1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interfaces that Hexagon uses to lower LLVM code
11 // into a selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "HexagonTargetMachine.h"
19 #include "HexagonTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "hexagon-lowering"
43
44 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
45 cl::init(true), cl::Hidden,
46 cl::desc("Control jump table emission on Hexagon target"));
47
48 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
49 cl::Hidden, cl::ZeroOrMore, cl::init(false),
50 cl::desc("Enable Hexagon SDNode scheduling"));
51
52 static cl::opt<bool> EnableFastMath("ffast-math",
53 cl::Hidden, cl::ZeroOrMore, cl::init(false),
54 cl::desc("Enable Fast Math processing"));
55
56 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
57 cl::Hidden, cl::ZeroOrMore, cl::init(5),
58 cl::desc("Set minimum jump tables"));
59
60 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
61 cl::Hidden, cl::ZeroOrMore, cl::init(6),
62 cl::desc("Max #stores to inline memcpy"));
63
64 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
65 cl::Hidden, cl::ZeroOrMore, cl::init(4),
66 cl::desc("Max #stores to inline memcpy"));
67
68 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
69 cl::Hidden, cl::ZeroOrMore, cl::init(6),
70 cl::desc("Max #stores to inline memmove"));
71
72 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
73 cl::Hidden, cl::ZeroOrMore, cl::init(4),
74 cl::desc("Max #stores to inline memmove"));
75
76 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
77 cl::Hidden, cl::ZeroOrMore, cl::init(8),
78 cl::desc("Max #stores to inline memset"));
79
80 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
81 cl::Hidden, cl::ZeroOrMore, cl::init(4),
82 cl::desc("Max #stores to inline memset"));
83
84
85 namespace {
86 class HexagonCCState : public CCState {
87 unsigned NumNamedVarArgParams;
88
89 public:
HexagonCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,int NumNamedVarArgParams)90 HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
91 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
92 int NumNamedVarArgParams)
93 : CCState(CC, isVarArg, MF, locs, C),
94 NumNamedVarArgParams(NumNamedVarArgParams) {}
95
getNumNamedVarArgParams() const96 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
97 };
98 }
99
100 // Implement calling convention for Hexagon.
101
102 static bool IsHvxVectorType(MVT ty);
103
104 static bool
105 CC_Hexagon(unsigned ValNo, MVT ValVT,
106 MVT LocVT, CCValAssign::LocInfo LocInfo,
107 ISD::ArgFlagsTy ArgFlags, CCState &State);
108
109 static bool
110 CC_Hexagon32(unsigned ValNo, MVT ValVT,
111 MVT LocVT, CCValAssign::LocInfo LocInfo,
112 ISD::ArgFlagsTy ArgFlags, CCState &State);
113
114 static bool
115 CC_Hexagon64(unsigned ValNo, MVT ValVT,
116 MVT LocVT, CCValAssign::LocInfo LocInfo,
117 ISD::ArgFlagsTy ArgFlags, CCState &State);
118
119 static bool
120 CC_HexagonVector(unsigned ValNo, MVT ValVT,
121 MVT LocVT, CCValAssign::LocInfo LocInfo,
122 ISD::ArgFlagsTy ArgFlags, CCState &State);
123
124 static bool
125 RetCC_Hexagon(unsigned ValNo, MVT ValVT,
126 MVT LocVT, CCValAssign::LocInfo LocInfo,
127 ISD::ArgFlagsTy ArgFlags, CCState &State);
128
129 static bool
130 RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
131 MVT LocVT, CCValAssign::LocInfo LocInfo,
132 ISD::ArgFlagsTy ArgFlags, CCState &State);
133
134 static bool
135 RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
136 MVT LocVT, CCValAssign::LocInfo LocInfo,
137 ISD::ArgFlagsTy ArgFlags, CCState &State);
138
139 static bool
140 RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
141 MVT LocVT, CCValAssign::LocInfo LocInfo,
142 ISD::ArgFlagsTy ArgFlags, CCState &State);
143
144 static bool
CC_Hexagon_VarArg(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)145 CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
146 MVT LocVT, CCValAssign::LocInfo LocInfo,
147 ISD::ArgFlagsTy ArgFlags, CCState &State) {
148 HexagonCCState &HState = static_cast<HexagonCCState &>(State);
149
150 if (ValNo < HState.getNumNamedVarArgParams()) {
151 // Deal with named arguments.
152 return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
153 }
154
155 // Deal with un-named arguments.
156 unsigned ofst;
157 if (ArgFlags.isByVal()) {
158 // If pass-by-value, the size allocated on stack is decided
159 // by ArgFlags.getByValSize(), not by the size of LocVT.
160 ofst = State.AllocateStack(ArgFlags.getByValSize(),
161 ArgFlags.getByValAlign());
162 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
163 return false;
164 }
165 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
166 LocVT = MVT::i32;
167 ValVT = MVT::i32;
168 if (ArgFlags.isSExt())
169 LocInfo = CCValAssign::SExt;
170 else if (ArgFlags.isZExt())
171 LocInfo = CCValAssign::ZExt;
172 else
173 LocInfo = CCValAssign::AExt;
174 }
175 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
176 ofst = State.AllocateStack(4, 4);
177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
178 return false;
179 }
180 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
181 ofst = State.AllocateStack(8, 8);
182 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
183 return false;
184 }
185 if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 ||
186 LocVT == MVT::v16i8) {
187 ofst = State.AllocateStack(16, 16);
188 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
189 return false;
190 }
191 if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 ||
192 LocVT == MVT::v32i8) {
193 ofst = State.AllocateStack(32, 32);
194 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
195 return false;
196 }
197 if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
198 LocVT == MVT::v64i8 || LocVT == MVT::v512i1) {
199 ofst = State.AllocateStack(64, 64);
200 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
201 return false;
202 }
203 if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
204 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) {
205 ofst = State.AllocateStack(128, 128);
206 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
207 return false;
208 }
209 if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
210 LocVT == MVT::v256i8) {
211 ofst = State.AllocateStack(256, 256);
212 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
213 return false;
214 }
215
216 llvm_unreachable(nullptr);
217 }
218
219
CC_Hexagon(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)220 static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT,
221 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) {
222 if (ArgFlags.isByVal()) {
223 // Passed on stack.
224 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(),
225 ArgFlags.getByValAlign());
226 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
227 return false;
228 }
229
230 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
231 LocVT = MVT::i32;
232 ValVT = MVT::i32;
233 if (ArgFlags.isSExt())
234 LocInfo = CCValAssign::SExt;
235 else if (ArgFlags.isZExt())
236 LocInfo = CCValAssign::ZExt;
237 else
238 LocInfo = CCValAssign::AExt;
239 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
240 LocVT = MVT::i32;
241 LocInfo = CCValAssign::BCvt;
242 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
243 LocVT = MVT::i64;
244 LocInfo = CCValAssign::BCvt;
245 }
246
247 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
248 if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
249 return false;
250 }
251
252 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
253 if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
254 return false;
255 }
256
257 if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) {
258 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32);
259 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
260 return false;
261 }
262
263 if (IsHvxVectorType(LocVT)) {
264 if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
265 return false;
266 }
267
268 return true; // CC didn't match.
269 }
270
271
CC_Hexagon32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)272 static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
273 MVT LocVT, CCValAssign::LocInfo LocInfo,
274 ISD::ArgFlagsTy ArgFlags, CCState &State) {
275
276 static const MCPhysReg RegList[] = {
277 Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
278 Hexagon::R5
279 };
280 if (unsigned Reg = State.AllocateReg(RegList)) {
281 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
282 return false;
283 }
284
285 unsigned Offset = State.AllocateStack(4, 4);
286 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
287 return false;
288 }
289
CC_Hexagon64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)290 static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
291 MVT LocVT, CCValAssign::LocInfo LocInfo,
292 ISD::ArgFlagsTy ArgFlags, CCState &State) {
293
294 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
295 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
296 return false;
297 }
298
299 static const MCPhysReg RegList1[] = {
300 Hexagon::D1, Hexagon::D2
301 };
302 static const MCPhysReg RegList2[] = {
303 Hexagon::R1, Hexagon::R3
304 };
305 if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) {
306 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
307 return false;
308 }
309
310 unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
311 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
312 return false;
313 }
314
CC_HexagonVector(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)315 static bool CC_HexagonVector(unsigned ValNo, MVT ValVT,
316 MVT LocVT, CCValAssign::LocInfo LocInfo,
317 ISD::ArgFlagsTy ArgFlags, CCState &State) {
318
319 static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1,
320 Hexagon::V2, Hexagon::V3,
321 Hexagon::V4, Hexagon::V5,
322 Hexagon::V6, Hexagon::V7,
323 Hexagon::V8, Hexagon::V9,
324 Hexagon::V10, Hexagon::V11,
325 Hexagon::V12, Hexagon::V13,
326 Hexagon::V14, Hexagon::V15};
327 static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1,
328 Hexagon::W2, Hexagon::W3,
329 Hexagon::W4, Hexagon::W5,
330 Hexagon::W6, Hexagon::W7};
331 auto &MF = State.getMachineFunction();
332 auto &HST = MF.getSubtarget<HexagonSubtarget>();
333 bool UseHVX = HST.useHVXOps();
334 bool UseHVXDbl = HST.useHVXDblOps();
335
336 if ((UseHVX && !UseHVXDbl) &&
337 (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
338 LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) {
339 if (unsigned Reg = State.AllocateReg(VecLstS)) {
340 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
341 return false;
342 }
343 unsigned Offset = State.AllocateStack(64, 64);
344 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
345 return false;
346 }
347 if ((UseHVX && !UseHVXDbl) &&
348 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
349 LocVT == MVT::v128i8)) {
350 if (unsigned Reg = State.AllocateReg(VecLstD)) {
351 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
352 return false;
353 }
354 unsigned Offset = State.AllocateStack(128, 128);
355 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
356 return false;
357 }
358 // 128B Mode
359 if ((UseHVX && UseHVXDbl) &&
360 (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
361 LocVT == MVT::v256i8)) {
362 if (unsigned Reg = State.AllocateReg(VecLstD)) {
363 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
364 return false;
365 }
366 unsigned Offset = State.AllocateStack(256, 256);
367 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
368 return false;
369 }
370 if ((UseHVX && UseHVXDbl) &&
371 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
372 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) {
373 if (unsigned Reg = State.AllocateReg(VecLstS)) {
374 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
375 return false;
376 }
377 unsigned Offset = State.AllocateStack(128, 128);
378 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
379 return false;
380 }
381 return true;
382 }
383
RetCC_Hexagon(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)384 static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
385 MVT LocVT, CCValAssign::LocInfo LocInfo,
386 ISD::ArgFlagsTy ArgFlags, CCState &State) {
387 auto &MF = State.getMachineFunction();
388 auto &HST = MF.getSubtarget<HexagonSubtarget>();
389 bool UseHVX = HST.useHVXOps();
390 bool UseHVXDbl = HST.useHVXDblOps();
391
392 if (LocVT == MVT::i1) {
393 // Return values of type MVT::i1 still need to be assigned to R0, but
394 // the value type needs to remain i1. LowerCallResult will deal with it,
395 // but it needs to recognize i1 as the value type.
396 LocVT = MVT::i32;
397 } else if (LocVT == MVT::i8 || LocVT == MVT::i16) {
398 LocVT = MVT::i32;
399 ValVT = MVT::i32;
400 if (ArgFlags.isSExt())
401 LocInfo = CCValAssign::SExt;
402 else if (ArgFlags.isZExt())
403 LocInfo = CCValAssign::ZExt;
404 else
405 LocInfo = CCValAssign::AExt;
406 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
407 LocVT = MVT::i32;
408 LocInfo = CCValAssign::BCvt;
409 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
410 LocVT = MVT::i64;
411 LocInfo = CCValAssign::BCvt;
412 } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 ||
413 LocVT == MVT::v16i32 || LocVT == MVT::v8i64 ||
414 LocVT == MVT::v512i1) {
415 LocVT = MVT::v16i32;
416 ValVT = MVT::v16i32;
417 LocInfo = CCValAssign::Full;
418 } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 ||
419 LocVT == MVT::v32i32 || LocVT == MVT::v16i64 ||
420 (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) {
421 LocVT = MVT::v32i32;
422 ValVT = MVT::v32i32;
423 LocInfo = CCValAssign::Full;
424 } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 ||
425 LocVT == MVT::v64i32 || LocVT == MVT::v32i64) {
426 LocVT = MVT::v64i32;
427 ValVT = MVT::v64i32;
428 LocInfo = CCValAssign::Full;
429 }
430 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
431 if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
432 return false;
433 }
434
435 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
436 if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
437 return false;
438 }
439 if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) {
440 if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
441 return false;
442 }
443 return true; // CC didn't match.
444 }
445
RetCC_Hexagon32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)446 static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
447 MVT LocVT, CCValAssign::LocInfo LocInfo,
448 ISD::ArgFlagsTy ArgFlags, CCState &State) {
449 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
450 if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
451 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
452 return false;
453 }
454 }
455
456 unsigned Offset = State.AllocateStack(4, 4);
457 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
458 return false;
459 }
460
RetCC_Hexagon64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)461 static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
462 MVT LocVT, CCValAssign::LocInfo LocInfo,
463 ISD::ArgFlagsTy ArgFlags, CCState &State) {
464 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
465 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
466 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
467 return false;
468 }
469 }
470
471 unsigned Offset = State.AllocateStack(8, 8);
472 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
473 return false;
474 }
475
RetCC_HexagonVector(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)476 static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
477 MVT LocVT, CCValAssign::LocInfo LocInfo,
478 ISD::ArgFlagsTy ArgFlags, CCState &State) {
479 auto &MF = State.getMachineFunction();
480 auto &HST = MF.getSubtarget<HexagonSubtarget>();
481 bool UseHVX = HST.useHVXOps();
482 bool UseHVXDbl = HST.useHVXDblOps();
483
484 unsigned OffSiz = 64;
485 if (LocVT == MVT::v16i32) {
486 if (unsigned Reg = State.AllocateReg(Hexagon::V0)) {
487 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
488 return false;
489 }
490 } else if (LocVT == MVT::v32i32) {
491 unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0;
492 if (unsigned Reg = State.AllocateReg(Req)) {
493 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
494 return false;
495 }
496 OffSiz = 128;
497 } else if (LocVT == MVT::v64i32) {
498 if (unsigned Reg = State.AllocateReg(Hexagon::W0)) {
499 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
500 return false;
501 }
502 OffSiz = 256;
503 }
504
505 unsigned Offset = State.AllocateStack(OffSiz, OffSiz);
506 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
507 return false;
508 }
509
promoteLdStType(MVT VT,MVT PromotedLdStVT)510 void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) {
511 if (VT != PromotedLdStVT) {
512 setOperationAction(ISD::LOAD, VT, Promote);
513 AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT);
514
515 setOperationAction(ISD::STORE, VT, Promote);
516 AddPromotedToType(ISD::STORE, VT, PromotedLdStVT);
517 }
518 }
519
520 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const521 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
522 const {
523 return SDValue();
524 }
525
526 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
527 /// by "Src" to address "Dst" of size "Size". Alignment information is
528 /// specified by the specific parameter attribute. The copy will be passed as
529 /// a byval function parameter. Sometimes what we are copying is the end of a
530 /// larger object, the part that does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)531 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
532 SDValue Chain, ISD::ArgFlagsTy Flags,
533 SelectionDAG &DAG, const SDLoc &dl) {
534
535 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
536 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
537 /*isVolatile=*/false, /*AlwaysInline=*/false,
538 /*isTailCall=*/false,
539 MachinePointerInfo(), MachinePointerInfo());
540 }
541
IsHvxVectorType(MVT ty)542 static bool IsHvxVectorType(MVT ty) {
543 return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 ||
544 ty == MVT::v64i8 ||
545 ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 ||
546 ty == MVT::v128i8 ||
547 ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 ||
548 ty == MVT::v256i8 ||
549 ty == MVT::v512i1 || ty == MVT::v1024i1);
550 }
551
552 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
553 // passed by value, the function prototype is modified to return void and
554 // the value is stored in memory pointed by a pointer passed by caller.
555 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const556 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
557 bool isVarArg,
558 const SmallVectorImpl<ISD::OutputArg> &Outs,
559 const SmallVectorImpl<SDValue> &OutVals,
560 const SDLoc &dl, SelectionDAG &DAG) const {
561
562 // CCValAssign - represent the assignment of the return value to locations.
563 SmallVector<CCValAssign, 16> RVLocs;
564
565 // CCState - Info about the registers and stack slot.
566 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
567 *DAG.getContext());
568
569 // Analyze return values of ISD::RET
570 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
571
572 SDValue Flag;
573 SmallVector<SDValue, 4> RetOps(1, Chain);
574
575 // Copy the result values into the output registers.
576 for (unsigned i = 0; i != RVLocs.size(); ++i) {
577 CCValAssign &VA = RVLocs[i];
578
579 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
580
581 // Guarantee that all emitted copies are stuck together with flags.
582 Flag = Chain.getValue(1);
583 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
584 }
585
586 RetOps[0] = Chain; // Update chain.
587
588 // Add the flag if we have it.
589 if (Flag.getNode())
590 RetOps.push_back(Flag);
591
592 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
593 }
594
mayBeEmittedAsTailCall(CallInst * CI) const595 bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
596 // If either no tail call or told not to tail call at all, don't.
597 auto Attr =
598 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
599 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
600 return false;
601
602 return true;
603 }
604
605 /// LowerCallResult - Lower the result values of an ISD::CALL into the
606 /// appropriate copies out of appropriate physical registers. This assumes that
607 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
608 /// being lowered. Returns a SDNode with the same number of values as the
609 /// ISD::CALL.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const SmallVectorImpl<SDValue> & OutVals,SDValue Callee) const610 SDValue HexagonTargetLowering::LowerCallResult(
611 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
612 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
613 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
614 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
615 // Assign locations to each value returned by this call.
616 SmallVector<CCValAssign, 16> RVLocs;
617
618 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
619 *DAG.getContext());
620
621 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
622
623 // Copy all of the result registers out of their specified physreg.
624 for (unsigned i = 0; i != RVLocs.size(); ++i) {
625 SDValue RetVal;
626 if (RVLocs[i].getValVT() == MVT::i1) {
627 // Return values of type MVT::i1 require special handling. The reason
628 // is that MVT::i1 is associated with the PredRegs register class, but
629 // values of that type are still returned in R0. Generate an explicit
630 // copy into a predicate register from R0, and treat the value of the
631 // predicate register as the call result.
632 auto &MRI = DAG.getMachineFunction().getRegInfo();
633 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
634 MVT::i32, InFlag);
635 // FR0 = (Value, Chain, Glue)
636 unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
637 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
638 FR0.getValue(0), FR0.getValue(2));
639 // TPR = (Chain, Glue)
640 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1,
641 TPR.getValue(1));
642 } else {
643 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
644 RVLocs[i].getValVT(), InFlag);
645 }
646 InVals.push_back(RetVal.getValue(0));
647 Chain = RetVal.getValue(1);
648 InFlag = RetVal.getValue(2);
649 }
650
651 return Chain;
652 }
653
654 /// LowerCall - Functions arguments are copied from virtual regs to
655 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
656 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const657 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
658 SmallVectorImpl<SDValue> &InVals) const {
659 SelectionDAG &DAG = CLI.DAG;
660 SDLoc &dl = CLI.DL;
661 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
662 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
663 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
664 SDValue Chain = CLI.Chain;
665 SDValue Callee = CLI.Callee;
666 bool &isTailCall = CLI.IsTailCall;
667 CallingConv::ID CallConv = CLI.CallConv;
668 bool isVarArg = CLI.IsVarArg;
669 bool doesNotReturn = CLI.DoesNotReturn;
670
671 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
672 MachineFunction &MF = DAG.getMachineFunction();
673 auto PtrVT = getPointerTy(MF.getDataLayout());
674
675 // Check for varargs.
676 int NumNamedVarArgParams = -1;
677 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) {
678 const GlobalValue *GV = GAN->getGlobal();
679 Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
680 if (const Function* F = dyn_cast<Function>(GV)) {
681 // If a function has zero args and is a vararg function, that's
682 // disallowed so it must be an undeclared function. Do not assume
683 // varargs if the callee is undefined.
684 if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0)
685 NumNamedVarArgParams = F->getFunctionType()->getNumParams();
686 }
687 }
688
689 // Analyze operands of the call, assigning locations to each operand.
690 SmallVector<CCValAssign, 16> ArgLocs;
691 HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
692 *DAG.getContext(), NumNamedVarArgParams);
693
694 if (isVarArg)
695 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
696 else
697 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
698
699 auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
700 if (Attr.getValueAsString() == "true")
701 isTailCall = false;
702
703 if (isTailCall) {
704 bool StructAttrFlag = MF.getFunction()->hasStructRetAttr();
705 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
706 isVarArg, IsStructRet,
707 StructAttrFlag,
708 Outs, OutVals, Ins, DAG);
709 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
710 CCValAssign &VA = ArgLocs[i];
711 if (VA.isMemLoc()) {
712 isTailCall = false;
713 break;
714 }
715 }
716 DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n"
717 : "Argument must be passed on stack. "
718 "Not eligible for Tail Call\n"));
719 }
720 // Get a count of how many bytes are to be pushed on the stack.
721 unsigned NumBytes = CCInfo.getNextStackOffset();
722 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
723 SmallVector<SDValue, 8> MemOpChains;
724
725 auto &HRI = *Subtarget.getRegisterInfo();
726 SDValue StackPtr =
727 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
728
729 bool NeedsArgAlign = false;
730 unsigned LargestAlignSeen = 0;
731 // Walk the register/memloc assignments, inserting copies/loads.
732 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
733 CCValAssign &VA = ArgLocs[i];
734 SDValue Arg = OutVals[i];
735 ISD::ArgFlagsTy Flags = Outs[i].Flags;
736 // Record if we need > 8 byte alignment on an argument.
737 bool ArgAlign = IsHvxVectorType(VA.getValVT());
738 NeedsArgAlign |= ArgAlign;
739
740 // Promote the value if needed.
741 switch (VA.getLocInfo()) {
742 default:
743 // Loc info must be one of Full, SExt, ZExt, or AExt.
744 llvm_unreachable("Unknown loc info!");
745 case CCValAssign::BCvt:
746 case CCValAssign::Full:
747 break;
748 case CCValAssign::SExt:
749 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
750 break;
751 case CCValAssign::ZExt:
752 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
753 break;
754 case CCValAssign::AExt:
755 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
756 break;
757 }
758
759 if (VA.isMemLoc()) {
760 unsigned LocMemOffset = VA.getLocMemOffset();
761 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
762 StackPtr.getValueType());
763 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
764 if (ArgAlign)
765 LargestAlignSeen = std::max(LargestAlignSeen,
766 VA.getLocVT().getStoreSizeInBits() >> 3);
767 if (Flags.isByVal()) {
768 // The argument is a struct passed by value. According to LLVM, "Arg"
769 // is is pointer.
770 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
771 Flags, DAG, dl));
772 } else {
773 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
774 DAG.getMachineFunction(), LocMemOffset);
775 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false,
776 false, 0);
777 MemOpChains.push_back(S);
778 }
779 continue;
780 }
781
782 // Arguments that can be passed on register must be kept at RegsToPass
783 // vector.
784 if (VA.isRegLoc())
785 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
786 }
787
788 if (NeedsArgAlign && Subtarget.hasV60TOps()) {
789 DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
790 MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo();
791 // V6 vectors passed by value have 64 or 128 byte alignment depending
792 // on whether we are 64 byte vector mode or 128 byte.
793 bool UseHVXDbl = Subtarget.useHVXDblOps();
794 assert(Subtarget.useHVXOps());
795 const unsigned ObjAlign = UseHVXDbl ? 128 : 64;
796 LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign);
797 MFI->ensureMaxAlignment(LargestAlignSeen);
798 }
799 // Transform all store nodes into one single node because all store
800 // nodes are independent of each other.
801 if (!MemOpChains.empty())
802 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
803
804 if (!isTailCall) {
805 SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true);
806 Chain = DAG.getCALLSEQ_START(Chain, C, dl);
807 }
808
809 // Build a sequence of copy-to-reg nodes chained together with token
810 // chain and flag operands which copy the outgoing args into registers.
811 // The InFlag in necessary since all emitted instructions must be
812 // stuck together.
813 SDValue InFlag;
814 if (!isTailCall) {
815 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
816 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
817 RegsToPass[i].second, InFlag);
818 InFlag = Chain.getValue(1);
819 }
820 } else {
821 // For tail calls lower the arguments to the 'real' stack slot.
822 //
823 // Force all the incoming stack arguments to be loaded from the stack
824 // before any new outgoing arguments are stored to the stack, because the
825 // outgoing stack slots may alias the incoming argument stack slots, and
826 // the alias isn't otherwise explicit. This is slightly more conservative
827 // than necessary, because it means that each store effectively depends
828 // on every argument instead of just those arguments it would clobber.
829 //
830 // Do not flag preceding copytoreg stuff together with the following stuff.
831 InFlag = SDValue();
832 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
833 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
834 RegsToPass[i].second, InFlag);
835 InFlag = Chain.getValue(1);
836 }
837 InFlag = SDValue();
838 }
839
840 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
841 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
842 // node so that legalize doesn't hack it.
843 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
844 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT);
845 } else if (ExternalSymbolSDNode *S =
846 dyn_cast<ExternalSymbolSDNode>(Callee)) {
847 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT);
848 }
849
850 // Returns a chain & a flag for retval copy to use.
851 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
852 SmallVector<SDValue, 8> Ops;
853 Ops.push_back(Chain);
854 Ops.push_back(Callee);
855
856 // Add argument registers to the end of the list so that they are
857 // known live into the call.
858 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
859 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
860 RegsToPass[i].second.getValueType()));
861 }
862
863 if (InFlag.getNode())
864 Ops.push_back(InFlag);
865
866 if (isTailCall) {
867 MF.getFrameInfo()->setHasTailCall();
868 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
869 }
870
871 int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
872 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
873 InFlag = Chain.getValue(1);
874
875 // Create the CALLSEQ_END node.
876 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
877 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
878 InFlag = Chain.getValue(1);
879
880 // Handle result values, copying them out of physregs into vregs that we
881 // return.
882 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
883 InVals, OutVals, Callee);
884 }
885
getIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)886 static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
887 bool isSEXTLoad, SDValue &Base,
888 SDValue &Offset, bool &isInc,
889 SelectionDAG &DAG) {
890 if (Ptr->getOpcode() != ISD::ADD)
891 return false;
892
893 auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget());
894 bool UseHVX = HST.useHVXOps();
895 bool UseHVXDbl = HST.useHVXDblOps();
896
897 bool ValidHVXDblType =
898 (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 ||
899 VT == MVT::v64i16 || VT == MVT::v128i8);
900 bool ValidHVXType =
901 UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 ||
902 VT == MVT::v32i16 || VT == MVT::v64i8);
903
904 if (ValidHVXDblType || ValidHVXType ||
905 VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
906 isInc = (Ptr->getOpcode() == ISD::ADD);
907 Base = Ptr->getOperand(0);
908 Offset = Ptr->getOperand(1);
909 // Ensure that Offset is a constant.
910 return (isa<ConstantSDNode>(Offset));
911 }
912
913 return false;
914 }
915
916 /// getPostIndexedAddressParts - returns true by value, base pointer and
917 /// offset pointer and addressing mode by reference if this node can be
918 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const919 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
920 SDValue &Base,
921 SDValue &Offset,
922 ISD::MemIndexedMode &AM,
923 SelectionDAG &DAG) const
924 {
925 EVT VT;
926 SDValue Ptr;
927 bool isSEXTLoad = false;
928
929 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
930 VT = LD->getMemoryVT();
931 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
932 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
933 VT = ST->getMemoryVT();
934 if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
935 return false;
936 }
937 } else {
938 return false;
939 }
940
941 bool isInc = false;
942 bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
943 isInc, DAG);
944 if (isLegal) {
945 auto &HII = *Subtarget.getInstrInfo();
946 int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
947 if (HII.isValidAutoIncImm(VT, OffsetVal)) {
948 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
949 return true;
950 }
951 }
952
953 return false;
954 }
955
956 SDValue
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const957 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
958 SDNode *Node = Op.getNode();
959 MachineFunction &MF = DAG.getMachineFunction();
960 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
961 switch (Node->getOpcode()) {
962 case ISD::INLINEASM: {
963 unsigned NumOps = Node->getNumOperands();
964 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
965 --NumOps; // Ignore the flag operand.
966
967 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
968 if (FuncInfo.hasClobberLR())
969 break;
970 unsigned Flags =
971 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
972 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
973 ++i; // Skip the ID value.
974
975 switch (InlineAsm::getKind(Flags)) {
976 default: llvm_unreachable("Bad flags!");
977 case InlineAsm::Kind_RegDef:
978 case InlineAsm::Kind_RegUse:
979 case InlineAsm::Kind_Imm:
980 case InlineAsm::Kind_Clobber:
981 case InlineAsm::Kind_Mem: {
982 for (; NumVals; --NumVals, ++i) {}
983 break;
984 }
985 case InlineAsm::Kind_RegDefEarlyClobber: {
986 for (; NumVals; --NumVals, ++i) {
987 unsigned Reg =
988 cast<RegisterSDNode>(Node->getOperand(i))->getReg();
989
990 // Check it to be lr
991 const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo();
992 if (Reg == QRI->getRARegister()) {
993 FuncInfo.setHasClobberLR(true);
994 break;
995 }
996 }
997 break;
998 }
999 }
1000 }
1001 }
1002 } // Node->getOpcode
1003 return Op;
1004 }
1005
1006 // Need to transform ISD::PREFETCH into something that doesn't inherit
1007 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
1008 // SDNPMayStore.
LowerPREFETCH(SDValue Op,SelectionDAG & DAG) const1009 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
1010 SelectionDAG &DAG) const {
1011 SDValue Chain = Op.getOperand(0);
1012 SDValue Addr = Op.getOperand(1);
1013 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
1014 // if the "reg" is fed by an "add".
1015 SDLoc DL(Op);
1016 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1017 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
1018 }
1019
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const1020 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1021 SelectionDAG &DAG) const {
1022 SDValue Chain = Op.getOperand(0);
1023 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1024 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
1025 if (IntNo == Intrinsic::hexagon_prefetch) {
1026 SDValue Addr = Op.getOperand(2);
1027 SDLoc DL(Op);
1028 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1029 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
1030 }
1031 return SDValue();
1032 }
1033
1034 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const1035 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1036 SelectionDAG &DAG) const {
1037 SDValue Chain = Op.getOperand(0);
1038 SDValue Size = Op.getOperand(1);
1039 SDValue Align = Op.getOperand(2);
1040 SDLoc dl(Op);
1041
1042 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
1043 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
1044
1045 unsigned A = AlignConst->getSExtValue();
1046 auto &HFI = *Subtarget.getFrameLowering();
1047 // "Zero" means natural stack alignment.
1048 if (A == 0)
1049 A = HFI.getStackAlignment();
1050
1051 DEBUG({
1052 dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: ";
1053 Size.getNode()->dump(&DAG);
1054 dbgs() << "\n";
1055 });
1056
1057 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
1058 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1059 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
1060
1061 DAG.ReplaceAllUsesOfValueWith(Op, AA);
1062 return AA;
1063 }
1064
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1065 SDValue HexagonTargetLowering::LowerFormalArguments(
1066 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1067 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1068 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1069
1070 MachineFunction &MF = DAG.getMachineFunction();
1071 MachineFrameInfo *MFI = MF.getFrameInfo();
1072 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1073 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
1074
1075 // Assign locations to all of the incoming arguments.
1076 SmallVector<CCValAssign, 16> ArgLocs;
1077 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1078 *DAG.getContext());
1079
1080 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
1081
1082 // For LLVM, in the case when returning a struct by value (>8byte),
1083 // the first argument is a pointer that points to the location on caller's
1084 // stack where the return value will be stored. For Hexagon, the location on
1085 // caller's stack is passed only when the struct size is smaller than (and
1086 // equal to) 8 bytes. If not, no address will be passed into callee and
1087 // callee return the result direclty through R0/R1.
1088
1089 SmallVector<SDValue, 8> MemOps;
1090 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
1091
1092 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1093 CCValAssign &VA = ArgLocs[i];
1094 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1095 unsigned ObjSize;
1096 unsigned StackLocation;
1097 int FI;
1098
1099 if ( (VA.isRegLoc() && !Flags.isByVal())
1100 || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
1101 // Arguments passed in registers
1102 // 1. int, long long, ptr args that get allocated in register.
1103 // 2. Large struct that gets an register to put its address in.
1104 EVT RegVT = VA.getLocVT();
1105 if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
1106 RegVT == MVT::i32 || RegVT == MVT::f32) {
1107 unsigned VReg =
1108 RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
1109 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1110 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1111 } else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
1112 unsigned VReg =
1113 RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1114 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1115 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1116
1117 // Single Vector
1118 } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 ||
1119 RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) {
1120 unsigned VReg =
1121 RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass);
1122 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1123 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1124 } else if (UseHVX && UseHVXDbl &&
1125 ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
1126 RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) {
1127 unsigned VReg =
1128 RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass);
1129 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1130 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1131
1132 // Double Vector
1133 } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
1134 RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) {
1135 unsigned VReg =
1136 RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass);
1137 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1138 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1139 } else if (UseHVX && UseHVXDbl &&
1140 ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 ||
1141 RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) {
1142 unsigned VReg =
1143 RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass);
1144 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1145 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1146 } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) {
1147 assert(0 && "need to support VecPred regs");
1148 unsigned VReg =
1149 RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass);
1150 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1151 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1152 } else {
1153 assert (0);
1154 }
1155 } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
1156 assert (0 && "ByValSize must be bigger than 8 bytes");
1157 } else {
1158 // Sanity check.
1159 assert(VA.isMemLoc());
1160
1161 if (Flags.isByVal()) {
1162 // If it's a byval parameter, then we need to compute the
1163 // "real" size, not the size of the pointer.
1164 ObjSize = Flags.getByValSize();
1165 } else {
1166 ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
1167 }
1168
1169 StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
1170 // Create the frame index object for this incoming parameter...
1171 FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
1172
1173 // Create the SelectionDAG nodes cordl, responding to a load
1174 // from this parameter.
1175 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1176
1177 if (Flags.isByVal()) {
1178 // If it's a pass-by-value aggregate, then do not dereference the stack
1179 // location. Instead, we should generate a reference to the stack
1180 // location.
1181 InVals.push_back(FIN);
1182 } else {
1183 InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1184 MachinePointerInfo(), false, false,
1185 false, 0));
1186 }
1187 }
1188 }
1189
1190 if (!MemOps.empty())
1191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1192
1193 if (isVarArg) {
1194 // This will point to the next argument passed via stack.
1195 int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
1196 HEXAGON_LRFP_SIZE +
1197 CCInfo.getNextStackOffset(),
1198 true);
1199 FuncInfo.setVarArgsFrameIndex(FrameIndex);
1200 }
1201
1202 return Chain;
1203 }
1204
1205 SDValue
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1206 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1207 // VASTART stores the address of the VarArgsFrameIndex slot into the
1208 // memory location argument.
1209 MachineFunction &MF = DAG.getMachineFunction();
1210 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
1211 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
1212 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1213 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
1214 Op.getOperand(1), MachinePointerInfo(SV), false,
1215 false, 0);
1216 }
1217
1218 // Creates a SPLAT instruction for a constant value VAL.
createSplat(SelectionDAG & DAG,const SDLoc & dl,EVT VT,SDValue Val)1219 static SDValue createSplat(SelectionDAG &DAG, const SDLoc &dl, EVT VT,
1220 SDValue Val) {
1221 if (VT.getSimpleVT() == MVT::v4i8)
1222 return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val);
1223
1224 if (VT.getSimpleVT() == MVT::v4i16)
1225 return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val);
1226
1227 return SDValue();
1228 }
1229
isSExtFree(SDValue N)1230 static bool isSExtFree(SDValue N) {
1231 // A sign-extend of a truncate of a sign-extend is free.
1232 if (N.getOpcode() == ISD::TRUNCATE &&
1233 N.getOperand(0).getOpcode() == ISD::AssertSext)
1234 return true;
1235 // We have sign-extended loads.
1236 if (N.getOpcode() == ISD::LOAD)
1237 return true;
1238 return false;
1239 }
1240
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const1241 SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
1242 SDLoc dl(Op);
1243 SDValue InpVal = Op.getOperand(0);
1244 if (isa<ConstantSDNode>(InpVal)) {
1245 uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue();
1246 return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64);
1247 }
1248 SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal);
1249 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut);
1250 }
1251
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1252 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1253 SDLoc dl(Op);
1254
1255 SDValue LHS = Op.getOperand(0);
1256 SDValue RHS = Op.getOperand(1);
1257 SDValue Cmp = Op.getOperand(2);
1258 ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
1259
1260 EVT VT = Op.getValueType();
1261 EVT LHSVT = LHS.getValueType();
1262 EVT RHSVT = RHS.getValueType();
1263
1264 if (LHSVT == MVT::v2i16) {
1265 assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC));
1266 unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND
1267 : ISD::ZERO_EXTEND;
1268 SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS);
1269 SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS);
1270 SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp);
1271 return SC;
1272 }
1273
1274 // Treat all other vector types as legal.
1275 if (VT.isVector())
1276 return Op;
1277
1278 // Equals and not equals should use sign-extend, not zero-extend, since
1279 // we can represent small negative values in the compare instructions.
1280 // The LLVM default is to use zero-extend arbitrarily in these cases.
1281 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
1282 (RHSVT == MVT::i8 || RHSVT == MVT::i16) &&
1283 (LHSVT == MVT::i8 || LHSVT == MVT::i16)) {
1284 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1285 if (C && C->getAPIntValue().isNegative()) {
1286 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
1287 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
1288 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
1289 LHS, RHS, Op.getOperand(2));
1290 }
1291 if (isSExtFree(LHS) || isSExtFree(RHS)) {
1292 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
1293 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
1294 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
1295 LHS, RHS, Op.getOperand(2));
1296 }
1297 }
1298 return SDValue();
1299 }
1300
1301 SDValue
LowerVSELECT(SDValue Op,SelectionDAG & DAG) const1302 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1303 SDValue PredOp = Op.getOperand(0);
1304 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1305 EVT OpVT = Op1.getValueType();
1306 SDLoc DL(Op);
1307
1308 if (OpVT == MVT::v2i16) {
1309 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
1310 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
1311 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
1312 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
1313 return TR;
1314 }
1315
1316 return SDValue();
1317 }
1318
1319 // Handle only specific vector loads.
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1320 SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1321 EVT VT = Op.getValueType();
1322 SDLoc DL(Op);
1323 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1324 SDValue Chain = LoadNode->getChain();
1325 SDValue Ptr = Op.getOperand(1);
1326 SDValue LoweredLoad;
1327 SDValue Result;
1328 SDValue Base = LoadNode->getBasePtr();
1329 ISD::LoadExtType Ext = LoadNode->getExtensionType();
1330 unsigned Alignment = LoadNode->getAlignment();
1331 SDValue LoadChain;
1332
1333 if(Ext == ISD::NON_EXTLOAD)
1334 Ext = ISD::ZEXTLOAD;
1335
1336 if (VT == MVT::v4i16) {
1337 if (Alignment == 2) {
1338 SDValue Loads[4];
1339 // Base load.
1340 Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base,
1341 LoadNode->getPointerInfo(), MVT::i16,
1342 LoadNode->isVolatile(),
1343 LoadNode->isNonTemporal(),
1344 LoadNode->isInvariant(),
1345 Alignment);
1346 // Base+2 load.
1347 SDValue Increment = DAG.getConstant(2, DL, MVT::i32);
1348 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1349 Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1350 LoadNode->getPointerInfo(), MVT::i16,
1351 LoadNode->isVolatile(),
1352 LoadNode->isNonTemporal(),
1353 LoadNode->isInvariant(),
1354 Alignment);
1355 // SHL 16, then OR base and base+2.
1356 SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32);
1357 SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount);
1358 SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]);
1359 // Base + 4.
1360 Increment = DAG.getConstant(4, DL, MVT::i32);
1361 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1362 Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1363 LoadNode->getPointerInfo(), MVT::i16,
1364 LoadNode->isVolatile(),
1365 LoadNode->isNonTemporal(),
1366 LoadNode->isInvariant(),
1367 Alignment);
1368 // Base + 6.
1369 Increment = DAG.getConstant(6, DL, MVT::i32);
1370 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1371 Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1372 LoadNode->getPointerInfo(), MVT::i16,
1373 LoadNode->isVolatile(),
1374 LoadNode->isNonTemporal(),
1375 LoadNode->isInvariant(),
1376 Alignment);
1377 // SHL 16, then OR base+4 and base+6.
1378 Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount);
1379 SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]);
1380 // Combine to i64. This could be optimised out later if we can
1381 // affect reg allocation of this code.
1382 Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2);
1383 LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1384 Loads[0].getValue(1), Loads[1].getValue(1),
1385 Loads[2].getValue(1), Loads[3].getValue(1));
1386 } else {
1387 // Perform default type expansion.
1388 Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(),
1389 LoadNode->isVolatile(), LoadNode->isNonTemporal(),
1390 LoadNode->isInvariant(), LoadNode->getAlignment());
1391 LoadChain = Result.getValue(1);
1392 }
1393 } else
1394 llvm_unreachable("Custom lowering unsupported load");
1395
1396 Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
1397 // Since we pretend to lower a load, we need the original chain
1398 // info attached to the result.
1399 SDValue Ops[] = { Result, LoadChain };
1400
1401 return DAG.getMergeValues(Ops, DL);
1402 }
1403
1404
1405 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1406 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1407 EVT ValTy = Op.getValueType();
1408 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1409 unsigned Align = CPN->getAlignment();
1410 bool IsPositionIndependent = isPositionIndependent();
1411 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1412
1413 SDValue T;
1414 if (CPN->isMachineConstantPoolEntry())
1415 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF);
1416 else
1417 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF);
1418 if (IsPositionIndependent)
1419 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1420 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1421 }
1422
1423 SDValue
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1424 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1425 EVT VT = Op.getValueType();
1426 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1427 if (isPositionIndependent()) {
1428 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1429 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1430 }
1431
1432 SDValue T = DAG.getTargetJumpTable(Idx, VT);
1433 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1434 }
1435
1436 SDValue
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1437 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1438 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1439 MachineFunction &MF = DAG.getMachineFunction();
1440 MachineFrameInfo &MFI = *MF.getFrameInfo();
1441 MFI.setReturnAddressIsTaken(true);
1442
1443 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1444 return SDValue();
1445
1446 EVT VT = Op.getValueType();
1447 SDLoc dl(Op);
1448 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1449 if (Depth) {
1450 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1451 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1452 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1453 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1454 MachinePointerInfo(), false, false, false, 0);
1455 }
1456
1457 // Return LR, which contains the return address. Mark it an implicit live-in.
1458 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1459 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1460 }
1461
1462 SDValue
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1463 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1464 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1465 MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
1466 MFI.setFrameAddressIsTaken(true);
1467
1468 EVT VT = Op.getValueType();
1469 SDLoc dl(Op);
1470 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1471 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1472 HRI.getFrameRegister(), VT);
1473 while (Depth--)
1474 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1475 MachinePointerInfo(),
1476 false, false, false, 0);
1477 return FrameAddr;
1478 }
1479
1480 SDValue
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const1481 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1482 SDLoc dl(Op);
1483 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1484 }
1485
1486
1487 SDValue
LowerGLOBALADDRESS(SDValue Op,SelectionDAG & DAG) const1488 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1489 SDLoc dl(Op);
1490 auto *GAN = cast<GlobalAddressSDNode>(Op);
1491 auto PtrVT = getPointerTy(DAG.getDataLayout());
1492 auto *GV = GAN->getGlobal();
1493 int64_t Offset = GAN->getOffset();
1494
1495 auto &HLOF = *HTM.getObjFileLowering();
1496 Reloc::Model RM = HTM.getRelocationModel();
1497
1498 if (RM == Reloc::Static) {
1499 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1500 if (HLOF.isGlobalInSmallSection(GV, HTM))
1501 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1502 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1503 }
1504
1505 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1506 if (UsePCRel) {
1507 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1508 HexagonII::MO_PCREL);
1509 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1510 }
1511
1512 // Use GOT index.
1513 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1514 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1515 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1516 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1517 }
1518
1519 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1520 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1521 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1522 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1523 SDLoc dl(Op);
1524 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1525
1526 Reloc::Model RM = HTM.getRelocationModel();
1527 if (RM == Reloc::Static) {
1528 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1529 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1530 }
1531
1532 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1533 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1534 }
1535
1536 SDValue
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const1537 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1538 const {
1539 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1540 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1541 HexagonII::MO_PCREL);
1542 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1543 }
1544
1545 SDValue
GetDynamicTLSAddr(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue * InFlag,EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags) const1546 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1547 GlobalAddressSDNode *GA, SDValue *InFlag, EVT PtrVT, unsigned ReturnReg,
1548 unsigned char OperandFlags) const {
1549 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1550 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1551 SDLoc dl(GA);
1552 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1553 GA->getValueType(0),
1554 GA->getOffset(),
1555 OperandFlags);
1556 // Create Operands for the call.The Operands should have the following:
1557 // 1. Chain SDValue
1558 // 2. Callee which in this case is the Global address value.
1559 // 3. Registers live into the call.In this case its R0, as we
1560 // have just one argument to be passed.
1561 // 4. InFlag if there is any.
1562 // Note: The order is important.
1563
1564 if (InFlag) {
1565 SDValue Ops[] = { Chain, TGA,
1566 DAG.getRegister(Hexagon::R0, PtrVT), *InFlag };
1567 Chain = DAG.getNode(HexagonISD::CALLv3, dl, NodeTys, Ops);
1568 } else {
1569 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT)};
1570 Chain = DAG.getNode(HexagonISD::CALLv3, dl, NodeTys, Ops);
1571 }
1572
1573 // Inform MFI that function has calls.
1574 MFI->setAdjustsStack(true);
1575
1576 SDValue Flag = Chain.getValue(1);
1577 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
1578 }
1579
1580 //
1581 // Lower using the intial executable model for TLS addresses
1582 //
1583 SDValue
LowerToTLSInitialExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1584 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1585 SelectionDAG &DAG) const {
1586 SDLoc dl(GA);
1587 int64_t Offset = GA->getOffset();
1588 auto PtrVT = getPointerTy(DAG.getDataLayout());
1589
1590 // Get the thread pointer.
1591 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1592
1593 bool IsPositionIndependent = isPositionIndependent();
1594 unsigned char TF =
1595 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1596
1597 // First generate the TLS symbol address
1598 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1599 Offset, TF);
1600
1601 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1602
1603 if (IsPositionIndependent) {
1604 // Generate the GOT pointer in case of position independent code
1605 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1606
1607 // Add the TLS Symbol address to GOT pointer.This gives
1608 // GOT relative relocation for the symbol.
1609 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1610 }
1611
1612 // Load the offset value for TLS symbol.This offset is relative to
1613 // thread pointer.
1614 SDValue LoadOffset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym,
1615 MachinePointerInfo(),
1616 false, false, false, 0);
1617
1618 // Address of the thread local variable is the add of thread
1619 // pointer and the offset of the variable.
1620 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1621 }
1622
1623 //
1624 // Lower using the local executable model for TLS addresses
1625 //
1626 SDValue
LowerToTLSLocalExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1627 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1628 SelectionDAG &DAG) const {
1629 SDLoc dl(GA);
1630 int64_t Offset = GA->getOffset();
1631 auto PtrVT = getPointerTy(DAG.getDataLayout());
1632
1633 // Get the thread pointer.
1634 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1635 // Generate the TLS symbol address
1636 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1637 HexagonII::MO_TPREL);
1638 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1639
1640 // Address of the thread local variable is the add of thread
1641 // pointer and the offset of the variable.
1642 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1643 }
1644
1645 //
1646 // Lower using the general dynamic model for TLS addresses
1647 //
1648 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1649 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1650 SelectionDAG &DAG) const {
1651 SDLoc dl(GA);
1652 int64_t Offset = GA->getOffset();
1653 auto PtrVT = getPointerTy(DAG.getDataLayout());
1654
1655 // First generate the TLS symbol address
1656 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1657 HexagonII::MO_GDGOT);
1658
1659 // Then, generate the GOT pointer
1660 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1661
1662 // Add the TLS symbol and the GOT pointer
1663 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1664 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1665
1666 // Copy over the argument to R0
1667 SDValue InFlag;
1668 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1669 InFlag = Chain.getValue(1);
1670
1671 return GetDynamicTLSAddr(DAG, Chain, GA, &InFlag, PtrVT,
1672 Hexagon::R0, HexagonII::MO_GDPLT);
1673 }
1674
1675 //
1676 // Lower TLS addresses.
1677 //
1678 // For now for dynamic models, we only support the general dynamic model.
1679 //
1680 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1681 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1682 SelectionDAG &DAG) const {
1683 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1684
1685 switch (HTM.getTLSModel(GA->getGlobal())) {
1686 case TLSModel::GeneralDynamic:
1687 case TLSModel::LocalDynamic:
1688 return LowerToTLSGeneralDynamicModel(GA, DAG);
1689 case TLSModel::InitialExec:
1690 return LowerToTLSInitialExecModel(GA, DAG);
1691 case TLSModel::LocalExec:
1692 return LowerToTLSLocalExecModel(GA, DAG);
1693 }
1694 llvm_unreachable("Bogus TLS model");
1695 }
1696
1697 //===----------------------------------------------------------------------===//
1698 // TargetLowering Implementation
1699 //===----------------------------------------------------------------------===//
1700
HexagonTargetLowering(const TargetMachine & TM,const HexagonSubtarget & ST)1701 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1702 const HexagonSubtarget &ST)
1703 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1704 Subtarget(ST) {
1705 bool IsV4 = !Subtarget.hasV5TOps();
1706 auto &HRI = *Subtarget.getRegisterInfo();
1707 bool UseHVX = Subtarget.useHVXOps();
1708 bool UseHVXSgl = Subtarget.useHVXSglOps();
1709 bool UseHVXDbl = Subtarget.useHVXDblOps();
1710
1711 setPrefLoopAlignment(4);
1712 setPrefFunctionAlignment(4);
1713 setMinFunctionAlignment(2);
1714 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1715
1716 setMaxAtomicSizeInBitsSupported(64);
1717 setMinCmpXchgSizeInBits(32);
1718
1719 if (EnableHexSDNodeSched)
1720 setSchedulingPreference(Sched::VLIW);
1721 else
1722 setSchedulingPreference(Sched::Source);
1723
1724 // Limits for inline expansion of memcpy/memmove
1725 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1726 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1727 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1728 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1729 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1730 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1731
1732 //
1733 // Set up register classes.
1734 //
1735
1736 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1737 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1738 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1739 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1740 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1741 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1742 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1743 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1744 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1745 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1746 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1747
1748 if (Subtarget.hasV5TOps()) {
1749 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1750 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1751 }
1752
1753 if (Subtarget.hasV60TOps()) {
1754 if (Subtarget.useHVXSglOps()) {
1755 addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass);
1756 addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass);
1757 addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass);
1758 addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass);
1759 addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass);
1760 addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass);
1761 addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass);
1762 addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass);
1763 addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass);
1764 } else if (Subtarget.useHVXDblOps()) {
1765 addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass);
1766 addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass);
1767 addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass);
1768 addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass);
1769 addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass);
1770 addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass);
1771 addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass);
1772 addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass);
1773 addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass);
1774 }
1775
1776 }
1777
1778 //
1779 // Handling of scalar operations.
1780 //
1781 // All operations default to "legal", except:
1782 // - indexed loads and stores (pre-/post-incremented),
1783 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1784 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1785 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1786 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1787 // which default to "expand" for at least one type.
1788
1789 // Misc operations.
1790 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
1791 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
1792
1793 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1794 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1795 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1796 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1797 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1798 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1799 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1800 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1801 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1802 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1803 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1804
1805 // Custom legalize GlobalAddress nodes into CONST32.
1806 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1807 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1808 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1809
1810 // Hexagon needs to optimize cases with negative constants.
1811 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1812 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1813
1814 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1815 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1816 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1817 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1818
1819 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1820 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1821 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1822
1823 if (EmitJumpTables)
1824 setMinimumJumpTableEntries(MinimumJumpTables);
1825 else
1826 setMinimumJumpTableEntries(INT_MAX);
1827 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1828
1829 // Hexagon has instructions for add/sub with carry. The problem with
1830 // modeling these instructions is that they produce 2 results: Rdd and Px.
1831 // To model the update of Px, we will have to use Defs[p0..p3] which will
1832 // cause any predicate live range to spill. So, we pretend we dont't have
1833 // these instructions.
1834 setOperationAction(ISD::ADDE, MVT::i8, Expand);
1835 setOperationAction(ISD::ADDE, MVT::i16, Expand);
1836 setOperationAction(ISD::ADDE, MVT::i32, Expand);
1837 setOperationAction(ISD::ADDE, MVT::i64, Expand);
1838 setOperationAction(ISD::SUBE, MVT::i8, Expand);
1839 setOperationAction(ISD::SUBE, MVT::i16, Expand);
1840 setOperationAction(ISD::SUBE, MVT::i32, Expand);
1841 setOperationAction(ISD::SUBE, MVT::i64, Expand);
1842 setOperationAction(ISD::ADDC, MVT::i8, Expand);
1843 setOperationAction(ISD::ADDC, MVT::i16, Expand);
1844 setOperationAction(ISD::ADDC, MVT::i32, Expand);
1845 setOperationAction(ISD::ADDC, MVT::i64, Expand);
1846 setOperationAction(ISD::SUBC, MVT::i8, Expand);
1847 setOperationAction(ISD::SUBC, MVT::i16, Expand);
1848 setOperationAction(ISD::SUBC, MVT::i32, Expand);
1849 setOperationAction(ISD::SUBC, MVT::i64, Expand);
1850
1851 // Only add and sub that detect overflow are the saturating ones.
1852 for (MVT VT : MVT::integer_valuetypes()) {
1853 setOperationAction(ISD::UADDO, VT, Expand);
1854 setOperationAction(ISD::SADDO, VT, Expand);
1855 setOperationAction(ISD::USUBO, VT, Expand);
1856 setOperationAction(ISD::SSUBO, VT, Expand);
1857 }
1858
1859 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1860 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1861 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1862 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1863
1864 // In V5, popcount can count # of 1s in i64 but returns i32.
1865 // On V4 it will be expanded (set later).
1866 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1867 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1868 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1869 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
1870
1871 // We custom lower i64 to i64 mul, so that it is not considered as a legal
1872 // operation. There is a pattern that will match i64 mul and transform it
1873 // to a series of instructions.
1874 setOperationAction(ISD::MUL, MVT::i64, Expand);
1875 setOperationAction(ISD::MULHS, MVT::i64, Expand);
1876
1877 for (unsigned IntExpOp :
1878 { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1879 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1880 ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1881 ISD::SMUL_LOHI, ISD::UMUL_LOHI }) {
1882 setOperationAction(IntExpOp, MVT::i32, Expand);
1883 setOperationAction(IntExpOp, MVT::i64, Expand);
1884 }
1885
1886 for (unsigned FPExpOp :
1887 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1888 ISD::FPOW, ISD::FCOPYSIGN}) {
1889 setOperationAction(FPExpOp, MVT::f32, Expand);
1890 setOperationAction(FPExpOp, MVT::f64, Expand);
1891 }
1892
1893 // No extending loads from i32.
1894 for (MVT VT : MVT::integer_valuetypes()) {
1895 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1896 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1897 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1898 }
1899 // Turn FP truncstore into trunc + store.
1900 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1901 // Turn FP extload into load/fextend.
1902 for (MVT VT : MVT::fp_valuetypes())
1903 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1904
1905 // Expand BR_CC and SELECT_CC for all integer and fp types.
1906 for (MVT VT : MVT::integer_valuetypes()) {
1907 setOperationAction(ISD::BR_CC, VT, Expand);
1908 setOperationAction(ISD::SELECT_CC, VT, Expand);
1909 }
1910 for (MVT VT : MVT::fp_valuetypes()) {
1911 setOperationAction(ISD::BR_CC, VT, Expand);
1912 setOperationAction(ISD::SELECT_CC, VT, Expand);
1913 }
1914 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1915
1916 //
1917 // Handling of vector operations.
1918 //
1919
1920 // Custom lower v4i16 load only. Let v4i16 store to be
1921 // promoted for now.
1922 promoteLdStType(MVT::v4i8, MVT::i32);
1923 promoteLdStType(MVT::v2i16, MVT::i32);
1924 promoteLdStType(MVT::v8i8, MVT::i64);
1925 promoteLdStType(MVT::v2i32, MVT::i64);
1926
1927 setOperationAction(ISD::LOAD, MVT::v4i16, Custom);
1928 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
1929 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64);
1930 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64);
1931
1932 // Set the action for vector operations to "expand", then override it with
1933 // either "custom" or "legal" for specific cases.
1934 static const unsigned VectExpOps[] = {
1935 // Integer arithmetic:
1936 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1937 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
1938 ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO,
1939 ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1940 // Logical/bit:
1941 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1942 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1943 // Floating point arithmetic/math functions:
1944 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1945 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1946 ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1947 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1948 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1949 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1950 // Misc:
1951 ISD::SELECT, ISD::ConstantPool,
1952 // Vector:
1953 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1954 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1955 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1956 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
1957 };
1958
1959 for (MVT VT : MVT::vector_valuetypes()) {
1960 for (unsigned VectExpOp : VectExpOps)
1961 setOperationAction(VectExpOp, VT, Expand);
1962
1963 // Expand all extended loads and truncating stores:
1964 for (MVT TargetVT : MVT::vector_valuetypes()) {
1965 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1966 setTruncStoreAction(VT, TargetVT, Expand);
1967 }
1968
1969 setOperationAction(ISD::SRA, VT, Custom);
1970 setOperationAction(ISD::SHL, VT, Custom);
1971 setOperationAction(ISD::SRL, VT, Custom);
1972 }
1973
1974 // Types natively supported:
1975 for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1,
1976 MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32,
1977 MVT::v2i32, MVT::v1i64}) {
1978 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1979 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1980 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1981 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1982 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1983 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1984
1985 setOperationAction(ISD::ADD, NativeVT, Legal);
1986 setOperationAction(ISD::SUB, NativeVT, Legal);
1987 setOperationAction(ISD::MUL, NativeVT, Legal);
1988 setOperationAction(ISD::AND, NativeVT, Legal);
1989 setOperationAction(ISD::OR, NativeVT, Legal);
1990 setOperationAction(ISD::XOR, NativeVT, Legal);
1991 }
1992
1993 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1994 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1995 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1996 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1997 if (UseHVX) {
1998 if (UseHVXSgl) {
1999 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom);
2000 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom);
2001 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom);
2002 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom);
2003 } else if (UseHVXDbl) {
2004 setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom);
2005 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom);
2006 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom);
2007 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom);
2008 } else {
2009 llvm_unreachable("Unrecognized HVX mode");
2010 }
2011 }
2012 // Subtarget-specific operation actions.
2013 //
2014 if (Subtarget.hasV5TOps()) {
2015 setOperationAction(ISD::FMA, MVT::f64, Expand);
2016 setOperationAction(ISD::FADD, MVT::f64, Expand);
2017 setOperationAction(ISD::FSUB, MVT::f64, Expand);
2018 setOperationAction(ISD::FMUL, MVT::f64, Expand);
2019
2020 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
2021 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
2022 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
2023 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
2024 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
2025 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
2026 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
2027 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
2028 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
2029 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
2030 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
2031 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
2032
2033 } else { // V4
2034 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
2035 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
2036 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
2037 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
2038 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
2039 setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
2040 setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
2041 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
2042 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
2043
2044 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
2045 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
2046 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
2047 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
2048
2049 // Expand these operations for both f32 and f64:
2050 for (unsigned FPExpOpV4 :
2051 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
2052 setOperationAction(FPExpOpV4, MVT::f32, Expand);
2053 setOperationAction(FPExpOpV4, MVT::f64, Expand);
2054 }
2055
2056 for (ISD::CondCode FPExpCCV4 :
2057 {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
2058 ISD::SETUO, ISD::SETO}) {
2059 setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
2060 setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
2061 }
2062 }
2063
2064 // Handling of indexed loads/stores: default is "expand".
2065 //
2066 for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
2067 setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal);
2068 setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal);
2069 }
2070
2071 if (UseHVXDbl) {
2072 for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) {
2073 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
2074 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
2075 }
2076 }
2077
2078 computeRegisterProperties(&HRI);
2079
2080 //
2081 // Library calls for unsupported operations
2082 //
2083 bool FastMath = EnableFastMath;
2084
2085 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
2086 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
2087 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
2088 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
2089 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
2090 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
2091 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
2092 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
2093
2094 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
2095 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
2096 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
2097 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
2098 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
2099 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
2100
2101 if (IsV4) {
2102 // Handle single-precision floating point operations on V4.
2103 if (FastMath) {
2104 setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
2105 setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
2106 setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
2107 setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
2108 setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
2109 // Double-precision compares.
2110 setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
2111 setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
2112 } else {
2113 setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
2114 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
2115 setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
2116 setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
2117 setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
2118 // Double-precision compares.
2119 setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
2120 setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
2121 }
2122 }
2123
2124 // This is the only fast library function for sqrtd.
2125 if (FastMath)
2126 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
2127
2128 // Prefix is: nothing for "slow-math",
2129 // "fast2_" for V4 fast-math and V5+ fast-math double-precision
2130 // (actually, keep fast-math and fast-math2 separate for now)
2131 if (FastMath) {
2132 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
2133 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
2134 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
2135 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
2136 // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
2137 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
2138 } else {
2139 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
2140 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
2141 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
2142 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
2143 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
2144 }
2145
2146 if (Subtarget.hasV5TOps()) {
2147 if (FastMath)
2148 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
2149 else
2150 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
2151 } else {
2152 // V4
2153 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
2154 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
2155 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
2156 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
2157 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
2158 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
2159 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
2160 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
2161 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
2162 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
2163 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
2164 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
2165 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
2166 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
2167 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
2168 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
2169 setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
2170 setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
2171 setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
2172 setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
2173 setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
2174 setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
2175 setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
2176 setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
2177 setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
2178 setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
2179 setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
2180 setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
2181 setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
2182 setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
2183 }
2184
2185 // These cause problems when the shift amount is non-constant.
2186 setLibcallName(RTLIB::SHL_I128, nullptr);
2187 setLibcallName(RTLIB::SRL_I128, nullptr);
2188 setLibcallName(RTLIB::SRA_I128, nullptr);
2189 }
2190
2191
getTargetNodeName(unsigned Opcode) const2192 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
2193 switch ((HexagonISD::NodeType)Opcode) {
2194 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
2195 case HexagonISD::ARGEXTEND: return "HexagonISD::ARGEXTEND";
2196 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
2197 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
2198 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
2199 case HexagonISD::CALLR: return "HexagonISD::CALLR";
2200 case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr";
2201 case HexagonISD::CALLv3: return "HexagonISD::CALLv3";
2202 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
2203 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
2204 case HexagonISD::CONST32: return "HexagonISD::CONST32";
2205 case HexagonISD::CP: return "HexagonISD::CP";
2206 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
2207 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
2208 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
2209 case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP";
2210 case HexagonISD::FCONST32: return "HexagonISD::FCONST32";
2211 case HexagonISD::INSERT: return "HexagonISD::INSERT";
2212 case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP";
2213 case HexagonISD::JT: return "HexagonISD::JT";
2214 case HexagonISD::PACKHL: return "HexagonISD::PACKHL";
2215 case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT";
2216 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
2217 case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB";
2218 case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH";
2219 case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB";
2220 case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH";
2221 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
2222 case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ";
2223 case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT";
2224 case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU";
2225 case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ";
2226 case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT";
2227 case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU";
2228 case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ";
2229 case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT";
2230 case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU";
2231 case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE";
2232 case HexagonISD::VSHLH: return "HexagonISD::VSHLH";
2233 case HexagonISD::VSHLW: return "HexagonISD::VSHLW";
2234 case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB";
2235 case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH";
2236 case HexagonISD::VSRAH: return "HexagonISD::VSRAH";
2237 case HexagonISD::VSRAW: return "HexagonISD::VSRAW";
2238 case HexagonISD::VSRLH: return "HexagonISD::VSRLH";
2239 case HexagonISD::VSRLW: return "HexagonISD::VSRLW";
2240 case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH";
2241 case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW";
2242 case HexagonISD::OP_END: break;
2243 }
2244 return nullptr;
2245 }
2246
isTruncateFree(Type * Ty1,Type * Ty2) const2247 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2248 EVT MTy1 = EVT::getEVT(Ty1);
2249 EVT MTy2 = EVT::getEVT(Ty2);
2250 if (!MTy1.isSimple() || !MTy2.isSimple())
2251 return false;
2252 return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32);
2253 }
2254
isTruncateFree(EVT VT1,EVT VT2) const2255 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2256 if (!VT1.isSimple() || !VT2.isSimple())
2257 return false;
2258 return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32);
2259 }
2260
2261 // shouldExpandBuildVectorWithShuffles
2262 // Should we expand the build vector with shuffles?
2263 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const2264 HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2265 unsigned DefinedValues) const {
2266
2267 // Hexagon vector shuffle operates on element sizes of bytes or halfwords
2268 EVT EltVT = VT.getVectorElementType();
2269 int EltBits = EltVT.getSizeInBits();
2270 if ((EltBits != 8) && (EltBits != 16))
2271 return false;
2272
2273 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
2274 }
2275
2276 // LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3). V1 and
2277 // V2 are the two vectors to select data from, V3 is the permutation.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)2278 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2279 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2280 SDValue V1 = Op.getOperand(0);
2281 SDValue V2 = Op.getOperand(1);
2282 SDLoc dl(Op);
2283 EVT VT = Op.getValueType();
2284
2285 if (V2.isUndef())
2286 V2 = V1;
2287
2288 if (SVN->isSplat()) {
2289 int Lane = SVN->getSplatIndex();
2290 if (Lane == -1) Lane = 0;
2291
2292 // Test if V1 is a SCALAR_TO_VECTOR.
2293 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
2294 return createSplat(DAG, dl, VT, V1.getOperand(0));
2295
2296 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
2297 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
2298 // reaches it).
2299 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
2300 !isa<ConstantSDNode>(V1.getOperand(0))) {
2301 bool IsScalarToVector = true;
2302 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
2303 if (!V1.getOperand(i).isUndef()) {
2304 IsScalarToVector = false;
2305 break;
2306 }
2307 if (IsScalarToVector)
2308 return createSplat(DAG, dl, VT, V1.getOperand(0));
2309 }
2310 return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32));
2311 }
2312
2313 // FIXME: We need to support more general vector shuffles. See
2314 // below the comment from the ARM backend that deals in the general
2315 // case with the vector shuffles. For now, let expand handle these.
2316 return SDValue();
2317
2318 // If the shuffle is not directly supported and it has 4 elements, use
2319 // the PerfectShuffle-generated table to synthesize it from other shuffles.
2320 }
2321
2322 // If BUILD_VECTOR has same base element repeated several times,
2323 // report true.
isCommonSplatElement(BuildVectorSDNode * BVN)2324 static bool isCommonSplatElement(BuildVectorSDNode *BVN) {
2325 unsigned NElts = BVN->getNumOperands();
2326 SDValue V0 = BVN->getOperand(0);
2327
2328 for (unsigned i = 1, e = NElts; i != e; ++i) {
2329 if (BVN->getOperand(i) != V0)
2330 return false;
2331 }
2332 return true;
2333 }
2334
2335 // LowerVECTOR_SHIFT - Lower a vector shift. Try to convert
2336 // <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific
2337 // <VT> = SHL/SRA/SRL <VT> by <IT/i32>.
LowerVECTOR_SHIFT(SDValue Op,SelectionDAG & DAG)2338 static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) {
2339 BuildVectorSDNode *BVN = 0;
2340 SDValue V1 = Op.getOperand(0);
2341 SDValue V2 = Op.getOperand(1);
2342 SDValue V3;
2343 SDLoc dl(Op);
2344 EVT VT = Op.getValueType();
2345
2346 if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) &&
2347 isCommonSplatElement(BVN))
2348 V3 = V2;
2349 else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) &&
2350 isCommonSplatElement(BVN))
2351 V3 = V1;
2352 else
2353 return SDValue();
2354
2355 SDValue CommonSplat = BVN->getOperand(0);
2356 SDValue Result;
2357
2358 if (VT.getSimpleVT() == MVT::v4i16) {
2359 switch (Op.getOpcode()) {
2360 case ISD::SRA:
2361 Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat);
2362 break;
2363 case ISD::SHL:
2364 Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat);
2365 break;
2366 case ISD::SRL:
2367 Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat);
2368 break;
2369 default:
2370 return SDValue();
2371 }
2372 } else if (VT.getSimpleVT() == MVT::v2i32) {
2373 switch (Op.getOpcode()) {
2374 case ISD::SRA:
2375 Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat);
2376 break;
2377 case ISD::SHL:
2378 Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat);
2379 break;
2380 case ISD::SRL:
2381 Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat);
2382 break;
2383 default:
2384 return SDValue();
2385 }
2386 } else {
2387 return SDValue();
2388 }
2389
2390 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
2391 }
2392
2393 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2394 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2395 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2396 SDLoc dl(Op);
2397 EVT VT = Op.getValueType();
2398
2399 unsigned Size = VT.getSizeInBits();
2400
2401 // Only handle vectors of 64 bits or shorter.
2402 if (Size > 64)
2403 return SDValue();
2404
2405 APInt APSplatBits, APSplatUndef;
2406 unsigned SplatBitSize;
2407 bool HasAnyUndefs;
2408 unsigned NElts = BVN->getNumOperands();
2409
2410 // Try to generate a SPLAT instruction.
2411 if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) &&
2412 (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
2413 HasAnyUndefs, 0, true) && SplatBitSize <= 16)) {
2414 unsigned SplatBits = APSplatBits.getZExtValue();
2415 int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >>
2416 (32 - SplatBitSize));
2417 return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32));
2418 }
2419
2420 // Try to generate COMBINE to build v2i32 vectors.
2421 if (VT.getSimpleVT() == MVT::v2i32) {
2422 SDValue V0 = BVN->getOperand(0);
2423 SDValue V1 = BVN->getOperand(1);
2424
2425 if (V0.isUndef())
2426 V0 = DAG.getConstant(0, dl, MVT::i32);
2427 if (V1.isUndef())
2428 V1 = DAG.getConstant(0, dl, MVT::i32);
2429
2430 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0);
2431 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1);
2432 // If the element isn't a constant, it is in a register:
2433 // generate a COMBINE Register Register instruction.
2434 if (!C0 || !C1)
2435 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
2436
2437 // If one of the operands is an 8 bit integer constant, generate
2438 // a COMBINE Immediate Immediate instruction.
2439 if (isInt<8>(C0->getSExtValue()) ||
2440 isInt<8>(C1->getSExtValue()))
2441 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
2442 }
2443
2444 // Try to generate a S2_packhl to build v2i16 vectors.
2445 if (VT.getSimpleVT() == MVT::v2i16) {
2446 for (unsigned i = 0, e = NElts; i != e; ++i) {
2447 if (BVN->getOperand(i).isUndef())
2448 continue;
2449 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i));
2450 // If the element isn't a constant, it is in a register:
2451 // generate a S2_packhl instruction.
2452 if (!Cst) {
2453 SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16,
2454 BVN->getOperand(1), BVN->getOperand(0));
2455
2456 return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16,
2457 pack);
2458 }
2459 }
2460 }
2461
2462 // In the general case, generate a CONST32 or a CONST64 for constant vectors,
2463 // and insert_vector_elt for all the other cases.
2464 uint64_t Res = 0;
2465 unsigned EltSize = Size / NElts;
2466 SDValue ConstVal;
2467 uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize);
2468 bool HasNonConstantElements = false;
2469
2470 for (unsigned i = 0, e = NElts; i != e; ++i) {
2471 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's
2472 // combine, const64, etc. are Big Endian.
2473 unsigned OpIdx = NElts - i - 1;
2474 SDValue Operand = BVN->getOperand(OpIdx);
2475 if (Operand.isUndef())
2476 continue;
2477
2478 int64_t Val = 0;
2479 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand))
2480 Val = Cst->getSExtValue();
2481 else
2482 HasNonConstantElements = true;
2483
2484 Val &= Mask;
2485 Res = (Res << EltSize) | Val;
2486 }
2487
2488 if (Size == 64)
2489 ConstVal = DAG.getConstant(Res, dl, MVT::i64);
2490 else
2491 ConstVal = DAG.getConstant(Res, dl, MVT::i32);
2492
2493 // When there are non constant operands, add them with INSERT_VECTOR_ELT to
2494 // ConstVal, the constant part of the vector.
2495 if (HasNonConstantElements) {
2496 EVT EltVT = VT.getVectorElementType();
2497 SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64);
2498 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2499 DAG.getConstant(32, dl, MVT::i64));
2500
2501 for (unsigned i = 0, e = NElts; i != e; ++i) {
2502 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon
2503 // is Big Endian.
2504 unsigned OpIdx = NElts - i - 1;
2505 SDValue Operand = BVN->getOperand(OpIdx);
2506 if (isa<ConstantSDNode>(Operand))
2507 // This operand is already in ConstVal.
2508 continue;
2509
2510 if (VT.getSizeInBits() == 64 &&
2511 Operand.getValueType().getSizeInBits() == 32) {
2512 SDValue C = DAG.getConstant(0, dl, MVT::i32);
2513 Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
2514 }
2515
2516 SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
2517 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
2518 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2519 const SDValue Ops[] = {ConstVal, Operand, Combined};
2520
2521 if (VT.getSizeInBits() == 32)
2522 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
2523 else
2524 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
2525 }
2526 }
2527
2528 return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
2529 }
2530
2531 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const2532 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2533 SelectionDAG &DAG) const {
2534 SDLoc dl(Op);
2535 bool UseHVX = Subtarget.useHVXOps();
2536 EVT VT = Op.getValueType();
2537 unsigned NElts = Op.getNumOperands();
2538 SDValue Vec0 = Op.getOperand(0);
2539 EVT VecVT = Vec0.getValueType();
2540 unsigned Width = VecVT.getSizeInBits();
2541
2542 if (NElts == 2) {
2543 MVT ST = VecVT.getSimpleVT();
2544 // We are trying to concat two v2i16 to a single v4i16, or two v4i8
2545 // into a single v8i8.
2546 if (ST == MVT::v2i16 || ST == MVT::v4i8)
2547 return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0);
2548
2549 if (UseHVX) {
2550 assert((Width == 64*8 && Subtarget.useHVXSglOps()) ||
2551 (Width == 128*8 && Subtarget.useHVXDblOps()));
2552 SDValue Vec1 = Op.getOperand(1);
2553 MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32;
2554 MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32;
2555 SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0);
2556 SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1);
2557 SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0);
2558 return DAG.getNode(ISD::BITCAST, dl, VT, VC);
2559 }
2560 }
2561
2562 if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64)
2563 return SDValue();
2564
2565 SDValue C0 = DAG.getConstant(0, dl, MVT::i64);
2566 SDValue C32 = DAG.getConstant(32, dl, MVT::i64);
2567 SDValue W = DAG.getConstant(Width, dl, MVT::i64);
2568 // Create the "width" part of the argument to insert_rp/insertp_rp.
2569 SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32);
2570 SDValue V = C0;
2571
2572 for (unsigned i = 0, e = NElts; i != e; ++i) {
2573 unsigned N = NElts-i-1;
2574 SDValue OpN = Op.getOperand(N);
2575
2576 if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) {
2577 SDValue C = DAG.getConstant(0, dl, MVT::i32);
2578 OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN);
2579 }
2580 SDValue Idx = DAG.getConstant(N, dl, MVT::i64);
2581 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W);
2582 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset);
2583 if (VT.getSizeInBits() == 32)
2584 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or});
2585 else
2586 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or});
2587 }
2588
2589 return DAG.getNode(ISD::BITCAST, dl, VT, V);
2590 }
2591
2592 SDValue
LowerEXTRACT_VECTOR(SDValue Op,SelectionDAG & DAG) const2593 HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op,
2594 SelectionDAG &DAG) const {
2595 EVT VT = Op.getValueType();
2596 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
2597 SDLoc dl(Op);
2598 SDValue Idx = Op.getOperand(1);
2599 SDValue Vec = Op.getOperand(0);
2600 EVT VecVT = Vec.getValueType();
2601 EVT EltVT = VecVT.getVectorElementType();
2602 int EltSize = EltVT.getSizeInBits();
2603 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ?
2604 EltSize : VTN * EltSize, dl, MVT::i64);
2605
2606 // Constant element number.
2607 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) {
2608 uint64_t X = CI->getZExtValue();
2609 SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32);
2610 const SDValue Ops[] = {Vec, Width, Offset};
2611
2612 ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width);
2613 assert(CW && "Non constant width in LowerEXTRACT_VECTOR");
2614
2615 SDValue N;
2616 MVT SVT = VecVT.getSimpleVT();
2617 uint64_t W = CW->getZExtValue();
2618
2619 if (W == 32) {
2620 // Translate this node into EXTRACT_SUBREG.
2621 unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0;
2622
2623 if (X == 0)
2624 Subreg = Hexagon::subreg_loreg;
2625 else if (SVT == MVT::v2i32 && X == 1)
2626 Subreg = Hexagon::subreg_hireg;
2627 else if (SVT == MVT::v4i16 && X == 2)
2628 Subreg = Hexagon::subreg_hireg;
2629 else if (SVT == MVT::v8i8 && X == 4)
2630 Subreg = Hexagon::subreg_hireg;
2631 else
2632 llvm_unreachable("Bad offset");
2633 N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec);
2634
2635 } else if (VecVT.getSizeInBits() == 32) {
2636 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops);
2637 } else {
2638 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops);
2639 if (VT.getSizeInBits() == 32)
2640 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
2641 }
2642
2643 return DAG.getNode(ISD::BITCAST, dl, VT, N);
2644 }
2645
2646 // Variable element number.
2647 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
2648 DAG.getConstant(EltSize, dl, MVT::i32));
2649 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2650 DAG.getConstant(32, dl, MVT::i64));
2651 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2652
2653 const SDValue Ops[] = {Vec, Combined};
2654
2655 SDValue N;
2656 if (VecVT.getSizeInBits() == 32) {
2657 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops);
2658 } else {
2659 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops);
2660 if (VT.getSizeInBits() == 32)
2661 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
2662 }
2663 return DAG.getNode(ISD::BITCAST, dl, VT, N);
2664 }
2665
2666 SDValue
LowerINSERT_VECTOR(SDValue Op,SelectionDAG & DAG) const2667 HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op,
2668 SelectionDAG &DAG) const {
2669 EVT VT = Op.getValueType();
2670 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
2671 SDLoc dl(Op);
2672 SDValue Vec = Op.getOperand(0);
2673 SDValue Val = Op.getOperand(1);
2674 SDValue Idx = Op.getOperand(2);
2675 EVT VecVT = Vec.getValueType();
2676 EVT EltVT = VecVT.getVectorElementType();
2677 int EltSize = EltVT.getSizeInBits();
2678 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ?
2679 EltSize : VTN * EltSize, dl, MVT::i64);
2680
2681 if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) {
2682 SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32);
2683 const SDValue Ops[] = {Vec, Val, Width, Offset};
2684
2685 SDValue N;
2686 if (VT.getSizeInBits() == 32)
2687 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops);
2688 else
2689 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops);
2690
2691 return DAG.getNode(ISD::BITCAST, dl, VT, N);
2692 }
2693
2694 // Variable element number.
2695 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
2696 DAG.getConstant(EltSize, dl, MVT::i32));
2697 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2698 DAG.getConstant(32, dl, MVT::i64));
2699 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2700
2701 if (VT.getSizeInBits() == 64 &&
2702 Val.getValueType().getSizeInBits() == 32) {
2703 SDValue C = DAG.getConstant(0, dl, MVT::i32);
2704 Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val);
2705 }
2706
2707 const SDValue Ops[] = {Vec, Val, Combined};
2708
2709 SDValue N;
2710 if (VT.getSizeInBits() == 32)
2711 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
2712 else
2713 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
2714
2715 return DAG.getNode(ISD::BITCAST, dl, VT, N);
2716 }
2717
2718 bool
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const2719 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2720 // Assuming the caller does not have either a signext or zeroext modifier, and
2721 // only one value is accepted, any reasonable truncation is allowed.
2722 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2723 return false;
2724
2725 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2726 // fragile at the moment: any support for multiple value returns would be
2727 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2728 return Ty1->getPrimitiveSizeInBits() <= 32;
2729 }
2730
2731 SDValue
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const2732 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2733 SDValue Chain = Op.getOperand(0);
2734 SDValue Offset = Op.getOperand(1);
2735 SDValue Handler = Op.getOperand(2);
2736 SDLoc dl(Op);
2737 auto PtrVT = getPointerTy(DAG.getDataLayout());
2738
2739 // Mark function as containing a call to EH_RETURN.
2740 HexagonMachineFunctionInfo *FuncInfo =
2741 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2742 FuncInfo->setHasEHReturn();
2743
2744 unsigned OffsetReg = Hexagon::R28;
2745
2746 SDValue StoreAddr =
2747 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2748 DAG.getIntPtrConstant(4, dl));
2749 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
2750 false, false, 0);
2751 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2752
2753 // Not needed we already use it as explict input to EH_RETURN.
2754 // MF.getRegInfo().addLiveOut(OffsetReg);
2755
2756 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2757 }
2758
2759 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2760 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2761 unsigned Opc = Op.getOpcode();
2762 switch (Opc) {
2763 default:
2764 #ifndef NDEBUG
2765 Op.getNode()->dumpr(&DAG);
2766 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2767 errs() << "Check for a non-legal type in this operation\n";
2768 #endif
2769 llvm_unreachable("Should not custom lower this!");
2770 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2771 case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG);
2772 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG);
2773 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG);
2774 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG);
2775 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2776 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2777 case ISD::SRA:
2778 case ISD::SHL:
2779 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
2780 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2781 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2782 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
2783 // Frame & Return address. Currently unimplemented.
2784 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
2785 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2786 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2787 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
2788 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
2789 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2790 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2791 case ISD::VASTART: return LowerVASTART(Op, DAG);
2792 // Custom lower some vector loads.
2793 case ISD::LOAD: return LowerLOAD(Op, DAG);
2794 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2795 case ISD::SETCC: return LowerSETCC(Op, DAG);
2796 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
2797 case ISD::CTPOP: return LowerCTPOP(Op, DAG);
2798 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2799 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
2800 case ISD::INLINEASM: return LowerINLINEASM(Op, DAG);
2801 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
2802 }
2803 }
2804
2805 /// Returns relocation base for the given PIC jumptable.
2806 SDValue
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const2807 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2808 SelectionDAG &DAG) const {
2809 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2810 EVT VT = Table.getValueType();
2811 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2812 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2813 }
2814
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const2815 MachineBasicBlock *HexagonTargetLowering::EmitInstrWithCustomInserter(
2816 MachineInstr &MI, MachineBasicBlock *BB) const {
2817 switch (MI.getOpcode()) {
2818 case Hexagon::ALLOCA: {
2819 MachineFunction *MF = BB->getParent();
2820 auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>();
2821 FuncInfo->addAllocaAdjustInst(&MI);
2822 return BB;
2823 }
2824 default:
2825 llvm_unreachable("Unexpected instr type to insert");
2826 } // switch
2827 }
2828
2829 //===----------------------------------------------------------------------===//
2830 // Inline Assembly Support
2831 //===----------------------------------------------------------------------===//
2832
2833 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2834 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2835 if (Constraint.size() == 1) {
2836 switch (Constraint[0]) {
2837 case 'q':
2838 case 'v':
2839 if (Subtarget.useHVXOps())
2840 return C_Register;
2841 break;
2842 }
2843 }
2844 return TargetLowering::getConstraintType(Constraint);
2845 }
2846
2847 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const2848 HexagonTargetLowering::getRegForInlineAsmConstraint(
2849 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2850 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
2851
2852 if (Constraint.size() == 1) {
2853 switch (Constraint[0]) {
2854 case 'r': // R0-R31
2855 switch (VT.SimpleTy) {
2856 default:
2857 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2858 case MVT::i32:
2859 case MVT::i16:
2860 case MVT::i8:
2861 case MVT::f32:
2862 return std::make_pair(0U, &Hexagon::IntRegsRegClass);
2863 case MVT::i64:
2864 case MVT::f64:
2865 return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
2866 }
2867 case 'q': // q0-q3
2868 switch (VT.SimpleTy) {
2869 default:
2870 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2871 case MVT::v1024i1:
2872 case MVT::v512i1:
2873 case MVT::v32i16:
2874 case MVT::v16i32:
2875 case MVT::v64i8:
2876 case MVT::v8i64:
2877 return std::make_pair(0U, &Hexagon::VecPredRegsRegClass);
2878 }
2879 case 'v': // V0-V31
2880 switch (VT.SimpleTy) {
2881 default:
2882 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2883 case MVT::v16i32:
2884 case MVT::v32i16:
2885 case MVT::v64i8:
2886 case MVT::v8i64:
2887 return std::make_pair(0U, &Hexagon::VectorRegsRegClass);
2888 case MVT::v32i32:
2889 case MVT::v64i16:
2890 case MVT::v16i64:
2891 case MVT::v128i8:
2892 if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl)
2893 return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass);
2894 else
2895 return std::make_pair(0U, &Hexagon::VecDblRegsRegClass);
2896 case MVT::v256i8:
2897 case MVT::v128i16:
2898 case MVT::v64i32:
2899 case MVT::v32i64:
2900 return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass);
2901 }
2902
2903 default:
2904 llvm_unreachable("Unknown asm register class");
2905 }
2906 }
2907
2908 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2909 }
2910
2911 /// isFPImmLegal - Returns true if the target can instruction select the
2912 /// specified FP immediate natively. If false, the legalizer will
2913 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const2914 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2915 return Subtarget.hasV5TOps();
2916 }
2917
2918 /// isLegalAddressingMode - Return true if the addressing mode represented by
2919 /// AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const2920 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2921 const AddrMode &AM, Type *Ty,
2922 unsigned AS) const {
2923 // Allows a signed-extended 11-bit immediate field.
2924 if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1)
2925 return false;
2926
2927 // No global is ever allowed as a base.
2928 if (AM.BaseGV)
2929 return false;
2930
2931 int Scale = AM.Scale;
2932 if (Scale < 0) Scale = -Scale;
2933 switch (Scale) {
2934 case 0: // No scale reg, "r+i", "r", or just "i".
2935 break;
2936 default: // No scaled addressing mode.
2937 return false;
2938 }
2939 return true;
2940 }
2941
2942 /// Return true if folding a constant offset with the given GlobalAddress is
2943 /// legal. It is frequently not legal in PIC relocation models.
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const2944 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
2945 const {
2946 return HTM.getRelocationModel() == Reloc::Static;
2947 }
2948
2949
2950 /// isLegalICmpImmediate - Return true if the specified immediate is legal
2951 /// icmp immediate, that is the target has icmp instructions which can compare
2952 /// a register against the immediate without having to materialize the
2953 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const2954 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
2955 return Imm >= -512 && Imm <= 511;
2956 }
2957
2958 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2959 /// for tail call optimization. Targets which want to do tail call
2960 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2961 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
2962 SDValue Callee,
2963 CallingConv::ID CalleeCC,
2964 bool isVarArg,
2965 bool isCalleeStructRet,
2966 bool isCallerStructRet,
2967 const SmallVectorImpl<ISD::OutputArg> &Outs,
2968 const SmallVectorImpl<SDValue> &OutVals,
2969 const SmallVectorImpl<ISD::InputArg> &Ins,
2970 SelectionDAG& DAG) const {
2971 const Function *CallerF = DAG.getMachineFunction().getFunction();
2972 CallingConv::ID CallerCC = CallerF->getCallingConv();
2973 bool CCMatch = CallerCC == CalleeCC;
2974
2975 // ***************************************************************************
2976 // Look for obvious safe cases to perform tail call optimization that do not
2977 // require ABI changes.
2978 // ***************************************************************************
2979
2980 // If this is a tail call via a function pointer, then don't do it!
2981 if (!(isa<GlobalAddressSDNode>(Callee)) &&
2982 !(isa<ExternalSymbolSDNode>(Callee))) {
2983 return false;
2984 }
2985
2986 // Do not optimize if the calling conventions do not match.
2987 if (!CCMatch)
2988 return false;
2989
2990 // Do not tail call optimize vararg calls.
2991 if (isVarArg)
2992 return false;
2993
2994 // Also avoid tail call optimization if either caller or callee uses struct
2995 // return semantics.
2996 if (isCalleeStructRet || isCallerStructRet)
2997 return false;
2998
2999 // In addition to the cases above, we also disable Tail Call Optimization if
3000 // the calling convention code that at least one outgoing argument needs to
3001 // go on the stack. We cannot check that here because at this point that
3002 // information is not available.
3003 return true;
3004 }
3005
3006 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(SDNode * N)3007 bool llvm::isPositiveHalfWord(SDNode *N) {
3008 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3009 if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
3010 return true;
3011
3012 switch (N->getOpcode()) {
3013 default:
3014 return false;
3015 case ISD::SIGN_EXTEND_INREG:
3016 return true;
3017 }
3018 }
3019
allowsMisalignedMemoryAccesses(EVT VT,unsigned AS,unsigned Align,bool * Fast) const3020 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
3021 unsigned AS, unsigned Align, bool *Fast) const {
3022 if (Fast)
3023 *Fast = false;
3024
3025 switch (VT.getSimpleVT().SimpleTy) {
3026 default:
3027 return false;
3028 case MVT::v64i8:
3029 case MVT::v128i8:
3030 case MVT::v256i8:
3031 case MVT::v32i16:
3032 case MVT::v64i16:
3033 case MVT::v128i16:
3034 case MVT::v16i32:
3035 case MVT::v32i32:
3036 case MVT::v64i32:
3037 case MVT::v8i64:
3038 case MVT::v16i64:
3039 case MVT::v32i64:
3040 return true;
3041 }
3042 return false;
3043 }
3044
3045
3046 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const3047 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3048 MVT VT) const {
3049 const TargetRegisterClass *RRC = nullptr;
3050
3051 uint8_t Cost = 1;
3052 switch (VT.SimpleTy) {
3053 default:
3054 return TargetLowering::findRepresentativeClass(TRI, VT);
3055 case MVT::v64i8:
3056 case MVT::v32i16:
3057 case MVT::v16i32:
3058 case MVT::v8i64:
3059 RRC = &Hexagon::VectorRegsRegClass;
3060 break;
3061 case MVT::v128i8:
3062 case MVT::v64i16:
3063 case MVT::v32i32:
3064 case MVT::v16i64:
3065 if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() &&
3066 Subtarget.useHVXDblOps())
3067 RRC = &Hexagon::VectorRegs128BRegClass;
3068 else
3069 RRC = &Hexagon::VecDblRegsRegClass;
3070 break;
3071 case MVT::v256i8:
3072 case MVT::v128i16:
3073 case MVT::v64i32:
3074 case MVT::v32i64:
3075 RRC = &Hexagon::VecDblRegs128BRegClass;
3076 break;
3077 }
3078 return std::make_pair(RRC, Cost);
3079 }
3080
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const3081 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3082 AtomicOrdering Ord) const {
3083 BasicBlock *BB = Builder.GetInsertBlock();
3084 Module *M = BB->getParent()->getParent();
3085 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
3086 unsigned SZ = Ty->getPrimitiveSizeInBits();
3087 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3088 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3089 : Intrinsic::hexagon_L4_loadd_locked;
3090 Value *Fn = Intrinsic::getDeclaration(M, IntID);
3091 return Builder.CreateCall(Fn, Addr, "larx");
3092 }
3093
3094 /// Perform a store-conditional operation to Addr. Return the status of the
3095 /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const3096 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3097 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3098 BasicBlock *BB = Builder.GetInsertBlock();
3099 Module *M = BB->getParent()->getParent();
3100 Type *Ty = Val->getType();
3101 unsigned SZ = Ty->getPrimitiveSizeInBits();
3102 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3103 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3104 : Intrinsic::hexagon_S4_stored_locked;
3105 Value *Fn = Intrinsic::getDeclaration(M, IntID);
3106 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3107 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3108 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3109 return Ext;
3110 }
3111
3112 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const3113 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3114 // Do not expand loads and stores that don't exceed 64 bits.
3115 return LI->getType()->getPrimitiveSizeInBits() > 64
3116 ? AtomicExpansionKind::LLOnly
3117 : AtomicExpansionKind::None;
3118 }
3119
shouldExpandAtomicStoreInIR(StoreInst * SI) const3120 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3121 // Do not expand loads and stores that don't exceed 64 bits.
3122 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3123 }
3124
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const3125 bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3126 AtomicCmpXchgInst *AI) const {
3127 const DataLayout &DL = AI->getModule()->getDataLayout();
3128 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3129 return Size >= 4 && Size <= 8;
3130 }
3131