• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  ** Copyright 2003-2010, VisualOn, Inc.
3  **
4  ** Licensed under the Apache License, Version 2.0 (the "License");
5  ** you may not use this file except in compliance with the License.
6  ** You may obtain a copy of the License at
7  **
8  **     http://www.apache.org/licenses/LICENSE-2.0
9  **
10  ** Unless required by applicable law or agreed to in writing, software
11  ** distributed under the License is distributed on an "AS IS" BASIS,
12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  ** See the License for the specific language governing permissions and
14  ** limitations under the License.
15  */
16 
17 /***********************************************************************
18 *  File: az_isp.c
19 *
20 *  Description:
21 *-----------------------------------------------------------------------*
22 * Compute the ISPs from  the LPC coefficients  (order=M)                *
23 *-----------------------------------------------------------------------*
24 *                                                                       *
25 * The ISPs are the roots of the two polynomials F1(z) and F2(z)         *
26 * defined as                                                            *
27 *               F1(z) = A(z) + z^-m A(z^-1)                             *
28 *  and          F2(z) = A(z) - z^-m A(z^-1)                             *
29 *                                                                       *
30 * For a even order m=2n, F1(z) has M/2 conjugate roots on the unit      *
31 * circle and F2(z) has M/2-1 conjugate roots on the unit circle in      *
32 * addition to two roots at 0 and pi.                                    *
33 *                                                                       *
34 * For a 16th order LP analysis, F1(z) and F2(z) can be written as       *
35 *                                                                       *
36 *   F1(z) = (1 + a[M])   PRODUCT  (1 - 2 cos(w_i) z^-1 + z^-2 )         *
37 *                        i=0,2,4,6,8,10,12,14                           *
38 *                                                                       *
39 *   F2(z) = (1 - a[M]) (1 - z^-2) PRODUCT (1 - 2 cos(w_i) z^-1 + z^-2 ) *
40 *                                 i=1,3,5,7,9,11,13                     *
41 *                                                                       *
42 * The ISPs are the M-1 frequencies w_i, i=0...M-2 plus the last         *
43 * predictor coefficient a[M].                                           *
44 *-----------------------------------------------------------------------*
45 
46 ************************************************************************/
47 
48 #include "typedef.h"
49 #include "basic_op.h"
50 #include "oper_32b.h"
51 #include "stdio.h"
52 #include "grid100.tab"
53 
54 #define M   16
55 #define NC  (M/2)
56 
57 /* local function */
58 static __inline Word16 Chebps2(Word16 x, Word16 f[], Word32 n);
59 
Az_isp(Word16 a[],Word16 isp[],Word16 old_isp[])60 void Az_isp(
61         Word16 a[],                           /* (i) Q12 : predictor coefficients                 */
62         Word16 isp[],                         /* (o) Q15 : Immittance spectral pairs              */
63         Word16 old_isp[]                      /* (i)     : old isp[] (in case not found M roots)  */
64        )
65 {
66     Word32 i, j, nf, ip, order;
67     Word16 xlow, ylow, xhigh, yhigh, xmid, ymid, xint;
68     Word16 x, y, sign, exp;
69     Word16 *coef;
70     Word16 f1[NC + 1], f2[NC];
71     Word32 t0;
72     /*-------------------------------------------------------------*
73      * find the sum and diff polynomials F1(z) and F2(z)           *
74      *      F1(z) = [A(z) + z^M A(z^-1)]                           *
75      *      F2(z) = [A(z) - z^M A(z^-1)]/(1-z^-2)                  *
76      *                                                             *
77      * for (i=0; i<NC; i++)                                        *
78      * {                                                           *
79      *   f1[i] = a[i] + a[M-i];                                    *
80      *   f2[i] = a[i] - a[M-i];                                    *
81      * }                                                           *
82      * f1[NC] = 2.0*a[NC];                                         *
83      *                                                             *
84      * for (i=2; i<NC; i++)            Divide by (1-z^-2)          *
85      *   f2[i] += f2[i-2];                                         *
86      *-------------------------------------------------------------*/
87     for (i = 0; i < NC; i++)
88     {
89         t0 = a[i] << 15;
90         f1[i] = vo_round(t0 + (a[M - i] << 15));        /* =(a[i]+a[M-i])/2 */
91         f2[i] = vo_round(t0 - (a[M - i] << 15));        /* =(a[i]-a[M-i])/2 */
92     }
93     f1[NC] = a[NC];
94     for (i = 2; i < NC; i++)               /* Divide by (1-z^-2) */
95         f2[i] = add1(f2[i], f2[i - 2]);
96 
97     /*---------------------------------------------------------------------*
98      * Find the ISPs (roots of F1(z) and F2(z) ) using the                 *
99      * Chebyshev polynomial evaluation.                                    *
100      * The roots of F1(z) and F2(z) are alternatively searched.            *
101      * We start by finding the first root of F1(z) then we switch          *
102      * to F2(z) then back to F1(z) and so on until all roots are found.    *
103      *                                                                     *
104      *  - Evaluate Chebyshev pol. at grid points and check for sign change.*
105      *  - If sign change track the root by subdividing the interval        *
106      *    2 times and ckecking sign change.                                *
107      *---------------------------------------------------------------------*/
108     nf = 0;                                  /* number of found frequencies */
109     ip = 0;                                  /* indicator for f1 or f2      */
110     coef = f1;
111     order = NC;
112     xlow = vogrid[0];
113     ylow = Chebps2(xlow, coef, order);
114     j = 0;
115     while ((nf < M - 1) && (j < GRID_POINTS))
116     {
117         j ++;
118         xhigh = xlow;
119         yhigh = ylow;
120         xlow = vogrid[j];
121         ylow = Chebps2(xlow, coef, order);
122         if ((ylow * yhigh) <= (Word32) 0)
123         {
124             /* divide 2 times the interval */
125             for (i = 0; i < 2; i++)
126             {
127                 xmid = (xlow >> 1) + (xhigh >> 1);        /* xmid = (xlow + xhigh)/2 */
128                 ymid = Chebps2(xmid, coef, order);
129                 if ((ylow * ymid) <= (Word32) 0)
130                 {
131                     yhigh = ymid;
132                     xhigh = xmid;
133                 } else
134                 {
135                     ylow = ymid;
136                     xlow = xmid;
137                 }
138             }
139             /*-------------------------------------------------------------*
140              * Linear interpolation                                        *
141              *    xint = xlow - ylow*(xhigh-xlow)/(yhigh-ylow);            *
142              *-------------------------------------------------------------*/
143             x = xhigh - xlow;
144             y = yhigh - ylow;
145             if (y == 0)
146             {
147                 xint = xlow;
148             } else
149             {
150                 sign = y;
151                 y = abs_s(y);
152                 exp = norm_s(y);
153                 y = y << exp;
154                 y = div_s((Word16) 16383, y);
155                 t0 = x * y;
156                 t0 = (t0 >> (19 - exp));
157                 y = vo_extract_l(t0);         /* y= (xhigh-xlow)/(yhigh-ylow) in Q11 */
158                 if (sign < 0)
159                     y = -y;
160                 t0 = ylow * y;      /* result in Q26 */
161                 t0 = (t0 >> 10);        /* result in Q15 */
162                 xint = vo_sub(xlow, vo_extract_l(t0));        /* xint = xlow - ylow*y */
163             }
164             isp[nf] = xint;
165             xlow = xint;
166             nf++;
167             if (ip == 0)
168             {
169                 ip = 1;
170                 coef = f2;
171                 order = NC - 1;
172             } else
173             {
174                 ip = 0;
175                 coef = f1;
176                 order = NC;
177             }
178             ylow = Chebps2(xlow, coef, order);
179         }
180     }
181     /* Check if M-1 roots found */
182     if(nf < M - 1)
183     {
184         for (i = 0; i < M; i++)
185         {
186             isp[i] = old_isp[i];
187         }
188     } else
189     {
190         isp[M - 1] = a[M] << 3;                      /* From Q12 to Q15 with saturation */
191     }
192     return;
193 }
194 
195 /*--------------------------------------------------------------*
196 * function  Chebps2:                                           *
197 *           ~~~~~~~                                            *
198 *    Evaluates the Chebishev polynomial series                 *
199 *--------------------------------------------------------------*
200 *                                                              *
201 *  The polynomial order is                                     *
202 *     n = M/2   (M is the prediction order)                    *
203 *  The polynomial is given by                                  *
204 *    C(x) = f(0)T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2 *
205 * Arguments:                                                   *
206 *  x:     input value of evaluation; x = cos(frequency) in Q15 *
207 *  f[]:   coefficients of the pol.                      in Q11 *
208 *  n:     order of the pol.                                    *
209 *                                                              *
210 * The value of C(x) is returned. (Satured to +-1.99 in Q14)    *
211 *                                                              *
212 *--------------------------------------------------------------*/
213 
Chebps2(Word16 x,Word16 f[],Word32 n)214 static __inline Word16 Chebps2(Word16 x, Word16 f[], Word32 n)
215 {
216     Word32 i, cheb;
217     Word16 b0_h, b0_l, b1_h, b1_l, b2_h, b2_l;
218     Word32 t0;
219 
220     /* Note: All computation are done in Q24. */
221 
222     t0 = f[0] << 13;
223     b2_h = t0 >> 16;
224     b2_l = (t0 & 0xffff)>>1;
225 
226     t0 = ((b2_h * x)<<1) + (((b2_l * x)>>15)<<1);
227     t0 <<= 1;
228     t0 += (f[1] << 13);                     /* + f[1] in Q24        */
229 
230     b1_h = t0 >> 16;
231     b1_l = (t0 & 0xffff) >> 1;
232 
233     for (i = 2; i < n; i++)
234     {
235         t0 = ((b1_h * x)<<1) + (((b1_l * x)>>15)<<1);
236 
237         t0 += (b2_h * (-16384))<<1;
238         t0 += (f[i] << 12);
239         t0 <<= 1;
240         t0 -= (b2_l << 1);                  /* t0 = 2.0*x*b1 - b2 + f[i]; */
241 
242         b0_h = t0 >> 16;
243         b0_l = (t0 & 0xffff) >> 1;
244 
245         b2_l = b1_l;                         /* b2 = b1; */
246         b2_h = b1_h;
247         b1_l = b0_l;                         /* b1 = b0; */
248         b1_h = b0_h;
249     }
250 
251     t0 = ((b1_h * x)<<1) + (((b1_l * x)>>15)<<1);
252     t0 += (b2_h * (-32768))<<1;             /* t0 = x*b1 - b2          */
253     t0 -= (b2_l << 1);
254     t0 += (f[n] << 12);                     /* t0 = x*b1 - b2 + f[i]/2 */
255 
256     t0 = L_shl2(t0, 6);                     /* Q24 to Q30 with saturation */
257 
258     cheb = extract_h(t0);                  /* Result in Q14              */
259 
260     if (cheb == -32768)
261     {
262         cheb = -32767;                     /* to avoid saturation in Az_isp */
263     }
264     return (cheb);
265 }
266 
267 
268 
269