1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "linker/arm64/relative_patcher_arm64.h"
18
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "art_method.h"
22 #include "base/bit_utils.h"
23 #include "base/malloc_arena_pool.h"
24 #include "driver/compiled_method-inl.h"
25 #include "driver/compiler_driver.h"
26 #include "entrypoints/quick/quick_entrypoints_enum.h"
27 #include "heap_poisoning.h"
28 #include "linker/linker_patch.h"
29 #include "lock_word.h"
30 #include "mirror/array-inl.h"
31 #include "mirror/object.h"
32 #include "oat.h"
33 #include "oat_quick_method_header.h"
34 #include "read_barrier.h"
35 #include "stream/output_stream.h"
36
37 namespace art {
38 namespace linker {
39
40 namespace {
41
42 // Maximum positive and negative displacement for method call measured from the patch location.
43 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
44 // the ARM64 PC pointing to the BL.)
45 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
46 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
47
48 // Maximum positive and negative displacement for a conditional branch measured from the patch
49 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
50 // measured from the ARM64 PC pointing to the B.cond.)
51 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
52 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
53
54 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
55 constexpr uint32_t kAdrpThunkSize = 8u;
56
IsAdrpPatch(const LinkerPatch & patch)57 inline bool IsAdrpPatch(const LinkerPatch& patch) {
58 switch (patch.GetType()) {
59 case LinkerPatch::Type::kCallRelative:
60 case LinkerPatch::Type::kCallEntrypoint:
61 case LinkerPatch::Type::kBakerReadBarrierBranch:
62 return false;
63 case LinkerPatch::Type::kIntrinsicReference:
64 case LinkerPatch::Type::kDataBimgRelRo:
65 case LinkerPatch::Type::kMethodRelative:
66 case LinkerPatch::Type::kMethodBssEntry:
67 case LinkerPatch::Type::kJniEntrypointRelative:
68 case LinkerPatch::Type::kTypeRelative:
69 case LinkerPatch::Type::kTypeBssEntry:
70 case LinkerPatch::Type::kPublicTypeBssEntry:
71 case LinkerPatch::Type::kPackageTypeBssEntry:
72 case LinkerPatch::Type::kStringRelative:
73 case LinkerPatch::Type::kStringBssEntry:
74 return patch.LiteralOffset() == patch.PcInsnOffset();
75 }
76 }
77
MaxExtraSpace(size_t num_adrp,size_t code_size)78 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
79 if (num_adrp == 0u) {
80 return 0u;
81 }
82 uint32_t alignment_bytes =
83 CompiledMethod::AlignCode(code_size, InstructionSet::kArm64) - code_size;
84 return kAdrpThunkSize * num_adrp + alignment_bytes;
85 }
86
87 } // anonymous namespace
88
Arm64RelativePatcher(RelativePatcherThunkProvider * thunk_provider,RelativePatcherTargetProvider * target_provider,const Arm64InstructionSetFeatures * features)89 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherThunkProvider* thunk_provider,
90 RelativePatcherTargetProvider* target_provider,
91 const Arm64InstructionSetFeatures* features)
92 : ArmBaseRelativePatcher(thunk_provider, target_provider, InstructionSet::kArm64),
93 fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
94 reserved_adrp_thunks_(0u),
95 processed_adrp_thunks_(0u) {
96 if (fix_cortex_a53_843419_) {
97 adrp_thunk_locations_.reserve(16u);
98 current_method_thunks_.reserve(16u * kAdrpThunkSize);
99 }
100 }
101
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)102 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
103 const CompiledMethod* compiled_method,
104 MethodReference method_ref) {
105 if (!fix_cortex_a53_843419_) {
106 DCHECK(adrp_thunk_locations_.empty());
107 return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
108 }
109
110 // Add thunks for previous method if any.
111 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
112 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
113 offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) +
114 kAdrpThunkSize * num_adrp_thunks;
115 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
116 }
117
118 // Count the number of ADRP insns as the upper bound on the number of thunks needed
119 // and use it to reserve space for other linker patches.
120 size_t num_adrp = 0u;
121 DCHECK(compiled_method != nullptr);
122 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
123 if (IsAdrpPatch(patch)) {
124 ++num_adrp;
125 }
126 }
127 ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
128 uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
129 offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
130 if (num_adrp == 0u) {
131 return offset;
132 }
133
134 // Now that we have the actual offset where the code will be placed, locate the ADRP insns
135 // that actually require the thunk.
136 uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
137 uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
138 DCHECK(compiled_method != nullptr);
139 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
140 if (IsAdrpPatch(patch)) {
141 uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
142 if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
143 adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
144 thunk_offset += kAdrpThunkSize;
145 }
146 }
147 }
148 return offset;
149 }
150
ReserveSpaceEnd(uint32_t offset)151 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
152 if (!fix_cortex_a53_843419_) {
153 DCHECK(adrp_thunk_locations_.empty());
154 } else {
155 // Add thunks for the last method if any.
156 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
157 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
158 offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) +
159 kAdrpThunkSize * num_adrp_thunks;
160 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
161 }
162 }
163 return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
164 }
165
WriteThunks(OutputStream * out,uint32_t offset)166 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
167 if (fix_cortex_a53_843419_) {
168 if (!current_method_thunks_.empty()) {
169 uint32_t aligned_offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64);
170 if (kIsDebugBuild) {
171 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
172 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
173 CHECK_LE(num_thunks, processed_adrp_thunks_);
174 for (size_t i = 0u; i != num_thunks; ++i) {
175 const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
176 CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
177 }
178 }
179 uint32_t aligned_code_delta = aligned_offset - offset;
180 if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
181 return 0u;
182 }
183 if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
184 return 0u;
185 }
186 offset = aligned_offset + current_method_thunks_.size();
187 current_method_thunks_.clear();
188 }
189 }
190 return ArmBaseRelativePatcher::WriteThunks(out, offset);
191 }
192
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)193 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
194 uint32_t literal_offset,
195 uint32_t patch_offset,
196 uint32_t target_offset) {
197 DCHECK_ALIGNED(literal_offset, 4u);
198 DCHECK_ALIGNED(patch_offset, 4u);
199 DCHECK_ALIGNED(target_offset, 4u);
200 uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
201 PatchBl(code, literal_offset, displacement);
202 }
203
PatchPcRelativeReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)204 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
205 const LinkerPatch& patch,
206 uint32_t patch_offset,
207 uint32_t target_offset) {
208 DCHECK_ALIGNED(patch_offset, 4u);
209 DCHECK_ALIGNED(target_offset, 4u);
210 uint32_t literal_offset = patch.LiteralOffset();
211 uint32_t insn = GetInsn(code, literal_offset);
212 uint32_t pc_insn_offset = patch.PcInsnOffset();
213 uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
214 bool wide = (insn & 0x40000000) != 0;
215 uint32_t shift = wide ? 3u : 2u;
216 if (literal_offset == pc_insn_offset) {
217 // Check it's an ADRP with imm == 0 (unset).
218 DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
219 << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
220 if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
221 adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
222 DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
223 literal_offset, patch_offset));
224 uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
225 uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
226 uint32_t adrp = PatchAdrp(insn, adrp_disp);
227
228 uint32_t out_disp = thunk_offset - patch_offset;
229 DCHECK_EQ(out_disp & 3u, 0u);
230 DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed.
231 insn = (out_disp & 0x0fffffffu) >> shift;
232 insn |= 0x14000000; // B <thunk>
233
234 uint32_t back_disp = -out_disp;
235 DCHECK_EQ(back_disp & 3u, 0u);
236 DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed.
237 uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
238 b_back |= 0x14000000; // B <back>
239 size_t thunks_code_offset = current_method_thunks_.size();
240 current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
241 SetInsn(¤t_method_thunks_, thunks_code_offset, adrp);
242 SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back);
243 static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
244
245 processed_adrp_thunks_ += 1u;
246 } else {
247 insn = PatchAdrp(insn, disp);
248 }
249 // Write the new ADRP (or B to the erratum 843419 thunk).
250 SetInsn(code, literal_offset, insn);
251 } else {
252 if ((insn & 0xfffffc00) == 0x91000000) {
253 // ADD immediate, 64-bit with imm12 == 0 (unset).
254 if (!gUseReadBarrier) {
255 DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference ||
256 patch.GetType() == LinkerPatch::Type::kMethodRelative ||
257 patch.GetType() == LinkerPatch::Type::kTypeRelative ||
258 patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType();
259 } else {
260 // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
261 DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference ||
262 patch.GetType() == LinkerPatch::Type::kMethodRelative ||
263 patch.GetType() == LinkerPatch::Type::kTypeRelative ||
264 patch.GetType() == LinkerPatch::Type::kStringRelative ||
265 patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
266 patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry ||
267 patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry ||
268 patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
269 }
270 shift = 0u; // No shift for ADD.
271 } else {
272 // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
273 DCHECK(patch.GetType() == LinkerPatch::Type::kDataBimgRelRo ||
274 patch.GetType() == LinkerPatch::Type::kMethodBssEntry ||
275 patch.GetType() == LinkerPatch::Type::kJniEntrypointRelative ||
276 patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
277 patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry ||
278 patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry ||
279 patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
280 DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
281 }
282 if (kIsDebugBuild) {
283 uint32_t adrp = GetInsn(code, pc_insn_offset);
284 if ((adrp & 0x9f000000u) != 0x90000000u) {
285 CHECK(fix_cortex_a53_843419_);
286 CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk>
287 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
288 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
289 CHECK_LE(num_thunks, processed_adrp_thunks_);
290 uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
291 for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
292 CHECK_NE(i, processed_adrp_thunks_);
293 if (adrp_thunk_locations_[i].first == b_offset) {
294 size_t idx = num_thunks - (processed_adrp_thunks_ - i);
295 adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize);
296 break;
297 }
298 }
299 }
300 CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points
301 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register.
302 }
303 uint32_t imm12 = (disp & 0xfffu) >> shift;
304 insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
305 SetInsn(code, literal_offset, insn);
306 }
307 }
308
PatchEntrypointCall(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)309 void Arm64RelativePatcher::PatchEntrypointCall(std::vector<uint8_t>* code,
310 const LinkerPatch& patch,
311 uint32_t patch_offset) {
312 DCHECK_ALIGNED(patch_offset, 4u);
313 ThunkKey key = GetEntrypointCallKey(patch);
314 uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
315 uint32_t displacement = target_offset - patch_offset;
316 PatchBl(code, patch.LiteralOffset(), displacement);
317 }
318
PatchBakerReadBarrierBranch(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)319 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
320 const LinkerPatch& patch,
321 uint32_t patch_offset) {
322 DCHECK_ALIGNED(patch_offset, 4u);
323 uint32_t literal_offset = patch.LiteralOffset();
324 uint32_t insn = GetInsn(code, literal_offset);
325 DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched)
326 ThunkKey key = GetBakerThunkKey(patch);
327 uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
328 DCHECK_ALIGNED(target_offset, 4u);
329 uint32_t disp = target_offset - patch_offset;
330 DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed.
331 insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23.
332 SetInsn(code, literal_offset, insn);
333 }
334
MaxPositiveDisplacement(const ThunkKey & key)335 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) {
336 switch (key.GetType()) {
337 case ThunkType::kMethodCall:
338 case ThunkType::kEntrypointCall:
339 return kMaxMethodCallPositiveDisplacement;
340 case ThunkType::kBakerReadBarrier:
341 return kMaxBcondPositiveDisplacement;
342 }
343 }
344
MaxNegativeDisplacement(const ThunkKey & key)345 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) {
346 switch (key.GetType()) {
347 case ThunkType::kMethodCall:
348 case ThunkType::kEntrypointCall:
349 return kMaxMethodCallNegativeDisplacement;
350 case ThunkType::kBakerReadBarrier:
351 return kMaxBcondNegativeDisplacement;
352 }
353 }
354
PatchAdrp(uint32_t adrp,uint32_t disp)355 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
356 return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg.
357 // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
358 ((disp & 0x00003000u) << (29 - 12)) |
359 // The next 16 bits are encoded in bits 5-22.
360 ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
361 // Since the target_offset is based on the beginning of the oat file and the
362 // image space precedes the oat file, the target_offset into image space will
363 // be negative yet passed as uint32_t. Therefore we limit the displacement
364 // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
365 // the highest bit of the displacement. This is encoded in bit 23.
366 ((disp & 0x80000000u) >> (31 - 23));
367 }
368
PatchBl(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t displacement)369 void Arm64RelativePatcher::PatchBl(std::vector<uint8_t>* code,
370 uint32_t literal_offset,
371 uint32_t displacement) {
372 DCHECK_ALIGNED(displacement, 4u);
373 DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
374 uint32_t insn = (displacement & 0x0fffffffu) >> 2;
375 insn |= 0x94000000; // BL
376
377 // Check that we're just overwriting an existing BL.
378 DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
379 // Write the new BL.
380 SetInsn(code, literal_offset, insn);
381 }
382
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)383 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
384 uint32_t literal_offset,
385 uint32_t patch_offset) {
386 DCHECK_EQ(patch_offset & 0x3u, 0u);
387 if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc
388 uint32_t adrp = GetInsn(code, literal_offset);
389 DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
390 uint32_t next_offset = patch_offset + 4u;
391 uint32_t next_insn = GetInsn(code, literal_offset + 4u);
392
393 // Below we avoid patching sequences where the adrp is followed by a load which can easily
394 // be proved to be aligned.
395
396 // First check if the next insn is the LDR using the result of the ADRP.
397 // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
398 if ((next_insn & 0xffc00000) == 0xb9400000 &&
399 (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
400 return false;
401 }
402
403 // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result
404 // of the ADRP for an ADD immediate, check for that as well. We generalize a bit
405 // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination
406 // or stores the result to a different register.
407 if ((next_insn & 0x1f000000) == 0x11000000 &&
408 ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
409 return false;
410 }
411
412 // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
413 if ((next_insn & 0xff000000) == 0x18000000) {
414 return false;
415 }
416
417 // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
418 if ((next_insn & 0xff000000) == 0x58000000) {
419 bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
420 return !is_aligned_load;
421 }
422
423 // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
424 // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
425 if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
426 return false;
427 }
428 return true;
429 }
430 return false;
431 }
432
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)433 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
434 DCHECK_LE(offset + 4u, code->size());
435 DCHECK_ALIGNED(offset, 4u);
436 uint8_t* addr = &(*code)[offset];
437 addr[0] = (value >> 0) & 0xff;
438 addr[1] = (value >> 8) & 0xff;
439 addr[2] = (value >> 16) & 0xff;
440 addr[3] = (value >> 24) & 0xff;
441 }
442
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)443 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
444 DCHECK_LE(offset + 4u, code.size());
445 DCHECK_ALIGNED(offset, 4u);
446 const uint8_t* addr = &code[offset];
447 return
448 (static_cast<uint32_t>(addr[0]) << 0) +
449 (static_cast<uint32_t>(addr[1]) << 8) +
450 (static_cast<uint32_t>(addr[2]) << 16)+
451 (static_cast<uint32_t>(addr[3]) << 24);
452 }
453
454 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)455 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
456 return GetInsn(ArrayRef<const uint8_t>(*code), offset);
457 }
458
459 } // namespace linker
460 } // namespace art
461