• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_list.h"
18 
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22 
23 #include <map>
24 #include <sstream>
25 #include <tuple>
26 #include <vector>
27 
28 #include "android-base/stringprintf.h"
29 #include "nativehelper/scoped_local_ref.h"
30 #include "nativehelper/scoped_utf_chars.h"
31 #include "unwindstack/AndroidUnwinder.h"
32 
33 #include "art_field-inl.h"
34 #include "base/aborting.h"
35 #include "base/histogram-inl.h"
36 #include "base/mutex-inl.h"
37 #include "base/systrace.h"
38 #include "base/time_utils.h"
39 #include "base/timing_logger.h"
40 #include "debugger.h"
41 #include "gc/collector/concurrent_copying.h"
42 #include "gc/gc_pause_listener.h"
43 #include "gc/heap.h"
44 #include "gc/reference_processor.h"
45 #include "gc_root.h"
46 #include "jni/jni_internal.h"
47 #include "lock_word.h"
48 #include "mirror/string.h"
49 #include "monitor.h"
50 #include "native_stack_dump.h"
51 #include "obj_ptr-inl.h"
52 #include "scoped_thread_state_change-inl.h"
53 #include "thread.h"
54 #include "trace.h"
55 #include "well_known_classes.h"
56 
57 #if ART_USE_FUTEXES
58 #include "linux/futex.h"
59 #include "sys/syscall.h"
60 #ifndef SYS_futex
61 #define SYS_futex __NR_futex
62 #endif
63 #endif  // ART_USE_FUTEXES
64 
65 namespace art {
66 
67 using android::base::StringPrintf;
68 
69 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
70 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
71 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
72 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
73 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
74 
75 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
76 // some history.
77 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
78 
ThreadList(uint64_t thread_suspend_timeout_ns)79 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
80     : suspend_all_count_(0),
81       unregistering_count_(0),
82       suspend_all_historam_("suspend all histogram", 16, 64),
83       long_suspend_(false),
84       shut_down_(false),
85       thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
86       empty_checkpoint_barrier_(new Barrier(0)) {
87   CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
88 }
89 
~ThreadList()90 ThreadList::~ThreadList() {
91   CHECK(shut_down_);
92 }
93 
ShutDown()94 void ThreadList::ShutDown() {
95   ScopedTrace trace(__PRETTY_FUNCTION__);
96   // Detach the current thread if necessary. If we failed to start, there might not be any threads.
97   // We need to detach the current thread here in case there's another thread waiting to join with
98   // us.
99   bool contains = false;
100   Thread* self = Thread::Current();
101   {
102     MutexLock mu(self, *Locks::thread_list_lock_);
103     contains = Contains(self);
104   }
105   if (contains) {
106     Runtime::Current()->DetachCurrentThread();
107   }
108   WaitForOtherNonDaemonThreadsToExit();
109   // The only caller of this function, ~Runtime, has already disabled GC and
110   // ensured that the last GC is finished.
111   gc::Heap* const heap = Runtime::Current()->GetHeap();
112   CHECK(heap->IsGCDisabledForShutdown());
113 
114   // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
115   //       Thread::Init.
116   SuspendAllDaemonThreadsForShutdown();
117 
118   shut_down_ = true;
119 }
120 
Contains(Thread * thread)121 bool ThreadList::Contains(Thread* thread) {
122   return find(list_.begin(), list_.end(), thread) != list_.end();
123 }
124 
GetLockOwner()125 pid_t ThreadList::GetLockOwner() {
126   return Locks::thread_list_lock_->GetExclusiveOwnerTid();
127 }
128 
DumpNativeStacks(std::ostream & os)129 void ThreadList::DumpNativeStacks(std::ostream& os) {
130   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
131   unwindstack::AndroidLocalUnwinder unwinder;
132   for (const auto& thread : list_) {
133     os << "DUMPING THREAD " << thread->GetTid() << "\n";
134     DumpNativeStack(os, unwinder, thread->GetTid(), "\t");
135     os << "\n";
136   }
137 }
138 
DumpForSigQuit(std::ostream & os)139 void ThreadList::DumpForSigQuit(std::ostream& os) {
140   {
141     ScopedObjectAccess soa(Thread::Current());
142     // Only print if we have samples.
143     if (suspend_all_historam_.SampleSize() > 0) {
144       Histogram<uint64_t>::CumulativeData data;
145       suspend_all_historam_.CreateHistogram(&data);
146       suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data);  // Dump time to suspend.
147     }
148   }
149   bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
150   Dump(os, dump_native_stack);
151   DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
152 }
153 
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)154 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
155     NO_THREAD_SAFETY_ANALYSIS {
156   // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
157   // refactor DumpState to avoid skipping analysis.
158   Thread::DumpState(os, nullptr, tid);
159   if (dump_native_stack) {
160     DumpNativeStack(os, tid, "  native: ");
161   }
162   os << std::endl;
163 }
164 
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)165 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
166   DIR* d = opendir("/proc/self/task");
167   if (!d) {
168     return;
169   }
170 
171   Thread* self = Thread::Current();
172   dirent* e;
173   while ((e = readdir(d)) != nullptr) {
174     char* end;
175     pid_t tid = strtol(e->d_name, &end, 10);
176     if (!*end) {
177       Thread* thread;
178       {
179         MutexLock mu(self, *Locks::thread_list_lock_);
180         thread = FindThreadByTid(tid);
181       }
182       if (thread == nullptr) {
183         DumpUnattachedThread(os, tid, dump_native_stack);
184       }
185     }
186   }
187   closedir(d);
188 }
189 
190 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
191 // overloaded with ANR dumps.
192 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
193 
194 // A closure used by Thread::Dump.
195 class DumpCheckpoint final : public Closure {
196  public:
DumpCheckpoint(bool dump_native_stack)197   DumpCheckpoint(bool dump_native_stack)
198       : lock_("Dump checkpoint lock", kGenericBottomLock),
199         os_(),
200         // Avoid verifying count in case a thread doesn't end up passing through the barrier.
201         // This avoids a SIGABRT that would otherwise happen in the destructor.
202         barrier_(0, /*verify_count_on_shutdown=*/false),
203         unwinder_(std::vector<std::string>{}, std::vector<std::string> {"oat", "odex"}),
204         dump_native_stack_(dump_native_stack) {
205   }
206 
Run(Thread * thread)207   void Run(Thread* thread) override {
208     // Note thread and self may not be equal if thread was already suspended at the point of the
209     // request.
210     Thread* self = Thread::Current();
211     CHECK(self != nullptr);
212     std::ostringstream local_os;
213     Thread::DumpOrder dump_order;
214     {
215       ScopedObjectAccess soa(self);
216       dump_order = thread->Dump(local_os, unwinder_, dump_native_stack_);
217     }
218     {
219       MutexLock mu(self, lock_);
220       // Sort, so that the most interesting threads for ANR are printed first (ANRs can be trimmed).
221       std::pair<Thread::DumpOrder, uint32_t> sort_key(dump_order, thread->GetThreadId());
222       os_.emplace(sort_key, std::move(local_os));
223     }
224     barrier_.Pass(self);
225   }
226 
227   // Called at the end to print all the dumps in sequential prioritized order.
Dump(Thread * self,std::ostream & os)228   void Dump(Thread* self, std::ostream& os) {
229     MutexLock mu(self, lock_);
230     for (const auto& it : os_) {
231       os << it.second.str() << std::endl;
232     }
233   }
234 
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)235   void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
236     Thread* self = Thread::Current();
237     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
238     bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
239     if (timed_out) {
240       // Avoid a recursive abort.
241       LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
242           << "Unexpected time out during dump checkpoint.";
243     }
244   }
245 
246  private:
247   // Storage for the per-thread dumps (guarded by lock since they are generated in parallel).
248   // Map is used to obtain sorted order. The key is unique, but use multimap just in case.
249   Mutex lock_;
250   std::multimap<std::pair<Thread::DumpOrder, uint32_t>, std::ostringstream> os_ GUARDED_BY(lock_);
251   // The barrier to be passed through and for the requestor to wait upon.
252   Barrier barrier_;
253   // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
254   unwindstack::AndroidLocalUnwinder unwinder_;
255   // Whether we should dump the native stack.
256   const bool dump_native_stack_;
257 };
258 
Dump(std::ostream & os,bool dump_native_stack)259 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
260   Thread* self = Thread::Current();
261   {
262     MutexLock mu(self, *Locks::thread_list_lock_);
263     os << "DALVIK THREADS (" << list_.size() << "):\n";
264   }
265   if (self != nullptr) {
266     DumpCheckpoint checkpoint(dump_native_stack);
267     size_t threads_running_checkpoint;
268     {
269       // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
270       ScopedObjectAccess soa(self);
271       threads_running_checkpoint = RunCheckpoint(&checkpoint);
272     }
273     if (threads_running_checkpoint != 0) {
274       checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
275     }
276     checkpoint.Dump(self, os);
277   } else {
278     DumpUnattachedThreads(os, dump_native_stack);
279   }
280 }
281 
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)282 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
283   MutexLock mu(self, *Locks::thread_list_lock_);
284   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
285   for (const auto& thread : list_) {
286     if (thread != ignore1 && thread != ignore2) {
287       CHECK(thread->IsSuspended())
288             << "\nUnsuspended thread: <<" << *thread << "\n"
289             << "self: <<" << *Thread::Current();
290     }
291   }
292 }
293 
294 #if HAVE_TIMED_RWLOCK
295 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()296 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
297   // Increment gAborting before doing the thread list dump since we don't want any failures from
298   // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
299   // See b/69044468.
300   ++gAborting;
301   Runtime* runtime = Runtime::Current();
302   std::ostringstream ss;
303   ss << "Thread suspend timeout\n";
304   Locks::mutator_lock_->Dump(ss);
305   ss << "\n";
306   runtime->GetThreadList()->Dump(ss);
307   --gAborting;
308   LOG(FATAL) << ss.str();
309   exit(0);
310 }
311 #endif
312 
313 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
314 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
315 // we use sched_yield instead of calling usleep.
316 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
317 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)318 static void ThreadSuspendSleep(useconds_t delay_us) {
319   if (delay_us == 0) {
320     sched_yield();
321   } else {
322     usleep(delay_us);
323   }
324 }
325 
RunCheckpoint(Closure * checkpoint_function,Closure * callback)326 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
327   Thread* self = Thread::Current();
328   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
329   Locks::thread_list_lock_->AssertNotHeld(self);
330   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
331 
332   std::vector<Thread*> suspended_count_modified_threads;
333   size_t count = 0;
334   {
335     // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
336     // manually called.
337     MutexLock mu(self, *Locks::thread_list_lock_);
338     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
339     count = list_.size();
340     for (const auto& thread : list_) {
341       if (thread != self) {
342         bool requested_suspend = false;
343         while (true) {
344           if (thread->RequestCheckpoint(checkpoint_function)) {
345             // This thread will run its checkpoint some time in the near future.
346             if (requested_suspend) {
347               // The suspend request is now unnecessary.
348               bool updated =
349                   thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
350               DCHECK(updated);
351               requested_suspend = false;
352             }
353             break;
354           } else {
355             // The thread is probably suspended, try to make sure that it stays suspended.
356             if (thread->GetState() == ThreadState::kRunnable) {
357               // Spurious fail, try again.
358               continue;
359             }
360             if (!requested_suspend) {
361               bool updated =
362                   thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
363               DCHECK(updated);
364               requested_suspend = true;
365               if (thread->IsSuspended()) {
366                 break;
367               }
368               // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
369             } else {
370               // The thread previously raced our suspend request to become Runnable but
371               // since it is suspended again, it must honor that suspend request now.
372               DCHECK(thread->IsSuspended());
373               break;
374             }
375           }
376         }
377         if (requested_suspend) {
378           suspended_count_modified_threads.push_back(thread);
379         }
380       }
381     }
382     // Run the callback to be called inside this critical section.
383     if (callback != nullptr) {
384       callback->Run(self);
385     }
386   }
387 
388   // Run the checkpoint on ourself while we wait for threads to suspend.
389   checkpoint_function->Run(self);
390 
391   // Run the checkpoint on the suspended threads.
392   for (const auto& thread : suspended_count_modified_threads) {
393     // We know for sure that the thread is suspended at this point.
394     DCHECK(thread->IsSuspended());
395     checkpoint_function->Run(thread);
396     {
397       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
398       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
399       DCHECK(updated);
400     }
401   }
402 
403   {
404     // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
405     // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
406     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
407     Thread::resume_cond_->Broadcast(self);
408   }
409 
410   return count;
411 }
412 
RunEmptyCheckpoint()413 void ThreadList::RunEmptyCheckpoint() {
414   Thread* self = Thread::Current();
415   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
416   Locks::thread_list_lock_->AssertNotHeld(self);
417   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
418   std::vector<uint32_t> runnable_thread_ids;
419   size_t count = 0;
420   Barrier* barrier = empty_checkpoint_barrier_.get();
421   barrier->Init(self, 0);
422   {
423     MutexLock mu(self, *Locks::thread_list_lock_);
424     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
425     for (Thread* thread : list_) {
426       if (thread != self) {
427         while (true) {
428           if (thread->RequestEmptyCheckpoint()) {
429             // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
430             // some time in the near future.
431             ++count;
432             if (kIsDebugBuild) {
433               runnable_thread_ids.push_back(thread->GetThreadId());
434             }
435             break;
436           }
437           if (thread->GetState() != ThreadState::kRunnable) {
438             // It's seen suspended, we are done because it must not be in the middle of a mutator
439             // heap access.
440             break;
441           }
442         }
443       }
444     }
445   }
446 
447   // Wake up the threads blocking for weak ref access so that they will respond to the empty
448   // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
449   Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
450   Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
451   {
452     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
453     uint64_t total_wait_time = 0;
454     bool first_iter = true;
455     while (true) {
456       // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
457       // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
458       // and a mutex.) This needs to be done periodically because the thread may be preempted
459       // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
460       // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
461       // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
462       // handled in the first iteration.
463       for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
464         mutex->WakeupToRespondToEmptyCheckpoint();
465       }
466       static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100;  // 100ms
467       static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000;  // 10 minutes.
468       size_t barrier_count = first_iter ? count : 0;
469       first_iter = false;  // Don't add to the barrier count from the second iteration on.
470       bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
471       if (!timed_out) {
472         break;  // Success
473       }
474       // This is a very rare case.
475       total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
476       if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
477         std::ostringstream ss;
478         ss << "Empty checkpoint timeout\n";
479         ss << "Barrier count " << barrier->GetCount(self) << "\n";
480         ss << "Runnable thread IDs";
481         for (uint32_t tid : runnable_thread_ids) {
482           ss << " " << tid;
483         }
484         ss << "\n";
485         Locks::mutator_lock_->Dump(ss);
486         ss << "\n";
487         LOG(FATAL_WITHOUT_ABORT) << ss.str();
488         // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
489         // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
490         {
491           ScopedObjectAccess soa(self);
492           MutexLock mu1(self, *Locks::thread_list_lock_);
493           for (Thread* thread : GetList()) {
494             uint32_t tid = thread->GetThreadId();
495             bool is_in_runnable_thread_ids =
496                 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
497                 runnable_thread_ids.end();
498             if (is_in_runnable_thread_ids &&
499                 thread->ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
500               // Found a runnable thread that hasn't responded to the empty checkpoint request.
501               // Assume it's stuck and safe to dump its stack.
502               thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
503                            /*dump_native_stack=*/ true,
504                            /*force_dump_stack=*/ true);
505             }
506           }
507         }
508         LOG(FATAL_WITHOUT_ABORT)
509             << "Dumped runnable threads that haven't responded to empty checkpoint.";
510         // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
511         Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
512         LOG(FATAL) << "Dumped all threads.";
513       }
514     }
515   }
516 }
517 
518 // A checkpoint/suspend-all hybrid to switch thread roots from
519 // from-space to to-space refs. Used to synchronize threads at a point
520 // to mark the initiation of marking while maintaining the to-space
521 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)522 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
523                                    Closure* flip_callback,
524                                    gc::collector::GarbageCollector* collector,
525                                    gc::GcPauseListener* pause_listener) {
526   TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
527   Thread* self = Thread::Current();
528   Locks::mutator_lock_->AssertNotHeld(self);
529   Locks::thread_list_lock_->AssertNotHeld(self);
530   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
531   CHECK_NE(self->GetState(), ThreadState::kRunnable);
532   size_t runnable_thread_count = 0;
533   std::vector<Thread*> other_threads;
534 
535   collector->GetHeap()->ThreadFlipBegin(self);  // Sync with JNI critical calls.
536 
537   // ThreadFlipBegin happens before we suspend all the threads, so it does not
538   // count towards the pause.
539   const uint64_t suspend_start_time = NanoTime();
540   SuspendAllInternal(self, self, nullptr);
541   if (pause_listener != nullptr) {
542     pause_listener->StartPause();
543   }
544 
545   // Run the flip callback for the collector.
546   Locks::mutator_lock_->ExclusiveLock(self);
547   suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
548   flip_callback->Run(self);
549   // Releasing mutator-lock *before* setting up flip function in the threads
550   // leaves a gap for another thread trying to suspend all threads. That thread
551   // gets to run with mutator-lock, thereby accessing the heap, without running
552   // its flip function. It's not a problem with CC as the gc-thread hasn't
553   // started marking yet and the from-space is accessible. By delaying releasing
554   // mutator-lock until after the flip function are running on all threads we
555   // fix that without increasing pause time, except for any thread that might be
556   // trying to suspend all. Even though the change works irrespective of the GC,
557   // it has been limited to userfaultfd GC to keep the change behind the flag.
558   //
559   // TODO: It's a temporary change as aosp/2377951 is going to clean-up at a
560   // broad scale, including not allowing concurrent suspend-all.
561 
562   // Resume runnable threads.
563   {
564     TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
565     MutexLock mu(self, *Locks::thread_list_lock_);
566     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
567     --suspend_all_count_;
568     for (Thread* thread : list_) {
569       // Set the flip function for all threads because once we start resuming any threads,
570       // they may need to run the flip function on behalf of other threads, even this one.
571       thread->SetFlipFunction(thread_flip_visitor);
572       if (thread == self) {
573         continue;
574       }
575       // Resume early the threads that were runnable but are suspended just for this thread flip or
576       // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
577       // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
578       // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
579       ThreadState state = thread->GetState();
580       if ((state == ThreadState::kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
581           thread->GetSuspendCount() == 1) {
582         // The thread will resume right after the broadcast.
583         bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
584         DCHECK(updated);
585         ++runnable_thread_count;
586       } else {
587         other_threads.push_back(thread);
588       }
589     }
590     Thread::resume_cond_->Broadcast(self);
591   }
592 
593   collector->RegisterPause(NanoTime() - suspend_start_time);
594   if (pause_listener != nullptr) {
595     pause_listener->EndPause();
596   }
597   collector->GetHeap()->ThreadFlipEnd(self);
598 
599   // Try to run the closure on the other threads.
600   {
601     TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
602     for (Thread* thread : other_threads) {
603       thread->EnsureFlipFunctionStarted(self);
604       DCHECK(!thread->ReadFlag(ThreadFlag::kPendingFlipFunction));
605     }
606     // Try to run the flip function for self.
607     self->EnsureFlipFunctionStarted(self);
608     DCHECK(!self->ReadFlag(ThreadFlag::kPendingFlipFunction));
609   }
610 
611   Locks::mutator_lock_->ExclusiveUnlock(self);
612 
613   // Resume other threads.
614   {
615     TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
616     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
617     for (const auto& thread : other_threads) {
618       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
619       DCHECK(updated);
620     }
621     Thread::resume_cond_->Broadcast(self);
622   }
623 
624   return runnable_thread_count + other_threads.size() + 1;  // +1 for self.
625 }
626 
SuspendAll(const char * cause,bool long_suspend)627 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
628   Thread* self = Thread::Current();
629 
630   if (self != nullptr) {
631     VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
632   } else {
633     VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
634   }
635   {
636     ScopedTrace trace("Suspending mutator threads");
637     const uint64_t start_time = NanoTime();
638 
639     SuspendAllInternal(self, self);
640     // All threads are known to have suspended (but a thread may still own the mutator lock)
641     // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
642 #if HAVE_TIMED_RWLOCK
643     while (true) {
644       if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
645                                                          NsToMs(thread_suspend_timeout_ns_),
646                                                          0)) {
647         break;
648       } else if (!long_suspend_) {
649         // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
650         // could result in a thread suspend timeout.
651         // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
652         UnsafeLogFatalForThreadSuspendAllTimeout();
653       }
654     }
655 #else
656     Locks::mutator_lock_->ExclusiveLock(self);
657 #endif
658 
659     long_suspend_ = long_suspend;
660 
661     const uint64_t end_time = NanoTime();
662     const uint64_t suspend_time = end_time - start_time;
663     suspend_all_historam_.AdjustAndAddValue(suspend_time);
664     if (suspend_time > kLongThreadSuspendThreshold) {
665       LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
666     }
667 
668     if (kDebugLocking) {
669       // Debug check that all threads are suspended.
670       AssertThreadsAreSuspended(self, self);
671     }
672   }
673   ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
674 
675   if (self != nullptr) {
676     VLOG(threads) << *self << " SuspendAll complete";
677   } else {
678     VLOG(threads) << "Thread[null] SuspendAll complete";
679   }
680 }
681 
682 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)683 void ThreadList::SuspendAllInternal(Thread* self,
684                                     Thread* ignore1,
685                                     Thread* ignore2,
686                                     SuspendReason reason) {
687   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
688   Locks::thread_list_lock_->AssertNotHeld(self);
689   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
690   if (kDebugLocking && self != nullptr) {
691     CHECK_NE(self->GetState(), ThreadState::kRunnable);
692   }
693 
694   // First request that all threads suspend, then wait for them to suspend before
695   // returning. This suspension scheme also relies on other behaviour:
696   // 1. Threads cannot be deleted while they are suspended or have a suspend-
697   //    request flag set - (see Unregister() below).
698   // 2. When threads are created, they are created in a suspended state (actually
699   //    kNative) and will never begin executing Java code without first checking
700   //    the suspend-request flag.
701 
702   // The atomic counter for number of threads that need to pass the barrier.
703   AtomicInteger pending_threads;
704   uint32_t num_ignored = 0;
705   if (ignore1 != nullptr) {
706     ++num_ignored;
707   }
708   if (ignore2 != nullptr && ignore1 != ignore2) {
709     ++num_ignored;
710   }
711   {
712     MutexLock mu(self, *Locks::thread_list_lock_);
713     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
714     // Update global suspend all state for attaching threads.
715     ++suspend_all_count_;
716     pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
717     // Increment everybody's suspend count (except those that should be ignored).
718     for (const auto& thread : list_) {
719       if (thread == ignore1 || thread == ignore2) {
720         continue;
721       }
722       VLOG(threads) << "requesting thread suspend: " << *thread;
723       bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
724       DCHECK(updated);
725 
726       // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
727       // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
728       // that can lead a thread to miss a call to PassActiveSuspendBarriers().
729       if (thread->IsSuspended()) {
730         // Only clear the counter for the current thread.
731         thread->ClearSuspendBarrier(&pending_threads);
732         pending_threads.fetch_sub(1, std::memory_order_seq_cst);
733       }
734     }
735   }
736 
737   // Wait for the barrier to be passed by all runnable threads. This wait
738   // is done with a timeout so that we can detect problems.
739 #if ART_USE_FUTEXES
740   timespec wait_timeout;
741   InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
742 #endif
743   const uint64_t start_time = NanoTime();
744   while (true) {
745     int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
746     if (LIKELY(cur_val > 0)) {
747 #if ART_USE_FUTEXES
748       if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
749           != 0) {
750         if ((errno == EAGAIN) || (errno == EINTR)) {
751           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
752           continue;
753         }
754         if (errno == ETIMEDOUT) {
755           const uint64_t wait_time = NanoTime() - start_time;
756           MutexLock mu(self, *Locks::thread_list_lock_);
757           MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
758           std::ostringstream oss;
759           for (const auto& thread : list_) {
760             if (thread == ignore1 || thread == ignore2) {
761               continue;
762             }
763             if (!thread->IsSuspended()) {
764               oss << std::endl << "Thread not suspended: " << *thread;
765             }
766           }
767           LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
768               << "Timed out waiting for threads to suspend, waited for "
769               << PrettyDuration(wait_time)
770               << oss.str();
771         } else {
772           PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
773         }
774       }  // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
775 #else
776       // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
777       UNUSED(start_time);
778 #endif
779     } else {
780       CHECK_EQ(cur_val, 0);
781       break;
782     }
783   }
784 }
785 
ResumeAll()786 void ThreadList::ResumeAll() {
787   Thread* self = Thread::Current();
788 
789   if (self != nullptr) {
790     VLOG(threads) << *self << " ResumeAll starting";
791   } else {
792     VLOG(threads) << "Thread[null] ResumeAll starting";
793   }
794 
795   ATraceEnd();
796 
797   ScopedTrace trace("Resuming mutator threads");
798 
799   if (kDebugLocking) {
800     // Debug check that all threads are suspended.
801     AssertThreadsAreSuspended(self, self);
802   }
803 
804   long_suspend_ = false;
805 
806   Locks::mutator_lock_->ExclusiveUnlock(self);
807   {
808     MutexLock mu(self, *Locks::thread_list_lock_);
809     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
810     // Update global suspend all state for attaching threads.
811     --suspend_all_count_;
812     // Decrement the suspend counts for all threads.
813     for (const auto& thread : list_) {
814       if (thread == self) {
815         continue;
816       }
817       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
818       DCHECK(updated);
819     }
820 
821     // Broadcast a notification to all suspended threads, some or all of
822     // which may choose to wake up.  No need to wait for them.
823     if (self != nullptr) {
824       VLOG(threads) << *self << " ResumeAll waking others";
825     } else {
826       VLOG(threads) << "Thread[null] ResumeAll waking others";
827     }
828     Thread::resume_cond_->Broadcast(self);
829   }
830 
831   if (self != nullptr) {
832     VLOG(threads) << *self << " ResumeAll complete";
833   } else {
834     VLOG(threads) << "Thread[null] ResumeAll complete";
835   }
836 }
837 
Resume(Thread * thread,SuspendReason reason)838 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
839   // This assumes there was an ATraceBegin when we suspended the thread.
840   ATraceEnd();
841 
842   Thread* self = Thread::Current();
843   DCHECK_NE(thread, self);
844   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
845 
846   {
847     // To check Contains.
848     MutexLock mu(self, *Locks::thread_list_lock_);
849     // To check IsSuspended.
850     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
851     if (UNLIKELY(!thread->IsSuspended())) {
852       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
853           << ") thread not suspended";
854       return false;
855     }
856     if (!Contains(thread)) {
857       // We only expect threads within the thread-list to have been suspended otherwise we can't
858       // stop such threads from delete-ing themselves.
859       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
860           << ") thread not within thread list";
861       return false;
862     }
863     if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
864       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
865                  << ") could not modify suspend count.";
866       return false;
867     }
868   }
869 
870   {
871     VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
872     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
873     Thread::resume_cond_->Broadcast(self);
874   }
875 
876   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
877   return true;
878 }
879 
ThreadSuspendByPeerWarning(ScopedObjectAccess & soa,LogSeverity severity,const char * message,jobject peer)880 static void ThreadSuspendByPeerWarning(ScopedObjectAccess& soa,
881                                        LogSeverity severity,
882                                        const char* message,
883                                        jobject peer) REQUIRES_SHARED(Locks::mutator_lock_) {
884   ObjPtr<mirror::Object> name =
885       WellKnownClasses::java_lang_Thread_name->GetObject(soa.Decode<mirror::Object>(peer));
886   if (name == nullptr) {
887     LOG(severity) << message << ": " << peer;
888   } else {
889     LOG(severity) << message << ": " << peer << ":" << name->AsString()->ToModifiedUtf8();
890   }
891 }
892 
SuspendThreadByPeer(jobject peer,SuspendReason reason,bool * timed_out)893 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
894                                         SuspendReason reason,
895                                         bool* timed_out) {
896   bool request_suspension = true;
897   const uint64_t start_time = NanoTime();
898   int self_suspend_count = 0;
899   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
900   *timed_out = false;
901   Thread* const self = Thread::Current();
902   Thread* suspended_thread = nullptr;
903   VLOG(threads) << "SuspendThreadByPeer starting";
904   while (true) {
905     Thread* thread;
906     {
907       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
908       // is requesting another suspend, to avoid deadlock, by requiring this function be called
909       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
910       // than request thread suspension, to avoid potential cycles in threads requesting each other
911       // suspend.
912       ScopedObjectAccess soa(self);
913       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
914       thread = Thread::FromManagedThread(soa, peer);
915       if (thread == nullptr) {
916         if (suspended_thread != nullptr) {
917           MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
918           // If we incremented the suspend count but the thread reset its peer, we need to
919           // re-decrement it since it is shutting down and may deadlock the runtime in
920           // ThreadList::WaitForOtherNonDaemonThreadsToExit.
921           bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
922                                                               -1,
923                                                               nullptr,
924                                                               reason);
925           DCHECK(updated);
926         }
927         ThreadSuspendByPeerWarning(soa,
928                                    ::android::base::WARNING,
929                                     "No such thread for suspend",
930                                     peer);
931         return nullptr;
932       }
933       if (!Contains(thread)) {
934         CHECK(suspended_thread == nullptr);
935         VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
936             << reinterpret_cast<void*>(thread);
937         return nullptr;
938       }
939       VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
940       {
941         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
942         if (request_suspension) {
943           if (self->GetSuspendCount() > 0) {
944             // We hold the suspend count lock but another thread is trying to suspend us. Its not
945             // safe to try to suspend another thread in case we get a cycle. Start the loop again
946             // which will allow this thread to be suspended.
947             ++self_suspend_count;
948             continue;
949           }
950           CHECK(suspended_thread == nullptr);
951           suspended_thread = thread;
952           bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
953           DCHECK(updated);
954           request_suspension = false;
955         } else {
956           // If the caller isn't requesting suspension, a suspension should have already occurred.
957           CHECK_GT(thread->GetSuspendCount(), 0);
958         }
959         // IsSuspended on the current thread will fail as the current thread is changed into
960         // Runnable above. As the suspend count is now raised if this is the current thread
961         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
962         // to just explicitly handle the current thread in the callers to this code.
963         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
964         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
965         // count, or else we've waited and it has self suspended) or is the current thread, we're
966         // done.
967         if (thread->IsSuspended()) {
968           VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
969           if (ATraceEnabled()) {
970             std::string name;
971             thread->GetThreadName(name);
972             ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
973                                       peer).c_str());
974           }
975           return thread;
976         }
977         const uint64_t total_delay = NanoTime() - start_time;
978         if (total_delay >= thread_suspend_timeout_ns_) {
979           if (suspended_thread == nullptr) {
980             ThreadSuspendByPeerWarning(soa,
981                                        ::android::base::FATAL,
982                                        "Failed to issue suspend request",
983                                        peer);
984           } else {
985             CHECK_EQ(suspended_thread, thread);
986             LOG(WARNING) << "Suspended thread state_and_flags: "
987                          << suspended_thread->StateAndFlagsAsHexString()
988                          << ", self_suspend_count = " << self_suspend_count;
989             // Explicitly release thread_suspend_count_lock_; we haven't held it for long, so
990             // seeing threads blocked on it is not informative.
991             Locks::thread_suspend_count_lock_->Unlock(self);
992             ThreadSuspendByPeerWarning(soa,
993                                        ::android::base::FATAL,
994                                        "Thread suspension timed out",
995                                        peer);
996           }
997           UNREACHABLE();
998         } else if (sleep_us == 0 &&
999             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1000           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1001           // excessive CPU usage.
1002           sleep_us = kThreadSuspendMaxYieldUs / 2;
1003         }
1004       }
1005       // Release locks and come out of runnable state.
1006     }
1007     VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
1008     ThreadSuspendSleep(sleep_us);
1009     // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
1010     // all if possible. This shouldn't be an issue since time to suspend should always be small.
1011     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1012   }
1013 }
1014 
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)1015 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
1016                                            const char* message,
1017                                            uint32_t thread_id) {
1018   LOG(severity) << StringPrintf("%s: %d", message, thread_id);
1019 }
1020 
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)1021 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1022                                             SuspendReason reason,
1023                                             bool* timed_out) {
1024   const uint64_t start_time = NanoTime();
1025   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1026   *timed_out = false;
1027   Thread* suspended_thread = nullptr;
1028   Thread* const self = Thread::Current();
1029   CHECK_NE(thread_id, kInvalidThreadId);
1030   VLOG(threads) << "SuspendThreadByThreadId starting";
1031   while (true) {
1032     {
1033       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1034       // is requesting another suspend, to avoid deadlock, by requiring this function be called
1035       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1036       // than request thread suspension, to avoid potential cycles in threads requesting each other
1037       // suspend.
1038       ScopedObjectAccess soa(self);
1039       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1040       Thread* thread = nullptr;
1041       for (const auto& it : list_) {
1042         if (it->GetThreadId() == thread_id) {
1043           thread = it;
1044           break;
1045         }
1046       }
1047       if (thread == nullptr) {
1048         CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1049             << " no longer in thread list";
1050         // There's a race in inflating a lock and the owner giving up ownership and then dying.
1051         ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1052                                        "No such thread id for suspend",
1053                                        thread_id);
1054         return nullptr;
1055       }
1056       VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1057       DCHECK(Contains(thread));
1058       {
1059         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1060         if (suspended_thread == nullptr) {
1061           if (self->GetSuspendCount() > 0) {
1062             // We hold the suspend count lock but another thread is trying to suspend us. Its not
1063             // safe to try to suspend another thread in case we get a cycle. Start the loop again
1064             // which will allow this thread to be suspended.
1065             continue;
1066           }
1067           bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1068           DCHECK(updated);
1069           suspended_thread = thread;
1070         } else {
1071           CHECK_EQ(suspended_thread, thread);
1072           // If the caller isn't requesting suspension, a suspension should have already occurred.
1073           CHECK_GT(thread->GetSuspendCount(), 0);
1074         }
1075         // IsSuspended on the current thread will fail as the current thread is changed into
1076         // Runnable above. As the suspend count is now raised if this is the current thread
1077         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1078         // to just explicitly handle the current thread in the callers to this code.
1079         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1080         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1081         // count, or else we've waited and it has self suspended) or is the current thread, we're
1082         // done.
1083         if (thread->IsSuspended()) {
1084           if (ATraceEnabled()) {
1085             std::string name;
1086             thread->GetThreadName(name);
1087             ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1088                                       name.c_str(), thread_id).c_str());
1089           }
1090           VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1091           return thread;
1092         }
1093         const uint64_t total_delay = NanoTime() - start_time;
1094         if (total_delay >= thread_suspend_timeout_ns_) {
1095           ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1096                                          "Thread suspension timed out",
1097                                          thread_id);
1098           if (suspended_thread != nullptr) {
1099             bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1100             DCHECK(updated);
1101           }
1102           *timed_out = true;
1103           return nullptr;
1104         } else if (sleep_us == 0 &&
1105             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1106           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1107           // excessive CPU usage.
1108           sleep_us = kThreadSuspendMaxYieldUs / 2;
1109         }
1110       }
1111       // Release locks and come out of runnable state.
1112     }
1113     VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1114     ThreadSuspendSleep(sleep_us);
1115     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1116   }
1117 }
1118 
FindThreadByThreadId(uint32_t thread_id)1119 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1120   for (const auto& thread : list_) {
1121     if (thread->GetThreadId() == thread_id) {
1122       return thread;
1123     }
1124   }
1125   return nullptr;
1126 }
1127 
FindThreadByTid(int tid)1128 Thread* ThreadList::FindThreadByTid(int tid) {
1129   for (const auto& thread : list_) {
1130     if (thread->GetTid() == tid) {
1131       return thread;
1132     }
1133   }
1134   return nullptr;
1135 }
1136 
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1137 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1138   ScopedTrace trace(__PRETTY_FUNCTION__);
1139   Thread* self = Thread::Current();
1140   Locks::mutator_lock_->AssertNotHeld(self);
1141   while (true) {
1142     Locks::runtime_shutdown_lock_->Lock(self);
1143     if (check_no_birth) {
1144       // No more threads can be born after we start to shutdown.
1145       CHECK(Runtime::Current()->IsShuttingDownLocked());
1146       CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1147     } else {
1148       if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1149         // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1150         // Fortunately, this is used mostly for testing, and not performance-critical.
1151         Locks::runtime_shutdown_lock_->Unlock(self);
1152         usleep(1000);
1153         continue;
1154       }
1155     }
1156     MutexLock mu(self, *Locks::thread_list_lock_);
1157     Locks::runtime_shutdown_lock_->Unlock(self);
1158     // Also wait for any threads that are unregistering to finish. This is required so that no
1159     // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1160     // threads since they could unregister at the wrong time.
1161     bool done = unregistering_count_ == 0;
1162     if (done) {
1163       for (const auto& thread : list_) {
1164         if (thread != self && !thread->IsDaemon()) {
1165           done = false;
1166           break;
1167         }
1168       }
1169     }
1170     if (done) {
1171       break;
1172     }
1173     // Wait for another thread to exit before re-checking.
1174     Locks::thread_exit_cond_->Wait(self);
1175   }
1176 }
1177 
SuspendAllDaemonThreadsForShutdown()1178 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1179   ScopedTrace trace(__PRETTY_FUNCTION__);
1180   Thread* self = Thread::Current();
1181   size_t daemons_left = 0;
1182   {
1183     // Tell all the daemons it's time to suspend.
1184     MutexLock mu(self, *Locks::thread_list_lock_);
1185     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1186     for (const auto& thread : list_) {
1187       // This is only run after all non-daemon threads have exited, so the remainder should all be
1188       // daemons.
1189       CHECK(thread->IsDaemon()) << *thread;
1190       if (thread != self) {
1191         bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1192         DCHECK(updated);
1193         ++daemons_left;
1194       }
1195       // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1196       // the sleep forever one.
1197       thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1198     }
1199   }
1200   if (daemons_left == 0) {
1201     // No threads left; safe to shut down.
1202     return;
1203   }
1204   // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1205   // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1206   // have truly finished touching the memory we are about to deallocate. We do the best we can with
1207   // timeouts.
1208   //
1209   // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1210   // in a place where they are about to access runtime state and are not in a runnable state.
1211   // We attempt to do the latter by just waiting long enough for things to
1212   // quiesce. Examples: Monitor code or waking up from a condition variable.
1213   //
1214   // Give the threads a chance to suspend, complaining if they're slow. (a)
1215   bool have_complained = false;
1216   static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1217   static constexpr size_t kSleepMicroseconds = 1000;
1218   bool all_suspended = false;
1219   for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1220     bool found_running = false;
1221     {
1222       MutexLock mu(self, *Locks::thread_list_lock_);
1223       for (const auto& thread : list_) {
1224         if (thread != self && thread->GetState() == ThreadState::kRunnable) {
1225           if (!have_complained) {
1226             LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1227             have_complained = true;
1228           }
1229           found_running = true;
1230         }
1231       }
1232     }
1233     if (found_running) {
1234       // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1235       usleep(kSleepMicroseconds);
1236     } else {
1237       all_suspended = true;
1238     }
1239   }
1240   if (!all_suspended) {
1241     // We can get here if a daemon thread executed a fastnative native call, so that it
1242     // remained in runnable state, and then made a JNI call after we called
1243     // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1244     // but runnable state. See b/147804269 .
1245     LOG(WARNING) << "timed out suspending all daemon threads";
1246   }
1247   // Assume all threads are either suspended or somehow wedged.
1248   // Wait again for all the now "suspended" threads to actually quiesce. (b)
1249   static constexpr size_t kDaemonSleepTime = 400'000;
1250   usleep(kDaemonSleepTime);
1251   std::list<Thread*> list_copy;
1252   {
1253     MutexLock mu(self, *Locks::thread_list_lock_);
1254     // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1255     // threads to immediately go back to sleep without touching memory. This prevents us from
1256     // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1257     // only do this once we're reasonably sure that no system mutexes are still held.
1258     for (const auto& thread : list_) {
1259       DCHECK(thread == self || !all_suspended || thread->GetState() != ThreadState::kRunnable);
1260       // In the !all_suspended case, the target is probably sleeping.
1261       thread->GetJniEnv()->SetRuntimeDeleted();
1262       // Possibly contended Mutex acquisitions are unsafe after this.
1263       // Releasing thread_list_lock_ is OK, since it can't block.
1264     }
1265   }
1266   // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1267   // touching memory.
1268   usleep(kDaemonSleepTime);
1269 #if defined(__has_feature)
1270 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1271   // Sleep a bit longer with -fsanitize=address, since everything is slower.
1272   usleep(2 * kDaemonSleepTime);
1273 #endif
1274 #endif
1275   // At this point no threads should be touching our data structures anymore.
1276 }
1277 
Register(Thread * self)1278 void ThreadList::Register(Thread* self) {
1279   DCHECK_EQ(self, Thread::Current());
1280   CHECK(!shut_down_);
1281 
1282   if (VLOG_IS_ON(threads)) {
1283     std::ostringstream oss;
1284     self->ShortDump(oss);  // We don't hold the mutator_lock_ yet and so cannot call Dump.
1285     LOG(INFO) << "ThreadList::Register() " << *self  << "\n" << oss.str();
1286   }
1287 
1288   // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1289   // SuspendAll requests.
1290   MutexLock mu(self, *Locks::thread_list_lock_);
1291   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1292   // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1293   // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1294   for (int delta = suspend_all_count_; delta > 0; delta--) {
1295     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1296     DCHECK(updated);
1297   }
1298   CHECK(!Contains(self));
1299   list_.push_back(self);
1300   if (gUseReadBarrier) {
1301     gc::collector::ConcurrentCopying* const cc =
1302         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1303     // Initialize according to the state of the CC collector.
1304     self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1305     if (cc->IsUsingReadBarrierEntrypoints()) {
1306       self->SetReadBarrierEntrypoints();
1307     }
1308     self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1309   }
1310 }
1311 
Unregister(Thread * self,bool should_run_callbacks)1312 void ThreadList::Unregister(Thread* self, bool should_run_callbacks) {
1313   DCHECK_EQ(self, Thread::Current());
1314   CHECK_NE(self->GetState(), ThreadState::kRunnable);
1315   Locks::mutator_lock_->AssertNotHeld(self);
1316   if (self->tls32_.disable_thread_flip_count != 0) {
1317     LOG(FATAL) << "Incomplete PrimitiveArrayCritical section at exit: " << *self << "count = "
1318                << self->tls32_.disable_thread_flip_count;
1319   }
1320 
1321   VLOG(threads) << "ThreadList::Unregister() " << *self;
1322 
1323   {
1324     MutexLock mu(self, *Locks::thread_list_lock_);
1325     ++unregistering_count_;
1326   }
1327 
1328   // Any time-consuming destruction, plus anything that can call back into managed code or
1329   // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1330   // causes the threads to join. It is important to do this after incrementing unregistering_count_
1331   // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1332   // list.
1333   self->Destroy(should_run_callbacks);
1334 
1335   // If tracing, remember thread id and name before thread exits.
1336   Trace::StoreExitingThreadInfo(self);
1337 
1338   uint32_t thin_lock_id = self->GetThreadId();
1339   while (true) {
1340     // Remove and delete the Thread* while holding the thread_list_lock_ and
1341     // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1342     // Note: deliberately not using MutexLock that could hold a stale self pointer.
1343     {
1344       MutexLock mu(self, *Locks::thread_list_lock_);
1345       if (!Contains(self)) {
1346         std::string thread_name;
1347         self->GetThreadName(thread_name);
1348         std::ostringstream os;
1349         DumpNativeStack(os, GetTid(), "  native: ", nullptr);
1350         LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1351         break;
1352       } else {
1353         MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1354         if (!self->IsSuspended()) {
1355           list_.remove(self);
1356           break;
1357         }
1358       }
1359     }
1360     // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1361     // This is important if there are realtime threads. b/111277984
1362     usleep(1);
1363     // We failed to remove the thread due to a suspend request, loop and try again.
1364   }
1365   delete self;
1366 
1367   // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1368   // temporarily have multiple threads with the same thread id. When this occurs, it causes
1369   // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1370   ReleaseThreadId(nullptr, thin_lock_id);
1371 
1372   // Clear the TLS data, so that the underlying native thread is recognizably detached.
1373   // (It may wish to reattach later.)
1374 #ifdef __BIONIC__
1375   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1376 #else
1377   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1378   Thread::self_tls_ = nullptr;
1379 #endif
1380 
1381   // Signal that a thread just detached.
1382   MutexLock mu(nullptr, *Locks::thread_list_lock_);
1383   --unregistering_count_;
1384   Locks::thread_exit_cond_->Broadcast(nullptr);
1385 }
1386 
ForEach(void (* callback)(Thread *,void *),void * context)1387 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1388   for (const auto& thread : list_) {
1389     callback(thread, context);
1390   }
1391 }
1392 
VisitRootsForSuspendedThreads(RootVisitor * visitor)1393 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1394   Thread* const self = Thread::Current();
1395   std::vector<Thread*> threads_to_visit;
1396 
1397   // Tell threads to suspend and copy them into list.
1398   {
1399     MutexLock mu(self, *Locks::thread_list_lock_);
1400     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1401     for (Thread* thread : list_) {
1402       bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1403       DCHECK(suspended);
1404       if (thread == self || thread->IsSuspended()) {
1405         threads_to_visit.push_back(thread);
1406       } else {
1407         bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1408         DCHECK(resumed);
1409       }
1410     }
1411   }
1412 
1413   // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1414   // order violations.
1415   for (Thread* thread : threads_to_visit) {
1416     thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1417   }
1418 
1419   // Restore suspend counts.
1420   {
1421     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1422     for (Thread* thread : threads_to_visit) {
1423       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1424       DCHECK(updated);
1425     }
1426   }
1427 }
1428 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1429 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1430   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1431   for (const auto& thread : list_) {
1432     thread->VisitRoots(visitor, flags);
1433   }
1434 }
1435 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1436 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1437   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1438   for (const auto& thread : list_) {
1439     thread->VisitReflectiveTargets(visitor);
1440   }
1441 }
1442 
SweepInterpreterCaches(IsMarkedVisitor * visitor) const1443 void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const {
1444   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1445   for (const auto& thread : list_) {
1446     thread->SweepInterpreterCache(visitor);
1447   }
1448 }
1449 
AllocThreadId(Thread * self)1450 uint32_t ThreadList::AllocThreadId(Thread* self) {
1451   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1452   for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1453     if (!allocated_ids_[i]) {
1454       allocated_ids_.set(i);
1455       return i + 1;  // Zero is reserved to mean "invalid".
1456     }
1457   }
1458   LOG(FATAL) << "Out of internal thread ids";
1459   UNREACHABLE();
1460 }
1461 
ReleaseThreadId(Thread * self,uint32_t id)1462 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1463   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1464   --id;  // Zero is reserved to mean "invalid".
1465   DCHECK(allocated_ids_[id]) << id;
1466   allocated_ids_.reset(id);
1467 }
1468 
ScopedSuspendAll(const char * cause,bool long_suspend)1469 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1470   Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1471 }
1472 
~ScopedSuspendAll()1473 ScopedSuspendAll::~ScopedSuspendAll() {
1474   Runtime::Current()->GetThreadList()->ResumeAll();
1475 }
1476 
1477 }  // namespace art
1478