99 if (!png::WriteImageToBuffer(image.data(), w, h, w * depth, depth,
100 channel_bits, compression,
101 si->mutable_encoded_image_string(), nullptr)) {
102 return errors::Internal("PNG encoding failed");
103 }
104 }
105 return OkStatus();
106 }
107
108 template <class T>
NormalizeFloatImage(int hw,int depth,typename TTypes<T>::ConstMatrix values,typename TTypes<uint8>::ConstVec bad_color,Uint8Image * image)109 void NormalizeFloatImage(int hw, int depth,
110 typename TTypes<T>::ConstMatrix values,
111 typename TTypes<uint8>::ConstVec bad_color,
112 Uint8Image* image) {
113 if (!image->size()) return; // Nothing to do for empty images
114
115 // Rescale the image to uint8 range.
116 //
117 // We are trying to generate an RGB image from a float/half tensor. We do
118 // not have any info about the expected range of values in the tensor
119 // but the generated image needs to have all RGB values within [0, 255].
120 //
121 // We use two different algorithms to generate these values. If the
122 // tensor has only positive values we scale them all by 255/max(values).
123 // If the tensor has both negative and positive values we scale them by
124 // the max of their absolute values and center them around 127.
125 //
126 // This works for most cases, but does not respect the relative dynamic
127 // range across different instances of the tensor.
128
129 // Compute min and max ignoring nonfinite pixels
130 float image_min = std::numeric_limits<float>::infinity();
131 float image_max = -image_min;
132 for (int i = 0; i < hw; i++) {
133 bool finite = true;
134 for (int j = 0; j < depth; j++) {
135 if (!Eigen::numext::isfinite(values(i, j))) {
136 finite = false;
137 break;
138 }
139 }
140 if (finite) {
141 for (int j = 0; j < depth; j++) {
142 float value(values(i, j));
143 image_min = std::min(image_min, value);
144 image_max = std::max(image_max, value);
145 }
146 }
147 }
148
149 // Pick an affine transform into uint8
150 const float kZeroThreshold = 1e-6;
151 T scale, offset;
152 if (image_min < 0) {
153 const float max_val = std::max(std::abs(image_min), std::abs(image_max));
154 scale = T(max_val < kZeroThreshold ? 0.0f : 127.0f / max_val);
155 offset = T(128.0f);
156 } else {
157 scale = T(image_max < kZeroThreshold ? 0.0f : 255.0f / image_max);
158 offset = T(0.0f);
159 }
160
161 // Transform image, turning nonfinite values to bad_color
162 for (int i = 0; i < hw; i++) {
163 bool finite = true;
164 for (int j = 0; j < depth; j++) {
165 if (!Eigen::numext::isfinite(values(i, j))) {
166 finite = false;
167 break;
168 }
169 }
170 if (finite) {
171 image->chip<0>(i) =
172 (values.template chip<0>(i) * scale + offset).template cast<uint8>();
173 } else {
174 image->chip<0>(i) = bad_color;
175 }
176 }
177 }
178
179 template <class T>
NormalizeAndAddImages(const Tensor & tensor,int max_images,int h,int w,int hw,int depth,int batch_size,const string & base_tag,Tensor bad_color_tensor,Summary * s)180 Status NormalizeAndAddImages(const Tensor& tensor, int max_images, int h, int w,
181 int hw, int depth, int batch_size,
182 const string& base_tag, Tensor bad_color_tensor,
183 Summary* s) {
184 // For float and half images, nans and infs are replaced with bad_color.
185 if (bad_color_tensor.dim_size(0) < depth) {
186 return errors::InvalidArgument(
187 "expected depth <= bad_color.size, got depth = ", depth,
188 ", bad_color.size = ", bad_color_tensor.dim_size(0));
189 }
190 auto bad_color_full = bad_color_tensor.vec<uint8>();
191 typename TTypes<uint8>::ConstVec bad_color(bad_color_full.data(), depth);
192
193 // Float images must be scaled and translated.
194 Uint8Image image(hw, depth);
195 auto ith_image = [&tensor, &image, bad_color, batch_size, hw, depth](int i) {
196 auto tensor_eigen = tensor.template shaped<T, 3>({batch_size, hw, depth});
197 typename TTypes<T>::ConstMatrix values(
198 &tensor_eigen(i, 0, 0), Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth));
199 NormalizeFloatImage<T>(hw, depth, values, bad_color, &image);
200 return image;
201 };
202 return AddImages(base_tag, max_images, batch_size, w, h, depth, ith_image, s);
203 }
204
205 } // namespace
206
AddTensorAsScalarToSummary(const Tensor & t,const string & tag,Summary * s)207 Status AddTensorAsScalarToSummary(const Tensor& t, const string& tag,
208 Summary* s) {
209 Summary::Value* v = s->add_value();
210 v->set_tag(tag);
211 float value;
212 TF_RETURN_IF_ERROR(TensorValueAt<float>(t, 0, &value));
213 v->set_simple_value(value);
214 return OkStatus();
215 }
216
AddTensorAsHistogramToSummary(const Tensor & t,const string & tag,Summary * s)217 Status AddTensorAsHistogramToSummary(const Tensor& t, const string& tag,
218 Summary* s) {
219 Summary::Value* v = s->add_value();
220 v->set_tag(tag);
221 histogram::Histogram histo;
222 for (int64_t i = 0; i < t.NumElements(); i++) {
223 double double_val;
224 TF_RETURN_IF_ERROR(TensorValueAt<double>(t, i, &double_val));
225 if (Eigen::numext::isnan(double_val)) {
226 return errors::InvalidArgument("Nan in summary histogram for: ", tag);
227 } else if (Eigen::numext::isinf(double_val)) {
228 return errors::InvalidArgument("Infinity in summary histogram for: ",
229 tag);
230 }
231 histo.Add(double_val);
232 }
233 histo.EncodeToProto(v->mutable_histo(), false /* Drop zero buckets */);
234 return OkStatus();
235 }
236
AddTensorAsImageToSummary(const Tensor & tensor,const string & tag,int max_images,const Tensor & bad_color,Summary * s)237 Status AddTensorAsImageToSummary(const Tensor& tensor, const string& tag,
238 int max_images, const Tensor& bad_color,
239 Summary* s) {
240 if (!(tensor.dims() == 4 &&
241 (tensor.dim_size(3) == 1 || tensor.dim_size(3) == 3 ||
242 tensor.dim_size(3) == 4))) {
243 return errors::InvalidArgument(
244 "Tensor must be 4-D with last dim 1, 3, or 4, not ",
245 tensor.shape().DebugString());
246 }
247 if (!(tensor.dim_size(0) < (1LL << 31) && tensor.dim_size(1) < (1LL << 31) &&
248 tensor.dim_size(2) < (1LL << 31) &&
249 (tensor.dim_size(1) * tensor.dim_size(2)) < (1LL << 29))) {
250 return errors::InvalidArgument("Tensor too large for summary ",
251 tensor.shape().DebugString());
252 }
253 // The casts and h * w cannot overflow because of the limits above.
254 const int batch_size = static_cast<int>(tensor.dim_size(0));
255 const int h = static_cast<int>(tensor.dim_size(1));
256 const int w = static_cast<int>(tensor.dim_size(2));
257 const int hw = h * w; // Compact these two dims for simplicity
258 const int depth = static_cast<int>(tensor.dim_size(3));
259 if (tensor.dtype() == DT_UINT8) {
260 // For uint8 input, no normalization is necessary
261 auto ith_image = [&tensor, batch_size, hw, depth](int i) {
262 auto values = tensor.shaped<uint8, 3>({batch_size, hw, depth});
263 return typename TTypes<uint8>::ConstMatrix(
264 &values(i, 0, 0), Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth));
265 };
266 TF_RETURN_IF_ERROR(
267 AddImages(tag, max_images, batch_size, w, h, depth, ith_image, s));
268 } else if (tensor.dtype() == DT_HALF) {
269 TF_RETURN_IF_ERROR(NormalizeAndAddImages<Eigen::half>(
270 tensor, max_images, h, w, hw, depth, batch_size, tag, bad_color, s));
271 } else if (tensor.dtype() == DT_FLOAT) {
272 TF_RETURN_IF_ERROR(NormalizeAndAddImages<float>(
273 tensor, max_images, h, w, hw, depth, batch_size, tag, bad_color, s));
274 } else if (tensor.dtype() == DT_DOUBLE) {
275 TF_RETURN_IF_ERROR(NormalizeAndAddImages<double>(
276 tensor, max_images, h, w, hw, depth, batch_size, tag, bad_color, s));
277 } else {
278 return errors::InvalidArgument(
279 "Only DT_INT8, DT_HALF, DT_DOUBLE, and DT_FLOAT images are supported. "
280 "Got ",
281 DataTypeString(tensor.dtype()));
282 }
283 return OkStatus();
284 }
285
AddTensorAsAudioToSummary(const Tensor & tensor,const string & tag,int max_outputs,float sample_rate,Summary * s)286 Status AddTensorAsAudioToSummary(const Tensor& tensor, const string& tag,
287 int max_outputs, float sample_rate,
288 Summary* s) {
289 if (sample_rate <= 0.0f) {
290 return errors::InvalidArgument("sample_rate must be > 0");
291 }
292 const int batch_size = tensor.dim_size(0);
293 const int64_t length_frames = tensor.dim_size(1);
294 const int64_t num_channels =
295 tensor.dims() == 2 ? 1 : tensor.dim_size(tensor.dims() - 1);
296 const int N = std::min<int>(max_outputs, batch_size);
297 for (int i = 0; i < N; ++i) {
298 Summary::Value* v = s->add_value();
299 if (max_outputs > 1) {
300 v->set_tag(strings::StrCat(tag, "/audio/", i));
301 } else {
302 v->set_tag(strings::StrCat(tag, "/audio"));
303 }
304
305 Summary::Audio* sa = v->mutable_audio();
306 sa->set_sample_rate(sample_rate);
307 sa->set_num_channels(num_channels);
308 sa->set_length_frames(length_frames);
309 sa->set_content_type("audio/wav");
310
311 auto values =
312 tensor.shaped<float, 3>({batch_size, length_frames, num_channels});
313 auto channels_by_frames = typename TTypes<float>::ConstMatrix(
314 &values(i, 0, 0),
315 Eigen::DSizes<Eigen::DenseIndex, 2>(length_frames, num_channels));
316 size_t sample_rate_truncated = lrintf(sample_rate);
317 if (sample_rate_truncated == 0) {
318 sample_rate_truncated = 1;
319 }
320 TF_RETURN_IF_ERROR(wav::EncodeAudioAsS16LEWav(
321 channels_by_frames.data(), sample_rate_truncated, num_channels,
322 length_frames, sa->mutable_encoded_audio_string()));
323 }
324 return OkStatus();
325 }
326
327 } // namespace tensorflow
328